/* * PTP 1588 clock support - User space test program * * Copyright (C) 2010 OMICRON electronics GmbH * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <errno.h> #include <fcntl.h> #include <math.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/ioctl.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/time.h> #include <sys/timex.h> #include <sys/types.h> #include <time.h> #include <unistd.h> #include <linux/ptp_clock.h> #define DEVICE "/dev/ptp0" #ifndef ADJ_SETOFFSET #define ADJ_SETOFFSET 0x0100 #endif #ifndef CLOCK_INVALID #define CLOCK_INVALID -1 #endif /* When glibc offers the syscall, this will go away. */ #include <sys/syscall.h> static int clock_adjtime(clockid_t id, struct timex *tx) { return syscall(__NR_clock_adjtime, id, tx); } static clockid_t get_clockid(int fd) { #define CLOCKFD 3 #define FD_TO_CLOCKID(fd) ((~(clockid_t) (fd) << 3) | CLOCKFD) return FD_TO_CLOCKID(fd); } static void handle_alarm(int s) { printf("received signal %d\n", s); } static int install_handler(int signum, void (*handler)(int)) { struct sigaction action; sigset_t mask; /* Unblock the signal. */ sigemptyset(&mask); sigaddset(&mask, signum); sigprocmask(SIG_UNBLOCK, &mask, NULL); /* Install the signal handler. */ action.sa_handler = handler; action.sa_flags = 0; sigemptyset(&action.sa_mask); sigaction(signum, &action, NULL); return 0; } static long ppb_to_scaled_ppm(int ppb) { /* * The 'freq' field in the 'struct timex' is in parts per * million, but with a 16 bit binary fractional field. * Instead of calculating either one of * * scaled_ppm = (ppb / 1000) << 16 [1] * scaled_ppm = (ppb << 16) / 1000 [2] * * we simply use double precision math, in order to avoid the * truncation in [1] and the possible overflow in [2]. */ return (long) (ppb * 65.536); } static void usage(char *progname) { fprintf(stderr, "usage: %s [options]\n" " -a val request a one-shot alarm after 'val' seconds\n" " -A val request a periodic alarm every 'val' seconds\n" " -c query the ptp clock's capabilities\n" " -d name device to open\n" " -e val read 'val' external time stamp events\n" " -f val adjust the ptp clock frequency by 'val' ppb\n" " -g get the ptp clock time\n" " -h prints this message\n" " -p val enable output with a period of 'val' nanoseconds\n" " -P val enable or disable (val=1|0) the system clock PPS\n" " -s set the ptp clock time from the system time\n" " -S set the system time from the ptp clock time\n" " -t val shift the ptp clock time by 'val' seconds\n", progname); } int main(int argc, char *argv[]) { struct ptp_clock_caps caps; struct ptp_extts_event event; struct ptp_extts_request extts_request; struct ptp_perout_request perout_request; struct timespec ts; struct timex tx; static timer_t timerid; struct itimerspec timeout; struct sigevent sigevent; char *progname; int c, cnt, fd; char *device = DEVICE; clockid_t clkid; int adjfreq = 0x7fffffff; int adjtime = 0; int capabilities = 0; int extts = 0; int gettime = 0; int oneshot = 0; int periodic = 0; int perout = -1; int pps = -1; int settime = 0; progname = strrchr(argv[0], '/'); progname = progname ? 1+progname : argv[0]; while (EOF != (c = getopt(argc, argv, "a:A:cd:e:f:ghp:P:sSt:v"))) { switch (c) { case 'a': oneshot = atoi(optarg); break; case 'A': periodic = atoi(optarg); break; case 'c': capabilities = 1; break; case 'd': device = optarg; break; case 'e': extts = atoi(optarg); break; case 'f': adjfreq = atoi(optarg); break; case 'g': gettime = 1; break; case 'p': perout = atoi(optarg); break; case 'P': pps = atoi(optarg); break; case 's': settime = 1; break; case 'S': settime = 2; break; case 't': adjtime = atoi(optarg); break; case 'h': usage(progname); return 0; case '?': default: usage(progname); return -1; } } fd = open(device, O_RDWR); if (fd < 0) { fprintf(stderr, "opening %s: %s\n", device, strerror(errno)); return -1; } clkid = get_clockid(fd); if (CLOCK_INVALID == clkid) { fprintf(stderr, "failed to read clock id\n"); return -1; } if (capabilities) { if (ioctl(fd, PTP_CLOCK_GETCAPS, &caps)) { perror("PTP_CLOCK_GETCAPS"); } else { printf("capabilities:\n" " %d maximum frequency adjustment (ppb)\n" " %d programmable alarms\n" " %d external time stamp channels\n" " %d programmable periodic signals\n" " %d pulse per second\n", caps.max_adj, caps.n_alarm, caps.n_ext_ts, caps.n_per_out, caps.pps); } } if (0x7fffffff != adjfreq) { memset(&tx, 0, sizeof(tx)); tx.modes = ADJ_FREQUENCY; tx.freq = ppb_to_scaled_ppm(adjfreq); if (clock_adjtime(clkid, &tx)) { perror("clock_adjtime"); } else { puts("frequency adjustment okay"); } } if (adjtime) { memset(&tx, 0, sizeof(tx)); tx.modes = ADJ_SETOFFSET; tx.time.tv_sec = adjtime; tx.time.tv_usec = 0; if (clock_adjtime(clkid, &tx) < 0) { perror("clock_adjtime"); } else { puts("time shift okay"); } } if (gettime) { if (clock_gettime(clkid, &ts)) { perror("clock_gettime"); } else { printf("clock time: %ld.%09ld or %s", ts.tv_sec, ts.tv_nsec, ctime(&ts.tv_sec)); } } if (settime == 1) { clock_gettime(CLOCK_REALTIME, &ts); if (clock_settime(clkid, &ts)) { perror("clock_settime"); } else { puts("set time okay"); } } if (settime == 2) { clock_gettime(clkid, &ts); if (clock_settime(CLOCK_REALTIME, &ts)) { perror("clock_settime"); } else { puts("set time okay"); } } if (extts) { memset(&extts_request, 0, sizeof(extts_request)); extts_request.index = 0; extts_request.flags = PTP_ENABLE_FEATURE; if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) { perror("PTP_EXTTS_REQUEST"); extts = 0; } else { puts("external time stamp request okay"); } for (; extts; extts--) { cnt = read(fd, &event, sizeof(event)); if (cnt != sizeof(event)) { perror("read"); break; } printf("event index %u at %lld.%09u\n", event.index, event.t.sec, event.t.nsec); fflush(stdout); } /* Disable the feature again. */ extts_request.flags = 0; if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) { perror("PTP_EXTTS_REQUEST"); } } if (oneshot) { install_handler(SIGALRM, handle_alarm); /* Create a timer. */ sigevent.sigev_notify = SIGEV_SIGNAL; sigevent.sigev_signo = SIGALRM; if (timer_create(clkid, &sigevent, &timerid)) { perror("timer_create"); return -1; } /* Start the timer. */ memset(&timeout, 0, sizeof(timeout)); timeout.it_value.tv_sec = oneshot; if (timer_settime(timerid, 0, &timeout, NULL)) { perror("timer_settime"); return -1; } pause(); timer_delete(timerid); } if (periodic) { install_handler(SIGALRM, handle_alarm); /* Create a timer. */ sigevent.sigev_notify = SIGEV_SIGNAL; sigevent.sigev_signo = SIGALRM; if (timer_create(clkid, &sigevent, &timerid)) { perror("timer_create"); return -1; } /* Start the timer. */ memset(&timeout, 0, sizeof(timeout)); timeout.it_interval.tv_sec = periodic; timeout.it_value.tv_sec = periodic; if (timer_settime(timerid, 0, &timeout, NULL)) { perror("timer_settime"); return -1; } while (1) { pause(); } timer_delete(timerid); } if (perout >= 0) { if (clock_gettime(clkid, &ts)) { perror("clock_gettime"); return -1; } memset(&perout_request, 0, sizeof(perout_request)); perout_request.index = 0; perout_request.start.sec = ts.tv_sec + 2; perout_request.start.nsec = 0; perout_request.period.sec = 0; perout_request.period.nsec = perout; if (ioctl(fd, PTP_PEROUT_REQUEST, &perout_request)) { perror("PTP_PEROUT_REQUEST"); } else { puts("periodic output request okay"); } } if (pps != -1) { int enable = pps ? 1 : 0; if (ioctl(fd, PTP_ENABLE_PPS, enable)) { perror("PTP_ENABLE_PPS"); } else { puts("pps for system time request okay"); } } close(fd); return 0; }