/* * gpmc-nand.c * * Copyright (C) 2009 Texas Instruments * Vimal Singh <vimalsingh@ti.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/kernel.h> #include <linux/platform_device.h> #include <linux/io.h> #include <linux/mtd/nand.h> #include <linux/platform_data/mtd-nand-omap2.h> #include <asm/mach/flash.h> #include "gpmc.h" #include "soc.h" #include "gpmc-nand.h" /* minimum size for IO mapping */ #define NAND_IO_SIZE 4 static struct resource gpmc_nand_resource[] = { { .flags = IORESOURCE_MEM, }, { .flags = IORESOURCE_IRQ, }, { .flags = IORESOURCE_IRQ, }, }; static struct platform_device gpmc_nand_device = { .name = "omap2-nand", .id = 0, .num_resources = ARRAY_SIZE(gpmc_nand_resource), .resource = gpmc_nand_resource, }; static int omap2_nand_gpmc_retime( struct omap_nand_platform_data *gpmc_nand_data, struct gpmc_timings *gpmc_t) { struct gpmc_timings t; int err; memset(&t, 0, sizeof(t)); t.sync_clk = gpmc_t->sync_clk; t.cs_on = gpmc_t->cs_on; t.adv_on = gpmc_t->adv_on; /* Read */ t.adv_rd_off = gpmc_t->adv_rd_off; t.oe_on = t.adv_on; t.access = gpmc_t->access; t.oe_off = gpmc_t->oe_off; t.cs_rd_off = gpmc_t->cs_rd_off; t.rd_cycle = gpmc_t->rd_cycle; /* Write */ t.adv_wr_off = gpmc_t->adv_wr_off; t.we_on = t.oe_on; if (cpu_is_omap34xx()) { t.wr_data_mux_bus = gpmc_t->wr_data_mux_bus; t.wr_access = gpmc_t->wr_access; } t.we_off = gpmc_t->we_off; t.cs_wr_off = gpmc_t->cs_wr_off; t.wr_cycle = gpmc_t->wr_cycle; err = gpmc_cs_set_timings(gpmc_nand_data->cs, &t); if (err) return err; return 0; } static bool gpmc_hwecc_bch_capable(enum omap_ecc ecc_opt) { /* support only OMAP3 class */ if (!cpu_is_omap34xx() && !soc_is_am33xx()) { pr_err("BCH ecc is not supported on this CPU\n"); return 0; } /* * For now, assume 4-bit mode is only supported on OMAP3630 ES1.x, x>=1 * and AM33xx derivates. Other chips may be added if confirmed to work. */ if ((ecc_opt == OMAP_ECC_BCH4_CODE_HW) && (!cpu_is_omap3630() || (GET_OMAP_REVISION() == 0)) && (!soc_is_am33xx())) { pr_err("BCH 4-bit mode is not supported on this CPU\n"); return 0; } return 1; } int gpmc_nand_init(struct omap_nand_platform_data *gpmc_nand_data, struct gpmc_timings *gpmc_t) { int err = 0; struct gpmc_settings s; struct device *dev = &gpmc_nand_device.dev; memset(&s, 0, sizeof(struct gpmc_settings)); gpmc_nand_device.dev.platform_data = gpmc_nand_data; err = gpmc_cs_request(gpmc_nand_data->cs, NAND_IO_SIZE, (unsigned long *)&gpmc_nand_resource[0].start); if (err < 0) { dev_err(dev, "Cannot request GPMC CS %d, error %d\n", gpmc_nand_data->cs, err); return err; } gpmc_nand_resource[0].end = gpmc_nand_resource[0].start + NAND_IO_SIZE - 1; gpmc_nand_resource[1].start = gpmc_get_client_irq(GPMC_IRQ_FIFOEVENTENABLE); gpmc_nand_resource[2].start = gpmc_get_client_irq(GPMC_IRQ_COUNT_EVENT); if (gpmc_t) { err = omap2_nand_gpmc_retime(gpmc_nand_data, gpmc_t); if (err < 0) { dev_err(dev, "Unable to set gpmc timings: %d\n", err); return err; } if (gpmc_nand_data->of_node) { gpmc_read_settings_dt(gpmc_nand_data->of_node, &s); } else { s.device_nand = true; /* Enable RD PIN Monitoring Reg */ if (gpmc_nand_data->dev_ready) { s.wait_on_read = true; s.wait_on_write = true; } } if (gpmc_nand_data->devsize == NAND_BUSWIDTH_16) s.device_width = GPMC_DEVWIDTH_16BIT; else s.device_width = GPMC_DEVWIDTH_8BIT; err = gpmc_cs_program_settings(gpmc_nand_data->cs, &s); if (err < 0) goto out_free_cs; err = gpmc_configure(GPMC_CONFIG_WP, 0); if (err < 0) goto out_free_cs; } gpmc_update_nand_reg(&gpmc_nand_data->reg, gpmc_nand_data->cs); if (!gpmc_hwecc_bch_capable(gpmc_nand_data->ecc_opt)) return -EINVAL; err = platform_device_register(&gpmc_nand_device); if (err < 0) { dev_err(dev, "Unable to register NAND device\n"); goto out_free_cs; } return 0; out_free_cs: gpmc_cs_free(gpmc_nand_data->cs); return err; }