/* * linux/arch/arm/mach-omap2/gpmc-onenand.c * * Copyright (C) 2006 - 2009 Nokia Corporation * Contacts: Juha Yrjola * Tony Lindgren * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/string.h> #include <linux/kernel.h> #include <linux/platform_device.h> #include <linux/mtd/onenand_regs.h> #include <linux/io.h> #include <linux/platform_data/mtd-onenand-omap2.h> #include <linux/err.h> #include <asm/mach/flash.h> #include "gpmc.h" #include "soc.h" #include "gpmc-onenand.h" #define ONENAND_IO_SIZE SZ_128K #define ONENAND_FLAG_SYNCREAD (1 << 0) #define ONENAND_FLAG_SYNCWRITE (1 << 1) #define ONENAND_FLAG_HF (1 << 2) #define ONENAND_FLAG_VHF (1 << 3) static unsigned onenand_flags; static unsigned latency; static struct omap_onenand_platform_data *gpmc_onenand_data; static struct resource gpmc_onenand_resource = { .flags = IORESOURCE_MEM, }; static struct platform_device gpmc_onenand_device = { .name = "omap2-onenand", .id = -1, .num_resources = 1, .resource = &gpmc_onenand_resource, }; static struct gpmc_settings onenand_async = { .device_width = GPMC_DEVWIDTH_16BIT, .mux_add_data = GPMC_MUX_AD, }; static struct gpmc_settings onenand_sync = { .burst_read = true, .burst_wrap = true, .burst_len = GPMC_BURST_16, .device_width = GPMC_DEVWIDTH_16BIT, .mux_add_data = GPMC_MUX_AD, .wait_pin = 0, }; static void omap2_onenand_calc_async_timings(struct gpmc_timings *t) { struct gpmc_device_timings dev_t; const int t_cer = 15; const int t_avdp = 12; const int t_aavdh = 7; const int t_ce = 76; const int t_aa = 76; const int t_oe = 20; const int t_cez = 20; /* max of t_cez, t_oez */ const int t_wpl = 40; const int t_wph = 30; memset(&dev_t, 0, sizeof(dev_t)); dev_t.t_avdp_r = max_t(int, t_avdp, t_cer) * 1000; dev_t.t_avdp_w = dev_t.t_avdp_r; dev_t.t_aavdh = t_aavdh * 1000; dev_t.t_aa = t_aa * 1000; dev_t.t_ce = t_ce * 1000; dev_t.t_oe = t_oe * 1000; dev_t.t_cez_r = t_cez * 1000; dev_t.t_cez_w = dev_t.t_cez_r; dev_t.t_wpl = t_wpl * 1000; dev_t.t_wph = t_wph * 1000; gpmc_calc_timings(t, &onenand_async, &dev_t); } static void omap2_onenand_set_async_mode(void __iomem *onenand_base) { u32 reg; /* Ensure sync read and sync write are disabled */ reg = readw(onenand_base + ONENAND_REG_SYS_CFG1); reg &= ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE; writew(reg, onenand_base + ONENAND_REG_SYS_CFG1); } static void set_onenand_cfg(void __iomem *onenand_base) { u32 reg; reg = readw(onenand_base + ONENAND_REG_SYS_CFG1); reg &= ~((0x7 << ONENAND_SYS_CFG1_BRL_SHIFT) | (0x7 << 9)); reg |= (latency << ONENAND_SYS_CFG1_BRL_SHIFT) | ONENAND_SYS_CFG1_BL_16; if (onenand_flags & ONENAND_FLAG_SYNCREAD) reg |= ONENAND_SYS_CFG1_SYNC_READ; else reg &= ~ONENAND_SYS_CFG1_SYNC_READ; if (onenand_flags & ONENAND_FLAG_SYNCWRITE) reg |= ONENAND_SYS_CFG1_SYNC_WRITE; else reg &= ~ONENAND_SYS_CFG1_SYNC_WRITE; if (onenand_flags & ONENAND_FLAG_HF) reg |= ONENAND_SYS_CFG1_HF; else reg &= ~ONENAND_SYS_CFG1_HF; if (onenand_flags & ONENAND_FLAG_VHF) reg |= ONENAND_SYS_CFG1_VHF; else reg &= ~ONENAND_SYS_CFG1_VHF; writew(reg, onenand_base + ONENAND_REG_SYS_CFG1); } static int omap2_onenand_get_freq(struct omap_onenand_platform_data *cfg, void __iomem *onenand_base) { u16 ver = readw(onenand_base + ONENAND_REG_VERSION_ID); int freq; switch ((ver >> 4) & 0xf) { case 0: freq = 40; break; case 1: freq = 54; break; case 2: freq = 66; break; case 3: freq = 83; break; case 4: freq = 104; break; default: freq = 54; break; } return freq; } static void omap2_onenand_calc_sync_timings(struct gpmc_timings *t, unsigned int flags, int freq) { struct gpmc_device_timings dev_t; const int t_cer = 15; const int t_avdp = 12; const int t_cez = 20; /* max of t_cez, t_oez */ const int t_wpl = 40; const int t_wph = 30; int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo; int div, gpmc_clk_ns; if (flags & ONENAND_SYNC_READ) onenand_flags = ONENAND_FLAG_SYNCREAD; else if (flags & ONENAND_SYNC_READWRITE) onenand_flags = ONENAND_FLAG_SYNCREAD | ONENAND_FLAG_SYNCWRITE; switch (freq) { case 104: min_gpmc_clk_period = 9600; /* 104 MHz */ t_ces = 3; t_avds = 4; t_avdh = 2; t_ach = 3; t_aavdh = 6; t_rdyo = 6; break; case 83: min_gpmc_clk_period = 12000; /* 83 MHz */ t_ces = 5; t_avds = 4; t_avdh = 2; t_ach = 6; t_aavdh = 6; t_rdyo = 9; break; case 66: min_gpmc_clk_period = 15000; /* 66 MHz */ t_ces = 6; t_avds = 5; t_avdh = 2; t_ach = 6; t_aavdh = 6; t_rdyo = 11; break; default: min_gpmc_clk_period = 18500; /* 54 MHz */ t_ces = 7; t_avds = 7; t_avdh = 7; t_ach = 9; t_aavdh = 7; t_rdyo = 15; onenand_flags &= ~ONENAND_FLAG_SYNCWRITE; break; } div = gpmc_calc_divider(min_gpmc_clk_period); gpmc_clk_ns = gpmc_ticks_to_ns(div); if (gpmc_clk_ns < 15) /* >66Mhz */ onenand_flags |= ONENAND_FLAG_HF; else onenand_flags &= ~ONENAND_FLAG_HF; if (gpmc_clk_ns < 12) /* >83Mhz */ onenand_flags |= ONENAND_FLAG_VHF; else onenand_flags &= ~ONENAND_FLAG_VHF; if (onenand_flags & ONENAND_FLAG_VHF) latency = 8; else if (onenand_flags & ONENAND_FLAG_HF) latency = 6; else if (gpmc_clk_ns >= 25) /* 40 MHz*/ latency = 3; else latency = 4; /* Set synchronous read timings */ memset(&dev_t, 0, sizeof(dev_t)); if (onenand_flags & ONENAND_FLAG_SYNCREAD) onenand_sync.sync_read = true; if (onenand_flags & ONENAND_FLAG_SYNCWRITE) { onenand_sync.sync_write = true; onenand_sync.burst_write = true; } else { dev_t.t_avdp_w = max(t_avdp, t_cer) * 1000; dev_t.t_wpl = t_wpl * 1000; dev_t.t_wph = t_wph * 1000; dev_t.t_aavdh = t_aavdh * 1000; } dev_t.ce_xdelay = true; dev_t.avd_xdelay = true; dev_t.oe_xdelay = true; dev_t.we_xdelay = true; dev_t.clk = min_gpmc_clk_period; dev_t.t_bacc = dev_t.clk; dev_t.t_ces = t_ces * 1000; dev_t.t_avds = t_avds * 1000; dev_t.t_avdh = t_avdh * 1000; dev_t.t_ach = t_ach * 1000; dev_t.cyc_iaa = (latency + 1); dev_t.t_cez_r = t_cez * 1000; dev_t.t_cez_w = dev_t.t_cez_r; dev_t.cyc_aavdh_oe = 1; dev_t.t_rdyo = t_rdyo * 1000 + min_gpmc_clk_period; gpmc_calc_timings(t, &onenand_sync, &dev_t); } static int omap2_onenand_setup_async(void __iomem *onenand_base) { struct gpmc_timings t; int ret; if (gpmc_onenand_data->of_node) gpmc_read_settings_dt(gpmc_onenand_data->of_node, &onenand_async); omap2_onenand_set_async_mode(onenand_base); omap2_onenand_calc_async_timings(&t); ret = gpmc_cs_program_settings(gpmc_onenand_data->cs, &onenand_async); if (ret < 0) return ret; ret = gpmc_cs_set_timings(gpmc_onenand_data->cs, &t); if (ret < 0) return ret; omap2_onenand_set_async_mode(onenand_base); return 0; } static int omap2_onenand_setup_sync(void __iomem *onenand_base, int *freq_ptr) { int ret, freq = *freq_ptr; struct gpmc_timings t; if (!freq) { /* Very first call freq is not known */ freq = omap2_onenand_get_freq(gpmc_onenand_data, onenand_base); set_onenand_cfg(onenand_base); } if (gpmc_onenand_data->of_node) { gpmc_read_settings_dt(gpmc_onenand_data->of_node, &onenand_sync); } else { /* * FIXME: Appears to be legacy code from initial ONENAND commit. * Unclear what boards this is for and if this can be removed. */ if (!cpu_is_omap34xx()) onenand_sync.wait_on_read = true; } omap2_onenand_calc_sync_timings(&t, gpmc_onenand_data->flags, freq); ret = gpmc_cs_program_settings(gpmc_onenand_data->cs, &onenand_sync); if (ret < 0) return ret; ret = gpmc_cs_set_timings(gpmc_onenand_data->cs, &t); if (ret < 0) return ret; set_onenand_cfg(onenand_base); *freq_ptr = freq; return 0; } static int gpmc_onenand_setup(void __iomem *onenand_base, int *freq_ptr) { struct device *dev = &gpmc_onenand_device.dev; unsigned l = ONENAND_SYNC_READ | ONENAND_SYNC_READWRITE; int ret; ret = omap2_onenand_setup_async(onenand_base); if (ret) { dev_err(dev, "unable to set to async mode\n"); return ret; } if (!(gpmc_onenand_data->flags & l)) return 0; ret = omap2_onenand_setup_sync(onenand_base, freq_ptr); if (ret) dev_err(dev, "unable to set to sync mode\n"); return ret; } void gpmc_onenand_init(struct omap_onenand_platform_data *_onenand_data) { int err; struct device *dev = &gpmc_onenand_device.dev; gpmc_onenand_data = _onenand_data; gpmc_onenand_data->onenand_setup = gpmc_onenand_setup; gpmc_onenand_device.dev.platform_data = gpmc_onenand_data; if (cpu_is_omap24xx() && (gpmc_onenand_data->flags & ONENAND_SYNC_READWRITE)) { dev_warn(dev, "OneNAND using only SYNC_READ on 24xx\n"); gpmc_onenand_data->flags &= ~ONENAND_SYNC_READWRITE; gpmc_onenand_data->flags |= ONENAND_SYNC_READ; } if (cpu_is_omap34xx()) gpmc_onenand_data->flags |= ONENAND_IN_OMAP34XX; else gpmc_onenand_data->flags &= ~ONENAND_IN_OMAP34XX; err = gpmc_cs_request(gpmc_onenand_data->cs, ONENAND_IO_SIZE, (unsigned long *)&gpmc_onenand_resource.start); if (err < 0) { dev_err(dev, "Cannot request GPMC CS %d, error %d\n", gpmc_onenand_data->cs, err); return; } gpmc_onenand_resource.end = gpmc_onenand_resource.start + ONENAND_IO_SIZE - 1; if (platform_device_register(&gpmc_onenand_device) < 0) { dev_err(dev, "Unable to register OneNAND device\n"); gpmc_cs_free(gpmc_onenand_data->cs); return; } }