- 根目录:
- drivers
- gpu
- drm
- radeon
- atombios_dp.c
/*
* Copyright 2007-8 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
*/
#include "drmP.h"
#include "radeon_drm.h"
#include "radeon.h"
#include "atom.h"
#include "atom-bits.h"
#include "drm_dp_helper.h"
/* move these to drm_dp_helper.c/h */
#define DP_LINK_CONFIGURATION_SIZE 9
#define DP_LINK_STATUS_SIZE 6
#define DP_DPCD_SIZE 8
static char *voltage_names[] = {
"0.4V", "0.6V", "0.8V", "1.2V"
};
static char *pre_emph_names[] = {
"0dB", "3.5dB", "6dB", "9.5dB"
};
/***** radeon AUX functions *****/
union aux_channel_transaction {
PROCESS_AUX_CHANNEL_TRANSACTION_PS_ALLOCATION v1;
PROCESS_AUX_CHANNEL_TRANSACTION_PARAMETERS_V2 v2;
};
static int radeon_process_aux_ch(struct radeon_i2c_chan *chan,
u8 *send, int send_bytes,
u8 *recv, int recv_size,
u8 delay, u8 *ack)
{
struct drm_device *dev = chan->dev;
struct radeon_device *rdev = dev->dev_private;
union aux_channel_transaction args;
int index = GetIndexIntoMasterTable(COMMAND, ProcessAuxChannelTransaction);
unsigned char *base;
int recv_bytes;
memset(&args, 0, sizeof(args));
base = (unsigned char *)rdev->mode_info.atom_context->scratch;
memcpy(base, send, send_bytes);
args.v1.lpAuxRequest = 0;
args.v1.lpDataOut = 16;
args.v1.ucDataOutLen = 0;
args.v1.ucChannelID = chan->rec.i2c_id;
args.v1.ucDelay = delay / 10;
if (ASIC_IS_DCE4(rdev))
args.v2.ucHPD_ID = chan->rec.hpd;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
*ack = args.v1.ucReplyStatus;
/* timeout */
if (args.v1.ucReplyStatus == 1) {
DRM_DEBUG_KMS("dp_aux_ch timeout\n");
return -ETIMEDOUT;
}
/* flags not zero */
if (args.v1.ucReplyStatus == 2) {
DRM_DEBUG_KMS("dp_aux_ch flags not zero\n");
return -EBUSY;
}
/* error */
if (args.v1.ucReplyStatus == 3) {
DRM_DEBUG_KMS("dp_aux_ch error\n");
return -EIO;
}
recv_bytes = args.v1.ucDataOutLen;
if (recv_bytes > recv_size)
recv_bytes = recv_size;
if (recv && recv_size)
memcpy(recv, base + 16, recv_bytes);
return recv_bytes;
}
static int radeon_dp_aux_native_write(struct radeon_connector *radeon_connector,
u16 address, u8 *send, u8 send_bytes, u8 delay)
{
struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv;
int ret;
u8 msg[20];
int msg_bytes = send_bytes + 4;
u8 ack;
unsigned retry;
if (send_bytes > 16)
return -1;
msg[0] = address;
msg[1] = address >> 8;
msg[2] = AUX_NATIVE_WRITE << 4;
msg[3] = (msg_bytes << 4) | (send_bytes - 1);
memcpy(&msg[4], send, send_bytes);
for (retry = 0; retry < 4; retry++) {
ret = radeon_process_aux_ch(dig_connector->dp_i2c_bus,
msg, msg_bytes, NULL, 0, delay, &ack);
if (ret == -EBUSY)
continue;
else if (ret < 0)
return ret;
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
return send_bytes;
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
udelay(400);
else
return -EIO;
}
return -EIO;
}
static int radeon_dp_aux_native_read(struct radeon_connector *radeon_connector,
u16 address, u8 *recv, int recv_bytes, u8 delay)
{
struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv;
u8 msg[4];
int msg_bytes = 4;
u8 ack;
int ret;
unsigned retry;
msg[0] = address;
msg[1] = address >> 8;
msg[2] = AUX_NATIVE_READ << 4;
msg[3] = (msg_bytes << 4) | (recv_bytes - 1);
for (retry = 0; retry < 4; retry++) {
ret = radeon_process_aux_ch(dig_connector->dp_i2c_bus,
msg, msg_bytes, recv, recv_bytes, delay, &ack);
if (ret == -EBUSY)
continue;
else if (ret < 0)
return ret;
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
return ret;
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
udelay(400);
else if (ret == 0)
return -EPROTO;
else
return -EIO;
}
return -EIO;
}
static void radeon_write_dpcd_reg(struct radeon_connector *radeon_connector,
u16 reg, u8 val)
{
radeon_dp_aux_native_write(radeon_connector, reg, &val, 1, 0);
}
static u8 radeon_read_dpcd_reg(struct radeon_connector *radeon_connector,
u16 reg)
{
u8 val = 0;
radeon_dp_aux_native_read(radeon_connector, reg, &val, 1, 0);
return val;
}
int radeon_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
u8 write_byte, u8 *read_byte)
{
struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
struct radeon_i2c_chan *auxch = (struct radeon_i2c_chan *)adapter;
u16 address = algo_data->address;
u8 msg[5];
u8 reply[2];
unsigned retry;
int msg_bytes;
int reply_bytes = 1;
int ret;
u8 ack;
/* Set up the command byte */
if (mode & MODE_I2C_READ)
msg[2] = AUX_I2C_READ << 4;
else
msg[2] = AUX_I2C_WRITE << 4;
if (!(mode & MODE_I2C_STOP))
msg[2] |= AUX_I2C_MOT << 4;
msg[0] = address;
msg[1] = address >> 8;
switch (mode) {
case MODE_I2C_WRITE:
msg_bytes = 5;
msg[3] = msg_bytes << 4;
msg[4] = write_byte;
break;
case MODE_I2C_READ:
msg_bytes = 4;
msg[3] = msg_bytes << 4;
break;
default:
msg_bytes = 4;
msg[3] = 3 << 4;
break;
}
for (retry = 0; retry < 4; retry++) {
ret = radeon_process_aux_ch(auxch,
msg, msg_bytes, reply, reply_bytes, 0, &ack);
if (ret == -EBUSY)
continue;
else if (ret < 0) {
DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
return ret;
}
switch (ack & AUX_NATIVE_REPLY_MASK) {
case AUX_NATIVE_REPLY_ACK:
/* I2C-over-AUX Reply field is only valid
* when paired with AUX ACK.
*/
break;
case AUX_NATIVE_REPLY_NACK:
DRM_DEBUG_KMS("aux_ch native nack\n");
return -EREMOTEIO;
case AUX_NATIVE_REPLY_DEFER:
DRM_DEBUG_KMS("aux_ch native defer\n");
udelay(400);
continue;
default:
DRM_ERROR("aux_ch invalid native reply 0x%02x\n", ack);
return -EREMOTEIO;
}
switch (ack & AUX_I2C_REPLY_MASK) {
case AUX_I2C_REPLY_ACK:
if (mode == MODE_I2C_READ)
*read_byte = reply[0];
return ret;
case AUX_I2C_REPLY_NACK:
DRM_DEBUG_KMS("aux_i2c nack\n");
return -EREMOTEIO;
case AUX_I2C_REPLY_DEFER:
DRM_DEBUG_KMS("aux_i2c defer\n");
udelay(400);
break;
default:
DRM_ERROR("aux_i2c invalid reply 0x%02x\n", ack);
return -EREMOTEIO;
}
}
DRM_DEBUG_KMS("aux i2c too many retries, giving up\n");
return -EREMOTEIO;
}
/***** general DP utility functions *****/
static u8 dp_link_status(u8 link_status[DP_LINK_STATUS_SIZE], int r)
{
return link_status[r - DP_LANE0_1_STATUS];
}
static u8 dp_get_lane_status(u8 link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_LANE0_1_STATUS + (lane >> 1);
int s = (lane & 1) * 4;
u8 l = dp_link_status(link_status, i);
return (l >> s) & 0xf;
}
static bool dp_clock_recovery_ok(u8 link_status[DP_LINK_STATUS_SIZE],
int lane_count)
{
int lane;
u8 lane_status;
for (lane = 0; lane < lane_count; lane++) {
lane_status = dp_get_lane_status(link_status, lane);
if ((lane_status & DP_LANE_CR_DONE) == 0)
return false;
}
return true;
}
static bool dp_channel_eq_ok(u8 link_status[DP_LINK_STATUS_SIZE],
int lane_count)
{
u8 lane_align;
u8 lane_status;
int lane;
lane_align = dp_link_status(link_status,
DP_LANE_ALIGN_STATUS_UPDATED);
if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
return false;
for (lane = 0; lane < lane_count; lane++) {
lane_status = dp_get_lane_status(link_status, lane);
if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
return false;
}
return true;
}
static u8 dp_get_adjust_request_voltage(u8 link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
int s = ((lane & 1) ?
DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
u8 l = dp_link_status(link_status, i);
return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
}
static u8 dp_get_adjust_request_pre_emphasis(u8 link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
int s = ((lane & 1) ?
DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
u8 l = dp_link_status(link_status, i);
return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
}
#define DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_1200
#define DP_PRE_EMPHASIS_MAX DP_TRAIN_PRE_EMPHASIS_9_5
static void dp_get_adjust_train(u8 link_status[DP_LINK_STATUS_SIZE],
int lane_count,
u8 train_set[4])
{
u8 v = 0;
u8 p = 0;
int lane;
for (lane = 0; lane < lane_count; lane++) {
u8 this_v = dp_get_adjust_request_voltage(link_status, lane);
u8 this_p = dp_get_adjust_request_pre_emphasis(link_status, lane);
DRM_DEBUG_KMS("requested signal parameters: lane %d voltage %s pre_emph %s\n",
lane,
voltage_names[this_v >> DP_TRAIN_VOLTAGE_SWING_SHIFT],
pre_emph_names[this_p >> DP_TRAIN_PRE_EMPHASIS_SHIFT]);
if (this_v > v)
v = this_v;
if (this_p > p)
p = this_p;
}
if (v >= DP_VOLTAGE_MAX)
v |= DP_TRAIN_MAX_SWING_REACHED;
if (p >= DP_PRE_EMPHASIS_MAX)
p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
DRM_DEBUG_KMS("using signal parameters: voltage %s pre_emph %s\n",
voltage_names[(v & DP_TRAIN_VOLTAGE_SWING_MASK) >> DP_TRAIN_VOLTAGE_SWING_SHIFT],
pre_emph_names[(p & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT]);
for (lane = 0; lane < 4; lane++)
train_set[lane] = v | p;
}
/* convert bits per color to bits per pixel */
/* get bpc from the EDID */
static int convert_bpc_to_bpp(int bpc)
{
if (bpc == 0)
return 24;
else
return bpc * 3;
}
/* get the max pix clock supported by the link rate and lane num */
static int dp_get_max_dp_pix_clock(int link_rate,
int lane_num,
int bpp)
{
return (link_rate * lane_num * 8) / bpp;
}
static int dp_get_max_link_rate(u8 dpcd[DP_DPCD_SIZE])
{
switch (dpcd[DP_MAX_LINK_RATE]) {
case DP_LINK_BW_1_62:
default:
return 162000;
case DP_LINK_BW_2_7:
return 270000;
case DP_LINK_BW_5_4:
return 540000;
}
}
static u8 dp_get_max_lane_number(u8 dpcd[DP_DPCD_SIZE])
{
return dpcd[DP_MAX_LANE_COUNT] & DP_MAX_LANE_COUNT_MASK;
}
static u8 dp_get_dp_link_rate_coded(int link_rate)
{
switch (link_rate) {
case 162000:
default:
return DP_LINK_BW_1_62;
case 270000:
return DP_LINK_BW_2_7;
case 540000:
return DP_LINK_BW_5_4;
}
}
/***** radeon specific DP functions *****/
/* First get the min lane# when low rate is used according to pixel clock
* (prefer low rate), second check max lane# supported by DP panel,
* if the max lane# < low rate lane# then use max lane# instead.
*/
static int radeon_dp_get_dp_lane_number(struct drm_connector *connector,
u8 dpcd[DP_DPCD_SIZE],
int pix_clock)
{
int bpp = convert_bpc_to_bpp(connector->display_info.bpc);
int max_link_rate = dp_get_max_link_rate(dpcd);
int max_lane_num = dp_get_max_lane_number(dpcd);
int lane_num;
int max_dp_pix_clock;
for (lane_num = 1; lane_num < max_lane_num; lane_num <<= 1) {
max_dp_pix_clock = dp_get_max_dp_pix_clock(max_link_rate, lane_num, bpp);
if (pix_clock <= max_dp_pix_clock)
break;
}
return lane_num;
}
static int radeon_dp_get_dp_link_clock(struct drm_connector *connector,
u8 dpcd[DP_DPCD_SIZE],
int pix_clock)
{
int bpp = convert_bpc_to_bpp(connector->display_info.bpc);
int lane_num, max_pix_clock;
if (radeon_connector_encoder_is_dp_bridge(connector))
return 270000;
lane_num = radeon_dp_get_dp_lane_number(connector, dpcd, pix_clock);
max_pix_clock = dp_get_max_dp_pix_clock(162000, lane_num, bpp);
if (pix_clock <= max_pix_clock)
return 162000;
max_pix_clock = dp_get_max_dp_pix_clock(270000, lane_num, bpp);
if (pix_clock <= max_pix_clock)
return 270000;
if (radeon_connector_is_dp12_capable(connector)) {
max_pix_clock = dp_get_max_dp_pix_clock(540000, lane_num, bpp);
if (pix_clock <= max_pix_clock)
return 540000;
}
return dp_get_max_link_rate(dpcd);
}
static u8 radeon_dp_encoder_service(struct radeon_device *rdev,
int action, int dp_clock,
u8 ucconfig, u8 lane_num)
{
DP_ENCODER_SERVICE_PARAMETERS args;
int index = GetIndexIntoMasterTable(COMMAND, DPEncoderService);
memset(&args, 0, sizeof(args));
args.ucLinkClock = dp_clock / 10;
args.ucConfig = ucconfig;
args.ucAction = action;
args.ucLaneNum = lane_num;
args.ucStatus = 0;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
return args.ucStatus;
}
u8 radeon_dp_getsinktype(struct radeon_connector *radeon_connector)
{
struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv;
struct drm_device *dev = radeon_connector->base.dev;
struct radeon_device *rdev = dev->dev_private;
return radeon_dp_encoder_service(rdev, ATOM_DP_ACTION_GET_SINK_TYPE, 0,
dig_connector->dp_i2c_bus->rec.i2c_id, 0);
}
bool radeon_dp_getdpcd(struct radeon_connector *radeon_connector)
{
struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv;
u8 msg[25];
int ret, i;
ret = radeon_dp_aux_native_read(radeon_connector, DP_DPCD_REV, msg, 8, 0);
if (ret > 0) {
memcpy(dig_connector->dpcd, msg, 8);
DRM_DEBUG_KMS("DPCD: ");
for (i = 0; i < 8; i++)
DRM_DEBUG_KMS("%02x ", msg[i]);
DRM_DEBUG_KMS("\n");
return true;
}
dig_connector->dpcd[0] = 0;
return false;
}
static void radeon_dp_set_panel_mode(struct drm_encoder *encoder,
struct drm_connector *connector)
{
struct drm_device *dev = encoder->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_connector *radeon_connector = to_radeon_connector(connector);
int panel_mode = DP_PANEL_MODE_EXTERNAL_DP_MODE;
if (!ASIC_IS_DCE4(rdev))
return;
if (radeon_connector_encoder_is_dp_bridge(connector))
panel_mode = DP_PANEL_MODE_INTERNAL_DP1_MODE;
else if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
u8 tmp = radeon_read_dpcd_reg(radeon_connector, DP_EDP_CONFIGURATION_CAP);
if (tmp & 1)
panel_mode = DP_PANEL_MODE_INTERNAL_DP2_MODE;
}
atombios_dig_encoder_setup(encoder,
ATOM_ENCODER_CMD_SETUP_PANEL_MODE,
panel_mode);
if ((connector->connector_type == DRM_MODE_CONNECTOR_eDP) &&
(panel_mode == DP_PANEL_MODE_INTERNAL_DP2_MODE)) {
radeon_write_dpcd_reg(radeon_connector, DP_EDP_CONFIGURATION_SET, 1);
}
}
void radeon_dp_set_link_config(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct radeon_connector *radeon_connector = to_radeon_connector(connector);
struct radeon_connector_atom_dig *dig_connector;
if (!radeon_connector->con_priv)
return;
dig_connector = radeon_connector->con_priv;
if ((dig_connector->dp_sink_type == CONNECTOR_OBJECT_ID_DISPLAYPORT) ||
(dig_connector->dp_sink_type == CONNECTOR_OBJECT_ID_eDP)) {
dig_connector->dp_clock =
radeon_dp_get_dp_link_clock(connector, dig_connector->dpcd, mode->clock);
dig_connector->dp_lane_count =
radeon_dp_get_dp_lane_number(connector, dig_connector->dpcd, mode->clock);
}
}
int radeon_dp_mode_valid_helper(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct radeon_connector *radeon_connector = to_radeon_connector(connector);
struct radeon_connector_atom_dig *dig_connector;
int dp_clock;
if (!radeon_connector->con_priv)
return MODE_CLOCK_HIGH;
dig_connector = radeon_connector->con_priv;
dp_clock =
radeon_dp_get_dp_link_clock(connector, dig_connector->dpcd, mode->clock);
if ((dp_clock == 540000) &&
(!radeon_connector_is_dp12_capable(connector)))
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static bool radeon_dp_get_link_status(struct radeon_connector *radeon_connector,
u8 link_status[DP_LINK_STATUS_SIZE])
{
int ret;
ret = radeon_dp_aux_native_read(radeon_connector, DP_LANE0_1_STATUS,
link_status, DP_LINK_STATUS_SIZE, 100);
if (ret <= 0) {
return false;
}
DRM_DEBUG_KMS("link status %02x %02x %02x %02x %02x %02x\n",
link_status[0], link_status[1], link_status[2],
link_status[3], link_status[4], link_status[5]);
return true;
}
bool radeon_dp_needs_link_train(struct radeon_connector *radeon_connector)
{
u8 link_status[DP_LINK_STATUS_SIZE];
struct radeon_connector_atom_dig *dig = radeon_connector->con_priv;
if (!radeon_dp_get_link_status(radeon_connector, link_status))
return false;
if (dp_channel_eq_ok(link_status, dig->dp_lane_count))
return false;
return true;
}
struct radeon_dp_link_train_info {
struct radeon_device *rdev;
struct drm_encoder *encoder;
struct drm_connector *connector;
struct radeon_connector *radeon_connector;
int enc_id;
int dp_clock;
int dp_lane_count;
int rd_interval;
bool tp3_supported;
u8 dpcd[8];
u8 train_set[4];
u8 link_status[DP_LINK_STATUS_SIZE];
u8 tries;
bool use_dpencoder;
};
static void radeon_dp_update_vs_emph(struct radeon_dp_link_train_info *dp_info)
{
/* set the initial vs/emph on the source */
atombios_dig_transmitter_setup(dp_info->encoder,
ATOM_TRANSMITTER_ACTION_SETUP_VSEMPH,
0, dp_info->train_set[0]); /* sets all lanes at once */
/* set the vs/emph on the sink */
radeon_dp_aux_native_write(dp_info->radeon_connector, DP_TRAINING_LANE0_SET,
dp_info->train_set, dp_info->dp_lane_count, 0);
}
static void radeon_dp_set_tp(struct radeon_dp_link_train_info *dp_info, int tp)
{
int rtp = 0;
/* set training pattern on the source */
if (ASIC_IS_DCE4(dp_info->rdev) || !dp_info->use_dpencoder) {
switch (tp) {
case DP_TRAINING_PATTERN_1:
rtp = ATOM_ENCODER_CMD_DP_LINK_TRAINING_PATTERN1;
break;
case DP_TRAINING_PATTERN_2:
rtp = ATOM_ENCODER_CMD_DP_LINK_TRAINING_PATTERN2;
break;
case DP_TRAINING_PATTERN_3:
rtp = ATOM_ENCODER_CMD_DP_LINK_TRAINING_PATTERN3;
break;
}
atombios_dig_encoder_setup(dp_info->encoder, rtp, 0);
} else {
switch (tp) {
case DP_TRAINING_PATTERN_1:
rtp = 0;
break;
case DP_TRAINING_PATTERN_2:
rtp = 1;
break;
}
radeon_dp_encoder_service(dp_info->rdev, ATOM_DP_ACTION_TRAINING_PATTERN_SEL,
dp_info->dp_clock, dp_info->enc_id, rtp);
}
/* enable training pattern on the sink */
radeon_write_dpcd_reg(dp_info->radeon_connector, DP_TRAINING_PATTERN_SET, tp);
}
static int radeon_dp_link_train_init(struct radeon_dp_link_train_info *dp_info)
{
u8 tmp;
/* power up the sink */
if (dp_info->dpcd[0] >= 0x11)
radeon_write_dpcd_reg(dp_info->radeon_connector,
DP_SET_POWER, DP_SET_POWER_D0);
/* possibly enable downspread on the sink */
if (dp_info->dpcd[3] & 0x1)
radeon_write_dpcd_reg(dp_info->radeon_connector,
DP_DOWNSPREAD_CTRL, DP_SPREAD_AMP_0_5);
else
radeon_write_dpcd_reg(dp_info->radeon_connector,
DP_DOWNSPREAD_CTRL, 0);
radeon_dp_set_panel_mode(dp_info->encoder, dp_info->connector);
/* set the lane count on the sink */
tmp = dp_info->dp_lane_count;
if (dp_info->dpcd[0] >= 0x11)
tmp |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
radeon_write_dpcd_reg(dp_info->radeon_connector, DP_LANE_COUNT_SET, tmp);
/* set the link rate on the sink */
tmp = dp_get_dp_link_rate_coded(dp_info->dp_clock);
radeon_write_dpcd_reg(dp_info->radeon_connector, DP_LINK_BW_SET, tmp);
/* start training on the source */
if (ASIC_IS_DCE4(dp_info->rdev) || !dp_info->use_dpencoder)
atombios_dig_encoder_setup(dp_info->encoder,
ATOM_ENCODER_CMD_DP_LINK_TRAINING_START, 0);
else
radeon_dp_encoder_service(dp_info->rdev, ATOM_DP_ACTION_TRAINING_START,
dp_info->dp_clock, dp_info->enc_id, 0);
/* disable the training pattern on the sink */
radeon_write_dpcd_reg(dp_info->radeon_connector,
DP_TRAINING_PATTERN_SET,
DP_TRAINING_PATTERN_DISABLE);
return 0;
}
static int radeon_dp_link_train_finish(struct radeon_dp_link_train_info *dp_info)
{
udelay(400);
/* disable the training pattern on the sink */
radeon_write_dpcd_reg(dp_info->radeon_connector,
DP_TRAINING_PATTERN_SET,
DP_TRAINING_PATTERN_DISABLE);
/* disable the training pattern on the source */
if (ASIC_IS_DCE4(dp_info->rdev) || !dp_info->use_dpencoder)
atombios_dig_encoder_setup(dp_info->encoder,
ATOM_ENCODER_CMD_DP_LINK_TRAINING_COMPLETE, 0);
else
radeon_dp_encoder_service(dp_info->rdev, ATOM_DP_ACTION_TRAINING_COMPLETE,
dp_info->dp_clock, dp_info->enc_id, 0);
return 0;
}
static int radeon_dp_link_train_cr(struct radeon_dp_link_train_info *dp_info)
{
bool clock_recovery;
u8 voltage;
int i;
radeon_dp_set_tp(dp_info, DP_TRAINING_PATTERN_1);
memset(dp_info->train_set, 0, 4);
radeon_dp_update_vs_emph(dp_info);
udelay(400);
/* clock recovery loop */
clock_recovery = false;
dp_info->tries = 0;
voltage = 0xff;
while (1) {
if (dp_info->rd_interval == 0)
udelay(100);
else
mdelay(dp_info->rd_interval * 4);
if (!radeon_dp_get_link_status(dp_info->radeon_connector, dp_info->link_status)) {
DRM_ERROR("displayport link status failed\n");
break;
}
if (dp_clock_recovery_ok(dp_info->link_status, dp_info->dp_lane_count)) {
clock_recovery = true;
break;
}
for (i = 0; i < dp_info->dp_lane_count; i++) {
if ((dp_info->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
break;
}
if (i == dp_info->dp_lane_count) {
DRM_ERROR("clock recovery reached max voltage\n");
break;
}
if ((dp_info->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
++dp_info->tries;
if (dp_info->tries == 5) {
DRM_ERROR("clock recovery tried 5 times\n");
break;
}
} else
dp_info->tries = 0;
voltage = dp_info->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
/* Compute new train_set as requested by sink */
dp_get_adjust_train(dp_info->link_status, dp_info->dp_lane_count, dp_info->train_set);
radeon_dp_update_vs_emph(dp_info);
}
if (!clock_recovery) {
DRM_ERROR("clock recovery failed\n");
return -1;
} else {
DRM_DEBUG_KMS("clock recovery at voltage %d pre-emphasis %d\n",
dp_info->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK,
(dp_info->train_set[0] & DP_TRAIN_PRE_EMPHASIS_MASK) >>
DP_TRAIN_PRE_EMPHASIS_SHIFT);
return 0;
}
}
static int radeon_dp_link_train_ce(struct radeon_dp_link_train_info *dp_info)
{
bool channel_eq;
if (dp_info->tp3_supported)
radeon_dp_set_tp(dp_info, DP_TRAINING_PATTERN_3);
else
radeon_dp_set_tp(dp_info, DP_TRAINING_PATTERN_2);
/* channel equalization loop */
dp_info->tries = 0;
channel_eq = false;
while (1) {
if (dp_info->rd_interval == 0)
udelay(400);
else
mdelay(dp_info->rd_interval * 4);
if (!radeon_dp_get_link_status(dp_info->radeon_connector, dp_info->link_status)) {
DRM_ERROR("displayport link status failed\n");
break;
}
if (dp_channel_eq_ok(dp_info->link_status, dp_info->dp_lane_count)) {
channel_eq = true;
break;
}
/* Try 5 times */
if (dp_info->tries > 5) {
DRM_ERROR("channel eq failed: 5 tries\n");
break;
}
/* Compute new train_set as requested by sink */
dp_get_adjust_train(dp_info->link_status, dp_info->dp_lane_count, dp_info->train_set);
radeon_dp_update_vs_emph(dp_info);
dp_info->tries++;
}
if (!channel_eq) {
DRM_ERROR("channel eq failed\n");
return -1;
} else {
DRM_DEBUG_KMS("channel eq at voltage %d pre-emphasis %d\n",
dp_info->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK,
(dp_info->train_set[0] & DP_TRAIN_PRE_EMPHASIS_MASK)
>> DP_TRAIN_PRE_EMPHASIS_SHIFT);
return 0;
}
}
void radeon_dp_link_train(struct drm_encoder *encoder,
struct drm_connector *connector)
{
struct drm_device *dev = encoder->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder);
struct radeon_encoder_atom_dig *dig;
struct radeon_connector *radeon_connector;
struct radeon_connector_atom_dig *dig_connector;
struct radeon_dp_link_train_info dp_info;
int index;
u8 tmp, frev, crev;
if (!radeon_encoder->enc_priv)
return;
dig = radeon_encoder->enc_priv;
radeon_connector = to_radeon_connector(connector);
if (!radeon_connector->con_priv)
return;
dig_connector = radeon_connector->con_priv;
if ((dig_connector->dp_sink_type != CONNECTOR_OBJECT_ID_DISPLAYPORT) &&
(dig_connector->dp_sink_type != CONNECTOR_OBJECT_ID_eDP))
return;
/* DPEncoderService newer than 1.1 can't program properly the
* training pattern. When facing such version use the
* DIGXEncoderControl (X== 1 | 2)
*/
dp_info.use_dpencoder = true;
index = GetIndexIntoMasterTable(COMMAND, DPEncoderService);
if (atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev)) {
if (crev > 1) {
dp_info.use_dpencoder = false;
}
}
dp_info.enc_id = 0;
if (dig->dig_encoder)
dp_info.enc_id |= ATOM_DP_CONFIG_DIG2_ENCODER;
else
dp_info.enc_id |= ATOM_DP_CONFIG_DIG1_ENCODER;
if (dig->linkb)
dp_info.enc_id |= ATOM_DP_CONFIG_LINK_B;
else
dp_info.enc_id |= ATOM_DP_CONFIG_LINK_A;
dp_info.rd_interval = radeon_read_dpcd_reg(radeon_connector, DP_TRAINING_AUX_RD_INTERVAL);
tmp = radeon_read_dpcd_reg(radeon_connector, DP_MAX_LANE_COUNT);
if (ASIC_IS_DCE5(rdev) && (tmp & DP_TPS3_SUPPORTED))
dp_info.tp3_supported = true;
else
dp_info.tp3_supported = false;
memcpy(dp_info.dpcd, dig_connector->dpcd, 8);
dp_info.rdev = rdev;
dp_info.encoder = encoder;
dp_info.connector = connector;
dp_info.radeon_connector = radeon_connector;
dp_info.dp_lane_count = dig_connector->dp_lane_count;
dp_info.dp_clock = dig_connector->dp_clock;
if (radeon_dp_link_train_init(&dp_info))
goto done;
if (radeon_dp_link_train_cr(&dp_info))
goto done;
if (radeon_dp_link_train_ce(&dp_info))
goto done;
done:
if (radeon_dp_link_train_finish(&dp_info))
return;
}