/* * linux/arch/alpha/kernel/time.c * * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds * * This file contains the PC-specific time handling details: * reading the RTC at bootup, etc.. * 1994-07-02 Alan Modra * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime * 1995-03-26 Markus Kuhn * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887 * precision CMOS clock update * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 * "A Kernel Model for Precision Timekeeping" by Dave Mills * 1997-01-09 Adrian Sun * use interval timer if CONFIG_RTC=y * 1997-10-29 John Bowman (bowman@math.ualberta.ca) * fixed tick loss calculation in timer_interrupt * (round system clock to nearest tick instead of truncating) * fixed algorithm in time_init for getting time from CMOS clock * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net) * fixed algorithm in do_gettimeofday() for calculating the precise time * from processor cycle counter (now taking lost_ticks into account) * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de> * Fixed time_init to be aware of epoches != 1900. This prevents * booting up in 2048 for me;) Code is stolen from rtc.c. * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com> * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM */ #include <linux/errno.h> #include <linux/module.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/param.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/delay.h> #include <linux/ioport.h> #include <linux/irq.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/bcd.h> #include <linux/profile.h> #include <linux/irq_work.h> #include <asm/uaccess.h> #include <asm/io.h> #include <asm/hwrpb.h> #include <asm/rtc.h> #include <linux/mc146818rtc.h> #include <linux/time.h> #include <linux/timex.h> #include <linux/clocksource.h> #include "proto.h" #include "irq_impl.h" static int set_rtc_mmss(unsigned long); DEFINE_SPINLOCK(rtc_lock); EXPORT_SYMBOL(rtc_lock); #define TICK_SIZE (tick_nsec / 1000) /* * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting * by 48 gives us 16 bits for HZ while keeping the accuracy good even * for large CPU clock rates. */ #define FIX_SHIFT 48 /* lump static variables together for more efficient access: */ static struct { /* cycle counter last time it got invoked */ __u32 last_time; /* ticks/cycle * 2^48 */ unsigned long scaled_ticks_per_cycle; /* partial unused tick */ unsigned long partial_tick; } state; unsigned long est_cycle_freq; #ifdef CONFIG_IRQ_WORK DEFINE_PER_CPU(u8, irq_work_pending); #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1 #define test_irq_work_pending() __get_cpu_var(irq_work_pending) #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0 void arch_irq_work_raise(void) { set_irq_work_pending_flag(); } #else /* CONFIG_IRQ_WORK */ #define test_irq_work_pending() 0 #define clear_irq_work_pending() #endif /* CONFIG_IRQ_WORK */ static inline __u32 rpcc(void) { __u32 result; asm volatile ("rpcc %0" : "=r"(result)); return result; } int update_persistent_clock(struct timespec now) { return set_rtc_mmss(now.tv_sec); } void read_persistent_clock(struct timespec *ts) { unsigned int year, mon, day, hour, min, sec, epoch; sec = CMOS_READ(RTC_SECONDS); min = CMOS_READ(RTC_MINUTES); hour = CMOS_READ(RTC_HOURS); day = CMOS_READ(RTC_DAY_OF_MONTH); mon = CMOS_READ(RTC_MONTH); year = CMOS_READ(RTC_YEAR); if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { sec = bcd2bin(sec); min = bcd2bin(min); hour = bcd2bin(hour); day = bcd2bin(day); mon = bcd2bin(mon); year = bcd2bin(year); } /* PC-like is standard; used for year >= 70 */ epoch = 1900; if (year < 20) epoch = 2000; else if (year >= 20 && year < 48) /* NT epoch */ epoch = 1980; else if (year >= 48 && year < 70) /* Digital UNIX epoch */ epoch = 1952; printk(KERN_INFO "Using epoch = %d\n", epoch); if ((year += epoch) < 1970) year += 100; ts->tv_sec = mktime(year, mon, day, hour, min, sec); ts->tv_nsec = 0; } /* * timer_interrupt() needs to keep up the real-time clock, * as well as call the "xtime_update()" routine every clocktick */ irqreturn_t timer_interrupt(int irq, void *dev) { unsigned long delta; __u32 now; long nticks; #ifndef CONFIG_SMP /* Not SMP, do kernel PC profiling here. */ profile_tick(CPU_PROFILING); #endif /* * Calculate how many ticks have passed since the last update, * including any previous partial leftover. Save any resulting * fraction for the next pass. */ now = rpcc(); delta = now - state.last_time; state.last_time = now; delta = delta * state.scaled_ticks_per_cycle + state.partial_tick; state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1); nticks = delta >> FIX_SHIFT; if (nticks) xtime_update(nticks); if (test_irq_work_pending()) { clear_irq_work_pending(); irq_work_run(); } #ifndef CONFIG_SMP while (nticks--) update_process_times(user_mode(get_irq_regs())); #endif return IRQ_HANDLED; } void __init common_init_rtc(void) { unsigned char x; /* Reset periodic interrupt frequency. */ x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f; /* Test includes known working values on various platforms where 0x26 is wrong; we refuse to change those. */ if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) { printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x); CMOS_WRITE(0x26, RTC_FREQ_SELECT); } /* Turn on periodic interrupts. */ x = CMOS_READ(RTC_CONTROL); if (!(x & RTC_PIE)) { printk("Turning on RTC interrupts.\n"); x |= RTC_PIE; x &= ~(RTC_AIE | RTC_UIE); CMOS_WRITE(x, RTC_CONTROL); } (void) CMOS_READ(RTC_INTR_FLAGS); outb(0x36, 0x43); /* pit counter 0: system timer */ outb(0x00, 0x40); outb(0x00, 0x40); outb(0xb6, 0x43); /* pit counter 2: speaker */ outb(0x31, 0x42); outb(0x13, 0x42); init_rtc_irq(); } unsigned int common_get_rtc_time(struct rtc_time *time) { return __get_rtc_time(time); } int common_set_rtc_time(struct rtc_time *time) { return __set_rtc_time(time); } /* Validate a computed cycle counter result against the known bounds for the given processor core. There's too much brokenness in the way of timing hardware for any one method to work everywhere. :-( Return 0 if the result cannot be trusted, otherwise return the argument. */ static unsigned long __init validate_cc_value(unsigned long cc) { static struct bounds { unsigned int min, max; } cpu_hz[] __initdata = { [EV3_CPU] = { 50000000, 200000000 }, /* guess */ [EV4_CPU] = { 100000000, 300000000 }, [LCA4_CPU] = { 100000000, 300000000 }, /* guess */ [EV45_CPU] = { 200000000, 300000000 }, [EV5_CPU] = { 250000000, 433000000 }, [EV56_CPU] = { 333000000, 667000000 }, [PCA56_CPU] = { 400000000, 600000000 }, /* guess */ [PCA57_CPU] = { 500000000, 600000000 }, /* guess */ [EV6_CPU] = { 466000000, 600000000 }, [EV67_CPU] = { 600000000, 750000000 }, [EV68AL_CPU] = { 750000000, 940000000 }, [EV68CB_CPU] = { 1000000000, 1333333333 }, /* None of the following are shipping as of 2001-11-01. */ [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */ [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */ [EV7_CPU] = { 800000000, 1400000000 }, /* guess */ [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */ }; /* Allow for some drift in the crystal. 10MHz is more than enough. */ const unsigned int deviation = 10000000; struct percpu_struct *cpu; unsigned int index; cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset); index = cpu->type & 0xffffffff; /* If index out of bounds, no way to validate. */ if (index >= ARRAY_SIZE(cpu_hz)) return cc; /* If index contains no data, no way to validate. */ if (cpu_hz[index].max == 0) return cc; if (cc < cpu_hz[index].min - deviation || cc > cpu_hz[index].max + deviation) return 0; return cc; } /* * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from * arch/i386/time.c. */ #define CALIBRATE_LATCH 0xffff #define TIMEOUT_COUNT 0x100000 static unsigned long __init calibrate_cc_with_pit(void) { int cc, count = 0; /* Set the Gate high, disable speaker */ outb((inb(0x61) & ~0x02) | 0x01, 0x61); /* * Now let's take care of CTC channel 2 * * Set the Gate high, program CTC channel 2 for mode 0, * (interrupt on terminal count mode), binary count, * load 5 * LATCH count, (LSB and MSB) to begin countdown. */ outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */ outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */ outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */ cc = rpcc(); do { count++; } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT); cc = rpcc() - cc; /* Error: ECTCNEVERSET or ECPUTOOFAST. */ if (count <= 1 || count == TIMEOUT_COUNT) return 0; return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1); } /* The Linux interpretation of the CMOS clock register contents: When the Update-In-Progress (UIP) flag goes from 1 to 0, the RTC registers show the second which has precisely just started. Let's hope other operating systems interpret the RTC the same way. */ static unsigned long __init rpcc_after_update_in_progress(void) { do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)); do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); return rpcc(); } #ifndef CONFIG_SMP /* Until and unless we figure out how to get cpu cycle counters in sync and keep them there, we can't use the rpcc. */ static cycle_t read_rpcc(struct clocksource *cs) { cycle_t ret = (cycle_t)rpcc(); return ret; } static struct clocksource clocksource_rpcc = { .name = "rpcc", .rating = 300, .read = read_rpcc, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS }; static inline void register_rpcc_clocksource(long cycle_freq) { clocksource_register_hz(&clocksource_rpcc, cycle_freq); } #else /* !CONFIG_SMP */ static inline void register_rpcc_clocksource(long cycle_freq) { } #endif /* !CONFIG_SMP */ void __init time_init(void) { unsigned int cc1, cc2; unsigned long cycle_freq, tolerance; long diff; /* Calibrate CPU clock -- attempt #1. */ if (!est_cycle_freq) est_cycle_freq = validate_cc_value(calibrate_cc_with_pit()); cc1 = rpcc(); /* Calibrate CPU clock -- attempt #2. */ if (!est_cycle_freq) { cc1 = rpcc_after_update_in_progress(); cc2 = rpcc_after_update_in_progress(); est_cycle_freq = validate_cc_value(cc2 - cc1); cc1 = cc2; } cycle_freq = hwrpb->cycle_freq; if (est_cycle_freq) { /* If the given value is within 250 PPM of what we calculated, accept it. Otherwise, use what we found. */ tolerance = cycle_freq / 4000; diff = cycle_freq - est_cycle_freq; if (diff < 0) diff = -diff; if ((unsigned long)diff > tolerance) { cycle_freq = est_cycle_freq; printk("HWRPB cycle frequency bogus. " "Estimated %lu Hz\n", cycle_freq); } else { est_cycle_freq = 0; } } else if (! validate_cc_value (cycle_freq)) { printk("HWRPB cycle frequency bogus, " "and unable to estimate a proper value!\n"); } /* From John Bowman <bowman@math.ualberta.ca>: allow the values to settle, as the Update-In-Progress bit going low isn't good enough on some hardware. 2ms is our guess; we haven't found bogomips yet, but this is close on a 500Mhz box. */ __delay(1000000); if (HZ > (1<<16)) { extern void __you_loose (void); __you_loose(); } register_rpcc_clocksource(cycle_freq); state.last_time = cc1; state.scaled_ticks_per_cycle = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq; state.partial_tick = 0L; /* Startup the timer source. */ alpha_mv.init_rtc(); } /* * In order to set the CMOS clock precisely, set_rtc_mmss has to be * called 500 ms after the second nowtime has started, because when * nowtime is written into the registers of the CMOS clock, it will * jump to the next second precisely 500 ms later. Check the Motorola * MC146818A or Dallas DS12887 data sheet for details. * * BUG: This routine does not handle hour overflow properly; it just * sets the minutes. Usually you won't notice until after reboot! */ static int set_rtc_mmss(unsigned long nowtime) { int retval = 0; int real_seconds, real_minutes, cmos_minutes; unsigned char save_control, save_freq_select; /* irq are locally disabled here */ spin_lock(&rtc_lock); /* Tell the clock it's being set */ save_control = CMOS_READ(RTC_CONTROL); CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); /* Stop and reset prescaler */ save_freq_select = CMOS_READ(RTC_FREQ_SELECT); CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); cmos_minutes = CMOS_READ(RTC_MINUTES); if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) cmos_minutes = bcd2bin(cmos_minutes); /* * since we're only adjusting minutes and seconds, * don't interfere with hour overflow. This avoids * messing with unknown time zones but requires your * RTC not to be off by more than 15 minutes */ real_seconds = nowtime % 60; real_minutes = nowtime / 60; if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) { /* correct for half hour time zone */ real_minutes += 30; } real_minutes %= 60; if (abs(real_minutes - cmos_minutes) < 30) { if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { real_seconds = bin2bcd(real_seconds); real_minutes = bin2bcd(real_minutes); } CMOS_WRITE(real_seconds,RTC_SECONDS); CMOS_WRITE(real_minutes,RTC_MINUTES); } else { printk_once(KERN_NOTICE "set_rtc_mmss: can't update from %d to %d\n", cmos_minutes, real_minutes); retval = -1; } /* The following flags have to be released exactly in this order, * otherwise the DS12887 (popular MC146818A clone with integrated * battery and quartz) will not reset the oscillator and will not * update precisely 500 ms later. You won't find this mentioned in * the Dallas Semiconductor data sheets, but who believes data * sheets anyway ... -- Markus Kuhn */ CMOS_WRITE(save_control, RTC_CONTROL); CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); spin_unlock(&rtc_lock); return retval; }