- 根目录:
- drivers
- net
- wireless
- bcm4329
- sbutils.c
/*
* Misc utility routines for accessing chip-specific features
* of the SiliconBackplane-based Broadcom chips.
*
* Copyright (C) 1999-2010, Broadcom Corporation
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a license
* other than the GPL, without Broadcom's express prior written consent.
*
* $Id: sbutils.c,v 1.662.4.10.2.7.4.2 2010/04/19 05:48:48 Exp $
*/
#include <typedefs.h>
#include <bcmdefs.h>
#include <osl.h>
#include <bcmutils.h>
#include <siutils.h>
#include <bcmdevs.h>
#include <hndsoc.h>
#include <sbchipc.h>
#include <pcicfg.h>
#include <sbpcmcia.h>
#include "siutils_priv.h"
/* local prototypes */
static uint _sb_coreidx(si_info_t *sii, uint32 sba);
static uint _sb_scan(si_info_t *sii, uint32 sba, void *regs, uint bus, uint32 sbba,
uint ncores);
static uint32 _sb_coresba(si_info_t *sii);
static void *_sb_setcoreidx(si_info_t *sii, uint coreidx);
#define SET_SBREG(sii, r, mask, val) \
W_SBREG((sii), (r), ((R_SBREG((sii), (r)) & ~(mask)) | (val)))
#define REGS2SB(va) (sbconfig_t*) ((int8*)(va) + SBCONFIGOFF)
/* sonicsrev */
#define SONICS_2_2 (SBIDL_RV_2_2 >> SBIDL_RV_SHIFT)
#define SONICS_2_3 (SBIDL_RV_2_3 >> SBIDL_RV_SHIFT)
#define R_SBREG(sii, sbr) sb_read_sbreg((sii), (sbr))
#define W_SBREG(sii, sbr, v) sb_write_sbreg((sii), (sbr), (v))
#define AND_SBREG(sii, sbr, v) W_SBREG((sii), (sbr), (R_SBREG((sii), (sbr)) & (v)))
#define OR_SBREG(sii, sbr, v) W_SBREG((sii), (sbr), (R_SBREG((sii), (sbr)) | (v)))
static uint32
sb_read_sbreg(si_info_t *sii, volatile uint32 *sbr)
{
uint8 tmp;
uint32 val, intr_val = 0;
/*
* compact flash only has 11 bits address, while we needs 12 bits address.
* MEM_SEG will be OR'd with other 11 bits address in hardware,
* so we program MEM_SEG with 12th bit when necessary(access sb regsiters).
* For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special
*/
if (PCMCIA(sii)) {
INTR_OFF(sii, intr_val);
tmp = 1;
OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1);
sbr = (volatile uint32 *)((uintptr)sbr & ~(1 << 11)); /* mask out bit 11 */
}
val = R_REG(sii->osh, sbr);
if (PCMCIA(sii)) {
tmp = 0;
OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1);
INTR_RESTORE(sii, intr_val);
}
return (val);
}
static void
sb_write_sbreg(si_info_t *sii, volatile uint32 *sbr, uint32 v)
{
uint8 tmp;
volatile uint32 dummy;
uint32 intr_val = 0;
/*
* compact flash only has 11 bits address, while we needs 12 bits address.
* MEM_SEG will be OR'd with other 11 bits address in hardware,
* so we program MEM_SEG with 12th bit when necessary(access sb regsiters).
* For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special
*/
if (PCMCIA(sii)) {
INTR_OFF(sii, intr_val);
tmp = 1;
OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1);
sbr = (volatile uint32 *)((uintptr)sbr & ~(1 << 11)); /* mask out bit 11 */
}
if (BUSTYPE(sii->pub.bustype) == PCMCIA_BUS) {
#ifdef IL_BIGENDIAN
dummy = R_REG(sii->osh, sbr);
W_REG(sii->osh, ((volatile uint16 *)sbr + 1), (uint16)((v >> 16) & 0xffff));
dummy = R_REG(sii->osh, sbr);
W_REG(sii->osh, (volatile uint16 *)sbr, (uint16)(v & 0xffff));
#else
dummy = R_REG(sii->osh, sbr);
W_REG(sii->osh, (volatile uint16 *)sbr, (uint16)(v & 0xffff));
dummy = R_REG(sii->osh, sbr);
W_REG(sii->osh, ((volatile uint16 *)sbr + 1), (uint16)((v >> 16) & 0xffff));
#endif /* IL_BIGENDIAN */
} else
W_REG(sii->osh, sbr, v);
if (PCMCIA(sii)) {
tmp = 0;
OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1);
INTR_RESTORE(sii, intr_val);
}
}
uint
sb_coreid(si_t *sih)
{
si_info_t *sii;
sbconfig_t *sb;
sii = SI_INFO(sih);
sb = REGS2SB(sii->curmap);
return ((R_SBREG(sii, &sb->sbidhigh) & SBIDH_CC_MASK) >> SBIDH_CC_SHIFT);
}
uint
sb_flag(si_t *sih)
{
si_info_t *sii;
sbconfig_t *sb;
sii = SI_INFO(sih);
sb = REGS2SB(sii->curmap);
return R_SBREG(sii, &sb->sbtpsflag) & SBTPS_NUM0_MASK;
}
void
sb_setint(si_t *sih, int siflag)
{
si_info_t *sii;
sbconfig_t *sb;
uint32 vec;
sii = SI_INFO(sih);
sb = REGS2SB(sii->curmap);
if (siflag == -1)
vec = 0;
else
vec = 1 << siflag;
W_SBREG(sii, &sb->sbintvec, vec);
}
/* return core index of the core with address 'sba' */
static uint
_sb_coreidx(si_info_t *sii, uint32 sba)
{
uint i;
for (i = 0; i < sii->numcores; i ++)
if (sba == sii->common_info->coresba[i])
return i;
return BADIDX;
}
/* return core address of the current core */
static uint32
_sb_coresba(si_info_t *sii)
{
uint32 sbaddr;
switch (BUSTYPE(sii->pub.bustype)) {
case SI_BUS: {
sbconfig_t *sb = REGS2SB(sii->curmap);
sbaddr = sb_base(R_SBREG(sii, &sb->sbadmatch0));
break;
}
case PCI_BUS:
sbaddr = OSL_PCI_READ_CONFIG(sii->osh, PCI_BAR0_WIN, sizeof(uint32));
break;
case PCMCIA_BUS: {
uint8 tmp = 0;
OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR0, &tmp, 1);
sbaddr = (uint32)tmp << 12;
OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR1, &tmp, 1);
sbaddr |= (uint32)tmp << 16;
OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR2, &tmp, 1);
sbaddr |= (uint32)tmp << 24;
break;
}
case SPI_BUS:
case SDIO_BUS:
sbaddr = (uint32)(uintptr)sii->curmap;
break;
default:
sbaddr = BADCOREADDR;
break;
}
return sbaddr;
}
uint
sb_corevendor(si_t *sih)
{
si_info_t *sii;
sbconfig_t *sb;
sii = SI_INFO(sih);
sb = REGS2SB(sii->curmap);
return ((R_SBREG(sii, &sb->sbidhigh) & SBIDH_VC_MASK) >> SBIDH_VC_SHIFT);
}
uint
sb_corerev(si_t *sih)
{
si_info_t *sii;
sbconfig_t *sb;
uint sbidh;
sii = SI_INFO(sih);
sb = REGS2SB(sii->curmap);
sbidh = R_SBREG(sii, &sb->sbidhigh);
return (SBCOREREV(sbidh));
}
/* set core-specific control flags */
void
sb_core_cflags_wo(si_t *sih, uint32 mask, uint32 val)
{
si_info_t *sii;
sbconfig_t *sb;
uint32 w;
sii = SI_INFO(sih);
sb = REGS2SB(sii->curmap);
ASSERT((val & ~mask) == 0);
/* mask and set */
w = (R_SBREG(sii, &sb->sbtmstatelow) & ~(mask << SBTML_SICF_SHIFT)) |
(val << SBTML_SICF_SHIFT);
W_SBREG(sii, &sb->sbtmstatelow, w);
}
/* set/clear core-specific control flags */
uint32
sb_core_cflags(si_t *sih, uint32 mask, uint32 val)
{
si_info_t *sii;
sbconfig_t *sb;
uint32 w;
sii = SI_INFO(sih);
sb = REGS2SB(sii->curmap);
ASSERT((val & ~mask) == 0);
/* mask and set */
if (mask || val) {
w = (R_SBREG(sii, &sb->sbtmstatelow) & ~(mask << SBTML_SICF_SHIFT)) |
(val << SBTML_SICF_SHIFT);
W_SBREG(sii, &sb->sbtmstatelow, w);
}
/* return the new value
* for write operation, the following readback ensures the completion of write opration.
*/
return (R_SBREG(sii, &sb->sbtmstatelow) >> SBTML_SICF_SHIFT);
}
/* set/clear core-specific status flags */
uint32
sb_core_sflags(si_t *sih, uint32 mask, uint32 val)
{
si_info_t *sii;
sbconfig_t *sb;
uint32 w;
sii = SI_INFO(sih);
sb = REGS2SB(sii->curmap);
ASSERT((val & ~mask) == 0);
ASSERT((mask & ~SISF_CORE_BITS) == 0);
/* mask and set */
if (mask || val) {
w = (R_SBREG(sii, &sb->sbtmstatehigh) & ~(mask << SBTMH_SISF_SHIFT)) |
(val << SBTMH_SISF_SHIFT);
W_SBREG(sii, &sb->sbtmstatehigh, w);
}
/* return the new value */
return (R_SBREG(sii, &sb->sbtmstatehigh) >> SBTMH_SISF_SHIFT);
}
bool
sb_iscoreup(si_t *sih)
{
si_info_t *sii;
sbconfig_t *sb;
sii = SI_INFO(sih);
sb = REGS2SB(sii->curmap);
return ((R_SBREG(sii, &sb->sbtmstatelow) &
(SBTML_RESET | SBTML_REJ_MASK | (SICF_CLOCK_EN << SBTML_SICF_SHIFT))) ==
(SICF_CLOCK_EN << SBTML_SICF_SHIFT));
}
/*
* Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation,
* switch back to the original core, and return the new value.
*
* When using the silicon backplane, no fidleing with interrupts or core switches are needed.
*
* Also, when using pci/pcie, we can optimize away the core switching for pci registers
* and (on newer pci cores) chipcommon registers.
*/
uint
sb_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val)
{
uint origidx = 0;
uint32 *r = NULL;
uint w;
uint intr_val = 0;
bool fast = FALSE;
si_info_t *sii;
sii = SI_INFO(sih);
ASSERT(GOODIDX(coreidx));
ASSERT(regoff < SI_CORE_SIZE);
ASSERT((val & ~mask) == 0);
if (coreidx >= SI_MAXCORES)
return 0;
if (BUSTYPE(sii->pub.bustype) == SI_BUS) {
/* If internal bus, we can always get at everything */
fast = TRUE;
/* map if does not exist */
if (!sii->common_info->regs[coreidx]) {
sii->common_info->regs[coreidx] =
REG_MAP(sii->common_info->coresba[coreidx], SI_CORE_SIZE);
ASSERT(GOODREGS(sii->common_info->regs[coreidx]));
}
r = (uint32 *)((uchar *)sii->common_info->regs[coreidx] + regoff);
} else if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
/* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */
if ((sii->common_info->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) {
/* Chipc registers are mapped at 12KB */
fast = TRUE;
r = (uint32 *)((char *)sii->curmap + PCI_16KB0_CCREGS_OFFSET + regoff);
} else if (sii->pub.buscoreidx == coreidx) {
/* pci registers are at either in the last 2KB of an 8KB window
* or, in pcie and pci rev 13 at 8KB
*/
fast = TRUE;
if (SI_FAST(sii))
r = (uint32 *)((char *)sii->curmap +
PCI_16KB0_PCIREGS_OFFSET + regoff);
else
r = (uint32 *)((char *)sii->curmap +
((regoff >= SBCONFIGOFF) ?
PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) +
regoff);
}
}
if (!fast) {
INTR_OFF(sii, intr_val);
/* save current core index */
origidx = si_coreidx(&sii->pub);
/* switch core */
r = (uint32*) ((uchar*)sb_setcoreidx(&sii->pub, coreidx) + regoff);
}
ASSERT(r != NULL);
/* mask and set */
if (mask || val) {
if (regoff >= SBCONFIGOFF) {
w = (R_SBREG(sii, r) & ~mask) | val;
W_SBREG(sii, r, w);
} else {
w = (R_REG(sii->osh, r) & ~mask) | val;
W_REG(sii->osh, r, w);
}
}
/* readback */
if (regoff >= SBCONFIGOFF)
w = R_SBREG(sii, r);
else {
if ((CHIPID(sii->pub.chip) == BCM5354_CHIP_ID) &&
(coreidx == SI_CC_IDX) &&
(regoff == OFFSETOF(chipcregs_t, watchdog))) {
w = val;
} else
w = R_REG(sii->osh, r);
}
if (!fast) {
/* restore core index */
if (origidx != coreidx)
sb_setcoreidx(&sii->pub, origidx);
INTR_RESTORE(sii, intr_val);
}
return (w);
}
/* Scan the enumeration space to find all cores starting from the given
* bus 'sbba'. Append coreid and other info to the lists in 'si'. 'sba'
* is the default core address at chip POR time and 'regs' is the virtual
* address that the default core is mapped at. 'ncores' is the number of
* cores expected on bus 'sbba'. It returns the total number of cores
* starting from bus 'sbba', inclusive.
*/
#define SB_MAXBUSES 2
static uint
_sb_scan(si_info_t *sii, uint32 sba, void *regs, uint bus, uint32 sbba, uint numcores)
{
uint next;
uint ncc = 0;
uint i;
if (bus >= SB_MAXBUSES) {
SI_ERROR(("_sb_scan: bus 0x%08x at level %d is too deep to scan\n", sbba, bus));
return 0;
}
SI_MSG(("_sb_scan: scan bus 0x%08x assume %u cores\n", sbba, numcores));
/* Scan all cores on the bus starting from core 0.
* Core addresses must be contiguous on each bus.
*/
for (i = 0, next = sii->numcores; i < numcores && next < SB_BUS_MAXCORES; i++, next++) {
sii->common_info->coresba[next] = sbba + (i * SI_CORE_SIZE);
/* keep and reuse the initial register mapping */
if ((BUSTYPE(sii->pub.bustype) == SI_BUS) &&
(sii->common_info->coresba[next] == sba)) {
SI_MSG(("_sb_scan: reuse mapped regs %p for core %u\n", regs, next));
sii->common_info->regs[next] = regs;
}
/* change core to 'next' and read its coreid */
sii->curmap = _sb_setcoreidx(sii, next);
sii->curidx = next;
sii->common_info->coreid[next] = sb_coreid(&sii->pub);
/* core specific processing... */
/* chipc provides # cores */
if (sii->common_info->coreid[next] == CC_CORE_ID) {
chipcregs_t *cc = (chipcregs_t *)sii->curmap;
uint32 ccrev = sb_corerev(&sii->pub);
/* determine numcores - this is the total # cores in the chip */
if (((ccrev == 4) || (ccrev >= 6)))
numcores = (R_REG(sii->osh, &cc->chipid) & CID_CC_MASK) >>
CID_CC_SHIFT;
else {
/* Older chips */
uint chip = sii->pub.chip;
if (chip == BCM4306_CHIP_ID) /* < 4306c0 */
numcores = 6;
else if (chip == BCM4704_CHIP_ID)
numcores = 9;
else if (chip == BCM5365_CHIP_ID)
numcores = 7;
else {
SI_ERROR(("sb_chip2numcores: unsupported chip 0x%x\n",
chip));
ASSERT(0);
numcores = 1;
}
}
SI_MSG(("_sb_scan: there are %u cores in the chip %s\n", numcores,
sii->pub.issim ? "QT" : ""));
}
/* scan bridged SB(s) and add results to the end of the list */
else if (sii->common_info->coreid[next] == OCP_CORE_ID) {
sbconfig_t *sb = REGS2SB(sii->curmap);
uint32 nsbba = R_SBREG(sii, &sb->sbadmatch1);
uint nsbcc;
sii->numcores = next + 1;
if ((nsbba & 0xfff00000) != SI_ENUM_BASE)
continue;
nsbba &= 0xfffff000;
if (_sb_coreidx(sii, nsbba) != BADIDX)
continue;
nsbcc = (R_SBREG(sii, &sb->sbtmstatehigh) & 0x000f0000) >> 16;
nsbcc = _sb_scan(sii, sba, regs, bus + 1, nsbba, nsbcc);
if (sbba == SI_ENUM_BASE)
numcores -= nsbcc;
ncc += nsbcc;
}
}
SI_MSG(("_sb_scan: found %u cores on bus 0x%08x\n", i, sbba));
sii->numcores = i + ncc;
return sii->numcores;
}
/* scan the sb enumerated space to identify all cores */
void
sb_scan(si_t *sih, void *regs, uint devid)
{
si_info_t *sii;
uint32 origsba;
sii = SI_INFO(sih);
/* Save the current core info and validate it later till we know
* for sure what is good and what is bad.
*/
origsba = _sb_coresba(sii);
/* scan all SB(s) starting from SI_ENUM_BASE */
sii->numcores = _sb_scan(sii, origsba, regs, 0, SI_ENUM_BASE, 1);
}
/*
* This function changes logical "focus" to the indicated core;
* must be called with interrupts off.
* Moreover, callers should keep interrupts off during switching out of and back to d11 core
*/
void *
sb_setcoreidx(si_t *sih, uint coreidx)
{
si_info_t *sii;
sii = SI_INFO(sih);
if (coreidx >= sii->numcores)
return (NULL);
/*
* If the user has provided an interrupt mask enabled function,
* then assert interrupts are disabled before switching the core.
*/
ASSERT((sii->intrsenabled_fn == NULL) || !(*(sii)->intrsenabled_fn)((sii)->intr_arg));
sii->curmap = _sb_setcoreidx(sii, coreidx);
sii->curidx = coreidx;
return (sii->curmap);
}
/* This function changes the logical "focus" to the indicated core.
* Return the current core's virtual address.
*/
static void *
_sb_setcoreidx(si_info_t *sii, uint coreidx)
{
uint32 sbaddr = sii->common_info->coresba[coreidx];
void *regs;
switch (BUSTYPE(sii->pub.bustype)) {
case SI_BUS:
/* map new one */
if (!sii->common_info->regs[coreidx]) {
sii->common_info->regs[coreidx] = REG_MAP(sbaddr, SI_CORE_SIZE);
ASSERT(GOODREGS(sii->common_info->regs[coreidx]));
}
regs = sii->common_info->regs[coreidx];
break;
case PCI_BUS:
/* point bar0 window */
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, sbaddr);
regs = sii->curmap;
break;
case PCMCIA_BUS: {
uint8 tmp = (sbaddr >> 12) & 0x0f;
OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR0, &tmp, 1);
tmp = (sbaddr >> 16) & 0xff;
OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR1, &tmp, 1);
tmp = (sbaddr >> 24) & 0xff;
OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR2, &tmp, 1);
regs = sii->curmap;
break;
}
case SPI_BUS:
case SDIO_BUS:
/* map new one */
if (!sii->common_info->regs[coreidx]) {
sii->common_info->regs[coreidx] = (void *)(uintptr)sbaddr;
ASSERT(GOODREGS(sii->common_info->regs[coreidx]));
}
regs = sii->common_info->regs[coreidx];
break;
default:
ASSERT(0);
regs = NULL;
break;
}
return regs;
}
/* Return the address of sbadmatch0/1/2/3 register */
static volatile uint32 *
sb_admatch(si_info_t *sii, uint asidx)
{
sbconfig_t *sb;
volatile uint32 *addrm;
sb = REGS2SB(sii->curmap);
switch (asidx) {
case 0:
addrm = &sb->sbadmatch0;
break;
case 1:
addrm = &sb->sbadmatch1;
break;
case 2:
addrm = &sb->sbadmatch2;
break;
case 3:
addrm = &sb->sbadmatch3;
break;
default:
SI_ERROR(("%s: Address space index (%d) out of range\n", __FUNCTION__, asidx));
return 0;
}
return (addrm);
}
/* Return the number of address spaces in current core */
int
sb_numaddrspaces(si_t *sih)
{
si_info_t *sii;
sbconfig_t *sb;
sii = SI_INFO(sih);
sb = REGS2SB(sii->curmap);
/* + 1 because of enumeration space */
return ((R_SBREG(sii, &sb->sbidlow) & SBIDL_AR_MASK) >> SBIDL_AR_SHIFT) + 1;
}
/* Return the address of the nth address space in the current core */
uint32
sb_addrspace(si_t *sih, uint asidx)
{
si_info_t *sii;
sii = SI_INFO(sih);
return (sb_base(R_SBREG(sii, sb_admatch(sii, asidx))));
}
/* Return the size of the nth address space in the current core */
uint32
sb_addrspacesize(si_t *sih, uint asidx)
{
si_info_t *sii;
sii = SI_INFO(sih);
return (sb_size(R_SBREG(sii, sb_admatch(sii, asidx))));
}
/* do buffered registers update */
void
sb_commit(si_t *sih)
{
si_info_t *sii;
uint origidx;
uint intr_val = 0;
sii = SI_INFO(sih);
origidx = sii->curidx;
ASSERT(GOODIDX(origidx));
INTR_OFF(sii, intr_val);
/* switch over to chipcommon core if there is one, else use pci */
if (sii->pub.ccrev != NOREV) {
chipcregs_t *ccregs = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0);
/* do the buffer registers update */
W_REG(sii->osh, &ccregs->broadcastaddress, SB_COMMIT);
W_REG(sii->osh, &ccregs->broadcastdata, 0x0);
} else
ASSERT(0);
/* restore core index */
sb_setcoreidx(sih, origidx);
INTR_RESTORE(sii, intr_val);
}
void
sb_core_disable(si_t *sih, uint32 bits)
{
si_info_t *sii;
volatile uint32 dummy;
sbconfig_t *sb;
sii = SI_INFO(sih);
ASSERT(GOODREGS(sii->curmap));
sb = REGS2SB(sii->curmap);
/* if core is already in reset, just return */
if (R_SBREG(sii, &sb->sbtmstatelow) & SBTML_RESET)
return;
/* if clocks are not enabled, put into reset and return */
if ((R_SBREG(sii, &sb->sbtmstatelow) & (SICF_CLOCK_EN << SBTML_SICF_SHIFT)) == 0)
goto disable;
/* set target reject and spin until busy is clear (preserve core-specific bits) */
OR_SBREG(sii, &sb->sbtmstatelow, SBTML_REJ);
dummy = R_SBREG(sii, &sb->sbtmstatelow);
OSL_DELAY(1);
SPINWAIT((R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_BUSY), 100000);
if (R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_BUSY)
SI_ERROR(("%s: target state still busy\n", __FUNCTION__));
if (R_SBREG(sii, &sb->sbidlow) & SBIDL_INIT) {
OR_SBREG(sii, &sb->sbimstate, SBIM_RJ);
dummy = R_SBREG(sii, &sb->sbimstate);
OSL_DELAY(1);
SPINWAIT((R_SBREG(sii, &sb->sbimstate) & SBIM_BY), 100000);
}
/* set reset and reject while enabling the clocks */
W_SBREG(sii, &sb->sbtmstatelow,
(((bits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT) |
SBTML_REJ | SBTML_RESET));
dummy = R_SBREG(sii, &sb->sbtmstatelow);
OSL_DELAY(10);
/* don't forget to clear the initiator reject bit */
if (R_SBREG(sii, &sb->sbidlow) & SBIDL_INIT)
AND_SBREG(sii, &sb->sbimstate, ~SBIM_RJ);
disable:
/* leave reset and reject asserted */
W_SBREG(sii, &sb->sbtmstatelow, ((bits << SBTML_SICF_SHIFT) | SBTML_REJ | SBTML_RESET));
OSL_DELAY(1);
}
/* reset and re-enable a core
* inputs:
* bits - core specific bits that are set during and after reset sequence
* resetbits - core specific bits that are set only during reset sequence
*/
void
sb_core_reset(si_t *sih, uint32 bits, uint32 resetbits)
{
si_info_t *sii;
sbconfig_t *sb;
volatile uint32 dummy;
sii = SI_INFO(sih);
ASSERT(GOODREGS(sii->curmap));
sb = REGS2SB(sii->curmap);
/*
* Must do the disable sequence first to work for arbitrary current core state.
*/
sb_core_disable(sih, (bits | resetbits));
/*
* Now do the initialization sequence.
*/
/* set reset while enabling the clock and forcing them on throughout the core */
W_SBREG(sii, &sb->sbtmstatelow,
(((bits | resetbits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT) |
SBTML_RESET));
dummy = R_SBREG(sii, &sb->sbtmstatelow);
OSL_DELAY(1);
if (R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_SERR) {
W_SBREG(sii, &sb->sbtmstatehigh, 0);
}
if ((dummy = R_SBREG(sii, &sb->sbimstate)) & (SBIM_IBE | SBIM_TO)) {
AND_SBREG(sii, &sb->sbimstate, ~(SBIM_IBE | SBIM_TO));
}
/* clear reset and allow it to propagate throughout the core */
W_SBREG(sii, &sb->sbtmstatelow,
((bits | resetbits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT));
dummy = R_SBREG(sii, &sb->sbtmstatelow);
OSL_DELAY(1);
/* leave clock enabled */
W_SBREG(sii, &sb->sbtmstatelow, ((bits | SICF_CLOCK_EN) << SBTML_SICF_SHIFT));
dummy = R_SBREG(sii, &sb->sbtmstatelow);
OSL_DELAY(1);
}
void
sb_core_tofixup(si_t *sih)
{
si_info_t *sii;
sbconfig_t *sb;
sii = SI_INFO(sih);
if ((BUSTYPE(sii->pub.bustype) != PCI_BUS) || PCIE(sii) ||
(PCI(sii) && (sii->pub.buscorerev >= 5)))
return;
ASSERT(GOODREGS(sii->curmap));
sb = REGS2SB(sii->curmap);
if (BUSTYPE(sii->pub.bustype) == SI_BUS) {
SET_SBREG(sii, &sb->sbimconfiglow,
SBIMCL_RTO_MASK | SBIMCL_STO_MASK,
(0x5 << SBIMCL_RTO_SHIFT) | 0x3);
} else {
if (sb_coreid(sih) == PCI_CORE_ID) {
SET_SBREG(sii, &sb->sbimconfiglow,
SBIMCL_RTO_MASK | SBIMCL_STO_MASK,
(0x3 << SBIMCL_RTO_SHIFT) | 0x2);
} else {
SET_SBREG(sii, &sb->sbimconfiglow, (SBIMCL_RTO_MASK | SBIMCL_STO_MASK), 0);
}
}
sb_commit(sih);
}
/*
* Set the initiator timeout for the "master core".
* The master core is defined to be the core in control
* of the chip and so it issues accesses to non-memory
* locations (Because of dma *any* core can access memeory).
*
* The routine uses the bus to decide who is the master:
* SI_BUS => mips
* JTAG_BUS => chipc
* PCI_BUS => pci or pcie
* PCMCIA_BUS => pcmcia
* SDIO_BUS => pcmcia
*
* This routine exists so callers can disable initiator
* timeouts so accesses to very slow devices like otp
* won't cause an abort. The routine allows arbitrary
* settings of the service and request timeouts, though.
*
* Returns the timeout state before changing it or -1
* on error.
*/
#define TO_MASK (SBIMCL_RTO_MASK | SBIMCL_STO_MASK)
uint32
sb_set_initiator_to(si_t *sih, uint32 to, uint idx)
{
si_info_t *sii;
uint origidx;
uint intr_val = 0;
uint32 tmp, ret = 0xffffffff;
sbconfig_t *sb;
sii = SI_INFO(sih);
if ((to & ~TO_MASK) != 0)
return ret;
/* Figure out the master core */
if (idx == BADIDX) {
switch (BUSTYPE(sii->pub.bustype)) {
case PCI_BUS:
idx = sii->pub.buscoreidx;
break;
case JTAG_BUS:
idx = SI_CC_IDX;
break;
case PCMCIA_BUS:
case SDIO_BUS:
idx = si_findcoreidx(sih, PCMCIA_CORE_ID, 0);
break;
case SI_BUS:
idx = si_findcoreidx(sih, MIPS33_CORE_ID, 0);
break;
default:
ASSERT(0);
}
if (idx == BADIDX)
return ret;
}
INTR_OFF(sii, intr_val);
origidx = si_coreidx(sih);
sb = REGS2SB(sb_setcoreidx(sih, idx));
tmp = R_SBREG(sii, &sb->sbimconfiglow);
ret = tmp & TO_MASK;
W_SBREG(sii, &sb->sbimconfiglow, (tmp & ~TO_MASK) | to);
sb_commit(sih);
sb_setcoreidx(sih, origidx);
INTR_RESTORE(sii, intr_val);
return ret;
}
uint32
sb_base(uint32 admatch)
{
uint32 base;
uint type;
type = admatch & SBAM_TYPE_MASK;
ASSERT(type < 3);
base = 0;
if (type == 0) {
base = admatch & SBAM_BASE0_MASK;
} else if (type == 1) {
ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */
base = admatch & SBAM_BASE1_MASK;
} else if (type == 2) {
ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */
base = admatch & SBAM_BASE2_MASK;
}
return (base);
}
uint32
sb_size(uint32 admatch)
{
uint32 size;
uint type;
type = admatch & SBAM_TYPE_MASK;
ASSERT(type < 3);
size = 0;
if (type == 0) {
size = 1 << (((admatch & SBAM_ADINT0_MASK) >> SBAM_ADINT0_SHIFT) + 1);
} else if (type == 1) {
ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */
size = 1 << (((admatch & SBAM_ADINT1_MASK) >> SBAM_ADINT1_SHIFT) + 1);
} else if (type == 2) {
ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */
size = 1 << (((admatch & SBAM_ADINT2_MASK) >> SBAM_ADINT2_SHIFT) + 1);
}
return (size);
}