/* * Copyright 1999 - 2003 ARM Limited * Copyright 2000 Deep Blue Solutions Ltd * Copyright 2008 Cavium Networks * * This file is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, Version 2, as * published by the Free Software Foundation. */ #include <linux/init.h> #include <linux/interrupt.h> #include <linux/clockchips.h> #include <linux/io.h> #include <linux/irqchip/arm-gic.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/usb/ehci_pdriver.h> #include <linux/usb/ohci_pdriver.h> #include <asm/mach/arch.h> #include <asm/mach/map.h> #include <asm/mach/time.h> #include <asm/mach/irq.h> #include <asm/hardware/cache-l2x0.h> #include "cns3xxx.h" #include "core.h" #include "pm.h" static struct map_desc cns3xxx_io_desc[] __initdata = { { .virtual = CNS3XXX_TC11MP_SCU_BASE_VIRT, .pfn = __phys_to_pfn(CNS3XXX_TC11MP_SCU_BASE), .length = SZ_8K, .type = MT_DEVICE, }, { .virtual = CNS3XXX_TIMER1_2_3_BASE_VIRT, .pfn = __phys_to_pfn(CNS3XXX_TIMER1_2_3_BASE), .length = SZ_4K, .type = MT_DEVICE, }, { .virtual = CNS3XXX_MISC_BASE_VIRT, .pfn = __phys_to_pfn(CNS3XXX_MISC_BASE), .length = SZ_4K, .type = MT_DEVICE, }, { .virtual = CNS3XXX_PM_BASE_VIRT, .pfn = __phys_to_pfn(CNS3XXX_PM_BASE), .length = SZ_4K, .type = MT_DEVICE, }, }; void __init cns3xxx_map_io(void) { iotable_init(cns3xxx_io_desc, ARRAY_SIZE(cns3xxx_io_desc)); } /* used by entry-macro.S */ void __init cns3xxx_init_irq(void) { gic_init(0, 29, IOMEM(CNS3XXX_TC11MP_GIC_DIST_BASE_VIRT), IOMEM(CNS3XXX_TC11MP_GIC_CPU_BASE_VIRT)); } void cns3xxx_power_off(void) { u32 __iomem *pm_base = IOMEM(CNS3XXX_PM_BASE_VIRT); u32 clkctrl; printk(KERN_INFO "powering system down...\n"); clkctrl = readl(pm_base + PM_SYS_CLK_CTRL_OFFSET); clkctrl &= 0xfffff1ff; clkctrl |= (0x5 << 9); /* Hibernate */ writel(clkctrl, pm_base + PM_SYS_CLK_CTRL_OFFSET); } /* * Timer */ static void __iomem *cns3xxx_tmr1; static void cns3xxx_timer_set_mode(enum clock_event_mode mode, struct clock_event_device *clk) { unsigned long ctrl = readl(cns3xxx_tmr1 + TIMER1_2_CONTROL_OFFSET); int pclk = cns3xxx_cpu_clock() / 8; int reload; switch (mode) { case CLOCK_EVT_MODE_PERIODIC: reload = pclk * 20 / (3 * HZ) * 0x25000; writel(reload, cns3xxx_tmr1 + TIMER1_AUTO_RELOAD_OFFSET); ctrl |= (1 << 0) | (1 << 2) | (1 << 9); break; case CLOCK_EVT_MODE_ONESHOT: /* period set, and timer enabled in 'next_event' hook */ ctrl |= (1 << 2) | (1 << 9); break; case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: default: ctrl = 0; } writel(ctrl, cns3xxx_tmr1 + TIMER1_2_CONTROL_OFFSET); } static int cns3xxx_timer_set_next_event(unsigned long evt, struct clock_event_device *unused) { unsigned long ctrl = readl(cns3xxx_tmr1 + TIMER1_2_CONTROL_OFFSET); writel(evt, cns3xxx_tmr1 + TIMER1_AUTO_RELOAD_OFFSET); writel(ctrl | (1 << 0), cns3xxx_tmr1 + TIMER1_2_CONTROL_OFFSET); return 0; } static struct clock_event_device cns3xxx_tmr1_clockevent = { .name = "cns3xxx timer1", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_mode = cns3xxx_timer_set_mode, .set_next_event = cns3xxx_timer_set_next_event, .rating = 350, .cpumask = cpu_all_mask, }; static void __init cns3xxx_clockevents_init(unsigned int timer_irq) { cns3xxx_tmr1_clockevent.irq = timer_irq; clockevents_config_and_register(&cns3xxx_tmr1_clockevent, (cns3xxx_cpu_clock() >> 3) * 1000000, 0xf, 0xffffffff); } /* * IRQ handler for the timer */ static irqreturn_t cns3xxx_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = &cns3xxx_tmr1_clockevent; u32 __iomem *stat = cns3xxx_tmr1 + TIMER1_2_INTERRUPT_STATUS_OFFSET; u32 val; /* Clear the interrupt */ val = readl(stat); writel(val & ~(1 << 2), stat); evt->event_handler(evt); return IRQ_HANDLED; } static struct irqaction cns3xxx_timer_irq = { .name = "timer", .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL, .handler = cns3xxx_timer_interrupt, }; /* * Set up the clock source and clock events devices */ static void __init __cns3xxx_timer_init(unsigned int timer_irq) { u32 val; u32 irq_mask; /* * Initialise to a known state (all timers off) */ /* disable timer1 and timer2 */ writel(0, cns3xxx_tmr1 + TIMER1_2_CONTROL_OFFSET); /* stop free running timer3 */ writel(0, cns3xxx_tmr1 + TIMER_FREERUN_CONTROL_OFFSET); /* timer1 */ writel(0x5C800, cns3xxx_tmr1 + TIMER1_COUNTER_OFFSET); writel(0x5C800, cns3xxx_tmr1 + TIMER1_AUTO_RELOAD_OFFSET); writel(0, cns3xxx_tmr1 + TIMER1_MATCH_V1_OFFSET); writel(0, cns3xxx_tmr1 + TIMER1_MATCH_V2_OFFSET); /* mask irq, non-mask timer1 overflow */ irq_mask = readl(cns3xxx_tmr1 + TIMER1_2_INTERRUPT_MASK_OFFSET); irq_mask &= ~(1 << 2); irq_mask |= 0x03; writel(irq_mask, cns3xxx_tmr1 + TIMER1_2_INTERRUPT_MASK_OFFSET); /* down counter */ val = readl(cns3xxx_tmr1 + TIMER1_2_CONTROL_OFFSET); val |= (1 << 9); writel(val, cns3xxx_tmr1 + TIMER1_2_CONTROL_OFFSET); /* timer2 */ writel(0, cns3xxx_tmr1 + TIMER2_MATCH_V1_OFFSET); writel(0, cns3xxx_tmr1 + TIMER2_MATCH_V2_OFFSET); /* mask irq */ irq_mask = readl(cns3xxx_tmr1 + TIMER1_2_INTERRUPT_MASK_OFFSET); irq_mask |= ((1 << 3) | (1 << 4) | (1 << 5)); writel(irq_mask, cns3xxx_tmr1 + TIMER1_2_INTERRUPT_MASK_OFFSET); /* down counter */ val = readl(cns3xxx_tmr1 + TIMER1_2_CONTROL_OFFSET); val |= (1 << 10); writel(val, cns3xxx_tmr1 + TIMER1_2_CONTROL_OFFSET); /* Make irqs happen for the system timer */ setup_irq(timer_irq, &cns3xxx_timer_irq); cns3xxx_clockevents_init(timer_irq); } void __init cns3xxx_timer_init(void) { cns3xxx_tmr1 = IOMEM(CNS3XXX_TIMER1_2_3_BASE_VIRT); __cns3xxx_timer_init(IRQ_CNS3XXX_TIMER0); } #ifdef CONFIG_CACHE_L2X0 void __init cns3xxx_l2x0_init(void) { void __iomem *base = ioremap(CNS3XXX_L2C_BASE, SZ_4K); u32 val; if (WARN_ON(!base)) return; /* * Tag RAM Control register * * bit[10:8] - 1 cycle of write accesses latency * bit[6:4] - 1 cycle of read accesses latency * bit[3:0] - 1 cycle of setup latency * * 1 cycle of latency for setup, read and write accesses */ val = readl(base + L2X0_TAG_LATENCY_CTRL); val &= 0xfffff888; writel(val, base + L2X0_TAG_LATENCY_CTRL); /* * Data RAM Control register * * bit[10:8] - 1 cycles of write accesses latency * bit[6:4] - 1 cycles of read accesses latency * bit[3:0] - 1 cycle of setup latency * * 1 cycle of latency for setup, read and write accesses */ val = readl(base + L2X0_DATA_LATENCY_CTRL); val &= 0xfffff888; writel(val, base + L2X0_DATA_LATENCY_CTRL); /* 32 KiB, 8-way, parity disable */ l2x0_init(base, 0x00540000, 0xfe000fff); } #endif /* CONFIG_CACHE_L2X0 */ static int csn3xxx_usb_power_on(struct platform_device *pdev) { /* * EHCI and OHCI share the same clock and power, * resetting twice would cause the 1st controller been reset. * Therefore only do power up at the first up device, and * power down at the last down device. * * Set USB AHB INCR length to 16 */ if (atomic_inc_return(&usb_pwr_ref) == 1) { cns3xxx_pwr_power_up(1 << PM_PLL_HM_PD_CTRL_REG_OFFSET_PLL_USB); cns3xxx_pwr_clk_en(1 << PM_CLK_GATE_REG_OFFSET_USB_HOST); cns3xxx_pwr_soft_rst(1 << PM_SOFT_RST_REG_OFFST_USB_HOST); __raw_writel((__raw_readl(MISC_CHIP_CONFIG_REG) | (0X2 << 24)), MISC_CHIP_CONFIG_REG); } return 0; } static void csn3xxx_usb_power_off(struct platform_device *pdev) { /* * EHCI and OHCI share the same clock and power, * resetting twice would cause the 1st controller been reset. * Therefore only do power up at the first up device, and * power down at the last down device. */ if (atomic_dec_return(&usb_pwr_ref) == 0) cns3xxx_pwr_clk_dis(1 << PM_CLK_GATE_REG_OFFSET_USB_HOST); } static struct usb_ehci_pdata cns3xxx_usb_ehci_pdata = { .power_on = csn3xxx_usb_power_on, .power_off = csn3xxx_usb_power_off, }; static struct usb_ohci_pdata cns3xxx_usb_ohci_pdata = { .num_ports = 1, .power_on = csn3xxx_usb_power_on, .power_off = csn3xxx_usb_power_off, }; static struct of_dev_auxdata cns3xxx_auxdata[] __initconst = { { "intel,usb-ehci", CNS3XXX_USB_BASE, "ehci-platform", &cns3xxx_usb_ehci_pdata }, { "intel,usb-ohci", CNS3XXX_USB_OHCI_BASE, "ohci-platform", &cns3xxx_usb_ohci_pdata }, { "cavium,cns3420-ahci", CNS3XXX_SATA2_BASE, "ahci", NULL }, { "cavium,cns3420-sdhci", CNS3XXX_SDIO_BASE, "ahci", NULL }, {}, }; static void __init cns3xxx_init(void) { struct device_node *dn; cns3xxx_l2x0_init(); dn = of_find_compatible_node(NULL, NULL, "cavium,cns3420-ahci"); if (of_device_is_available(dn)) { u32 tmp; tmp = __raw_readl(MISC_SATA_POWER_MODE); tmp |= 0x1 << 16; /* Disable SATA PHY 0 from SLUMBER Mode */ tmp |= 0x1 << 17; /* Disable SATA PHY 1 from SLUMBER Mode */ __raw_writel(tmp, MISC_SATA_POWER_MODE); /* Enable SATA PHY */ cns3xxx_pwr_power_up(0x1 << PM_PLL_HM_PD_CTRL_REG_OFFSET_SATA_PHY0); cns3xxx_pwr_power_up(0x1 << PM_PLL_HM_PD_CTRL_REG_OFFSET_SATA_PHY1); /* Enable SATA Clock */ cns3xxx_pwr_clk_en(0x1 << PM_CLK_GATE_REG_OFFSET_SATA); /* De-Asscer SATA Reset */ cns3xxx_pwr_soft_rst(CNS3XXX_PWR_SOFTWARE_RST(SATA)); } dn = of_find_compatible_node(NULL, NULL, "cavium,cns3420-sdhci"); if (of_device_is_available(dn)) { u32 __iomem *gpioa = IOMEM(CNS3XXX_MISC_BASE_VIRT + 0x0014); u32 gpioa_pins = __raw_readl(gpioa); /* MMC/SD pins share with GPIOA */ gpioa_pins |= 0x1fff0004; __raw_writel(gpioa_pins, gpioa); cns3xxx_pwr_clk_en(CNS3XXX_PWR_CLK_EN(SDIO)); cns3xxx_pwr_soft_rst(CNS3XXX_PWR_SOFTWARE_RST(SDIO)); } pm_power_off = cns3xxx_power_off; of_platform_populate(NULL, of_default_bus_match_table, cns3xxx_auxdata, NULL); } static const char *cns3xxx_dt_compat[] __initdata = { "cavium,cns3410", "cavium,cns3420", NULL, }; DT_MACHINE_START(CNS3XXX_DT, "Cavium Networks CNS3xxx") .dt_compat = cns3xxx_dt_compat, .nr_irqs = NR_IRQS_CNS3XXX, .map_io = cns3xxx_map_io, .init_irq = cns3xxx_init_irq, .init_time = cns3xxx_timer_init, .init_machine = cns3xxx_init, .restart = cns3xxx_restart, MACHINE_END