/* * arch/arm/kernel/topology.c * * Copyright (C) 2011 Linaro Limited. * Written by: Vincent Guittot * * based on arch/sh/kernel/topology.c * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/cpu.h> #include <linux/cpumask.h> #include <linux/export.h> #include <linux/init.h> #include <linux/percpu.h> #include <linux/node.h> #include <linux/nodemask.h> #include <linux/of.h> #include <linux/sched.h> #include <linux/slab.h> #include <asm/cputype.h> #include <asm/topology.h> /* * cpu power scale management */ /* * cpu power table * This per cpu data structure describes the relative capacity of each core. * On a heteregenous system, cores don't have the same computation capacity * and we reflect that difference in the cpu_power field so the scheduler can * take this difference into account during load balance. A per cpu structure * is preferred because each CPU updates its own cpu_power field during the * load balance except for idle cores. One idle core is selected to run the * rebalance_domains for all idle cores and the cpu_power can be updated * during this sequence. */ static DEFINE_PER_CPU(unsigned long, cpu_scale); unsigned long arch_scale_freq_power(struct sched_domain *sd, int cpu) { return per_cpu(cpu_scale, cpu); } static void set_power_scale(unsigned int cpu, unsigned long power) { per_cpu(cpu_scale, cpu) = power; } #ifdef CONFIG_OF struct cpu_efficiency { const char *compatible; unsigned long efficiency; }; /* * Table of relative efficiency of each processors * The efficiency value must fit in 20bit and the final * cpu_scale value must be in the range * 0 < cpu_scale < 3*SCHED_POWER_SCALE/2 * in order to return at most 1 when DIV_ROUND_CLOSEST * is used to compute the capacity of a CPU. * Processors that are not defined in the table, * use the default SCHED_POWER_SCALE value for cpu_scale. */ struct cpu_efficiency table_efficiency[] = { {"arm,cortex-a15", 3891}, {"arm,cortex-a7", 2048}, {NULL, }, }; struct cpu_capacity { unsigned long hwid; unsigned long capacity; }; struct cpu_capacity *cpu_capacity; unsigned long middle_capacity = 1; /* * Iterate all CPUs' descriptor in DT and compute the efficiency * (as per table_efficiency). Also calculate a middle efficiency * as close as possible to (max{eff_i} - min{eff_i}) / 2 * This is later used to scale the cpu_power field such that an * 'average' CPU is of middle power. Also see the comments near * table_efficiency[] and update_cpu_power(). */ static void __init parse_dt_topology(void) { struct cpu_efficiency *cpu_eff; struct device_node *cn = NULL; unsigned long min_capacity = (unsigned long)(-1); unsigned long max_capacity = 0; unsigned long capacity = 0; int alloc_size, cpu = 0; alloc_size = nr_cpu_ids * sizeof(struct cpu_capacity); cpu_capacity = kzalloc(alloc_size, GFP_NOWAIT); while ((cn = of_find_node_by_type(cn, "cpu"))) { const u32 *rate, *reg; int len; if (cpu >= num_possible_cpus()) break; for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++) if (of_device_is_compatible(cn, cpu_eff->compatible)) break; if (cpu_eff->compatible == NULL) continue; rate = of_get_property(cn, "clock-frequency", &len); if (!rate || len != 4) { pr_err("%s missing clock-frequency property\n", cn->full_name); continue; } reg = of_get_property(cn, "reg", &len); if (!reg || len != 4) { pr_err("%s missing reg property\n", cn->full_name); continue; } capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency; /* Save min capacity of the system */ if (capacity < min_capacity) min_capacity = capacity; /* Save max capacity of the system */ if (capacity > max_capacity) max_capacity = capacity; cpu_capacity[cpu].capacity = capacity; cpu_capacity[cpu++].hwid = be32_to_cpup(reg); } if (cpu < num_possible_cpus()) cpu_capacity[cpu].hwid = (unsigned long)(-1); /* If min and max capacities are equals, we bypass the update of the * cpu_scale because all CPUs have the same capacity. Otherwise, we * compute a middle_capacity factor that will ensure that the capacity * of an 'average' CPU of the system will be as close as possible to * SCHED_POWER_SCALE, which is the default value, but with the * constraint explained near table_efficiency[]. */ if (min_capacity == max_capacity) cpu_capacity[0].hwid = (unsigned long)(-1); else if (4*max_capacity < (3*(max_capacity + min_capacity))) middle_capacity = (min_capacity + max_capacity) >> (SCHED_POWER_SHIFT+1); else middle_capacity = ((max_capacity / 3) >> (SCHED_POWER_SHIFT-1)) + 1; } /* * Look for a customed capacity of a CPU in the cpu_capacity table during the * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the * function returns directly for SMP system. */ void update_cpu_power(unsigned int cpu, unsigned long hwid) { unsigned int idx = 0; /* look for the cpu's hwid in the cpu capacity table */ for (idx = 0; idx < num_possible_cpus(); idx++) { if (cpu_capacity[idx].hwid == hwid) break; if (cpu_capacity[idx].hwid == -1) return; } if (idx == num_possible_cpus()) return; set_power_scale(cpu, cpu_capacity[idx].capacity / middle_capacity); printk(KERN_INFO "CPU%u: update cpu_power %lu\n", cpu, arch_scale_freq_power(NULL, cpu)); } #else static inline void parse_dt_topology(void) {} static inline void update_cpu_power(unsigned int cpuid, unsigned int mpidr) {} #endif /* * cpu topology table */ struct cputopo_arm cpu_topology[NR_CPUS]; EXPORT_SYMBOL_GPL(cpu_topology); const struct cpumask *cpu_coregroup_mask(int cpu) { return &cpu_topology[cpu].core_sibling; } void update_siblings_masks(unsigned int cpuid) { struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; int cpu; /* update core and thread sibling masks */ for_each_possible_cpu(cpu) { cpu_topo = &cpu_topology[cpu]; if (cpuid_topo->socket_id != cpu_topo->socket_id) continue; cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); if (cpu != cpuid) cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); if (cpuid_topo->core_id != cpu_topo->core_id) continue; cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); if (cpu != cpuid) cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); } smp_wmb(); } /* * store_cpu_topology is called at boot when only one cpu is running * and with the mutex cpu_hotplug.lock locked, when several cpus have booted, * which prevents simultaneous write access to cpu_topology array */ void store_cpu_topology(unsigned int cpuid) { struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid]; unsigned int mpidr; /* If the cpu topology has been already set, just return */ if (cpuid_topo->core_id != -1) return; mpidr = read_cpuid_mpidr(); /* create cpu topology mapping */ if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) { /* * This is a multiprocessor system * multiprocessor format & multiprocessor mode field are set */ if (mpidr & MPIDR_MT_BITMASK) { /* core performance interdependency */ cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1); cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2); } else { /* largely independent cores */ cpuid_topo->thread_id = -1; cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1); } } else { /* * This is an uniprocessor system * we are in multiprocessor format but uniprocessor system * or in the old uniprocessor format */ cpuid_topo->thread_id = -1; cpuid_topo->core_id = 0; cpuid_topo->socket_id = -1; } update_siblings_masks(cpuid); update_cpu_power(cpuid, mpidr & MPIDR_HWID_BITMASK); printk(KERN_INFO "CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n", cpuid, cpu_topology[cpuid].thread_id, cpu_topology[cpuid].core_id, cpu_topology[cpuid].socket_id, mpidr); } /* * init_cpu_topology is called at boot when only one cpu is running * which prevent simultaneous write access to cpu_topology array */ void __init init_cpu_topology(void) { unsigned int cpu; /* init core mask and power*/ for_each_possible_cpu(cpu) { struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]); cpu_topo->thread_id = -1; cpu_topo->core_id = -1; cpu_topo->socket_id = -1; cpumask_clear(&cpu_topo->core_sibling); cpumask_clear(&cpu_topo->thread_sibling); set_power_scale(cpu, SCHED_POWER_SCALE); } smp_wmb(); parse_dt_topology(); }