/* * arch/arm/mm/cache-tauros2.c - Tauros2 L2 cache controller support * * Copyright (C) 2008 Marvell Semiconductor * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. * * References: * - PJ1 CPU Core Datasheet, * Document ID MV-S104837-01, Rev 0.7, January 24 2008. * - PJ4 CPU Core Datasheet, * Document ID MV-S105190-00, Rev 0.7, March 14 2008. */ #include <linux/init.h> #include <linux/of.h> #include <linux/of_address.h> #include <asm/cacheflush.h> #include <asm/cp15.h> #include <asm/cputype.h> #include <asm/hardware/cache-tauros2.h> /* * When Tauros2 is used on a CPU that supports the v7 hierarchical * cache operations, the cache handling code in proc-v7.S takes care * of everything, including handling DMA coherency. * * So, we only need to register outer cache operations here if we're * being used on a pre-v7 CPU, and we only need to build support for * outer cache operations into the kernel image if the kernel has been * configured to support a pre-v7 CPU. */ #if __LINUX_ARM_ARCH__ < 7 /* * Low-level cache maintenance operations. */ static inline void tauros2_clean_pa(unsigned long addr) { __asm__("mcr p15, 1, %0, c7, c11, 3" : : "r" (addr)); } static inline void tauros2_clean_inv_pa(unsigned long addr) { __asm__("mcr p15, 1, %0, c7, c15, 3" : : "r" (addr)); } static inline void tauros2_inv_pa(unsigned long addr) { __asm__("mcr p15, 1, %0, c7, c7, 3" : : "r" (addr)); } /* * Linux primitives. * * Note that the end addresses passed to Linux primitives are * noninclusive. */ #define CACHE_LINE_SIZE 32 static void tauros2_inv_range(unsigned long start, unsigned long end) { /* * Clean and invalidate partial first cache line. */ if (start & (CACHE_LINE_SIZE - 1)) { tauros2_clean_inv_pa(start & ~(CACHE_LINE_SIZE - 1)); start = (start | (CACHE_LINE_SIZE - 1)) + 1; } /* * Clean and invalidate partial last cache line. */ if (end & (CACHE_LINE_SIZE - 1)) { tauros2_clean_inv_pa(end & ~(CACHE_LINE_SIZE - 1)); end &= ~(CACHE_LINE_SIZE - 1); } /* * Invalidate all full cache lines between 'start' and 'end'. */ while (start < end) { tauros2_inv_pa(start); start += CACHE_LINE_SIZE; } dsb(); } static void tauros2_clean_range(unsigned long start, unsigned long end) { start &= ~(CACHE_LINE_SIZE - 1); while (start < end) { tauros2_clean_pa(start); start += CACHE_LINE_SIZE; } dsb(); } static void tauros2_flush_range(unsigned long start, unsigned long end) { start &= ~(CACHE_LINE_SIZE - 1); while (start < end) { tauros2_clean_inv_pa(start); start += CACHE_LINE_SIZE; } dsb(); } static void tauros2_disable(void) { __asm__ __volatile__ ( "mcr p15, 1, %0, c7, c11, 0 @L2 Cache Clean All\n\t" "mrc p15, 0, %0, c1, c0, 0\n\t" "bic %0, %0, #(1 << 26)\n\t" "mcr p15, 0, %0, c1, c0, 0 @Disable L2 Cache\n\t" : : "r" (0x0)); } static void tauros2_resume(void) { __asm__ __volatile__ ( "mcr p15, 1, %0, c7, c7, 0 @L2 Cache Invalidate All\n\t" "mrc p15, 0, %0, c1, c0, 0\n\t" "orr %0, %0, #(1 << 26)\n\t" "mcr p15, 0, %0, c1, c0, 0 @Enable L2 Cache\n\t" : : "r" (0x0)); } #endif static inline u32 __init read_extra_features(void) { u32 u; __asm__("mrc p15, 1, %0, c15, c1, 0" : "=r" (u)); return u; } static inline void __init write_extra_features(u32 u) { __asm__("mcr p15, 1, %0, c15, c1, 0" : : "r" (u)); } static inline int __init cpuid_scheme(void) { return !!((processor_id & 0x000f0000) == 0x000f0000); } static inline u32 __init read_mmfr3(void) { u32 mmfr3; __asm__("mrc p15, 0, %0, c0, c1, 7\n" : "=r" (mmfr3)); return mmfr3; } static inline u32 __init read_actlr(void) { u32 actlr; __asm__("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr)); return actlr; } static inline void __init write_actlr(u32 actlr) { __asm__("mcr p15, 0, %0, c1, c0, 1\n" : : "r" (actlr)); } static void enable_extra_feature(unsigned int features) { u32 u; u = read_extra_features(); if (features & CACHE_TAUROS2_PREFETCH_ON) u &= ~0x01000000; else u |= 0x01000000; printk(KERN_INFO "Tauros2: %s L2 prefetch.\n", (features & CACHE_TAUROS2_PREFETCH_ON) ? "Enabling" : "Disabling"); if (features & CACHE_TAUROS2_LINEFILL_BURST8) u |= 0x00100000; else u &= ~0x00100000; printk(KERN_INFO "Tauros2: %s line fill burt8.\n", (features & CACHE_TAUROS2_LINEFILL_BURST8) ? "Enabling" : "Disabling"); write_extra_features(u); } static void __init tauros2_internal_init(unsigned int features) { char *mode = NULL; enable_extra_feature(features); #ifdef CONFIG_CPU_32v5 if ((processor_id & 0xff0f0000) == 0x56050000) { u32 feat; /* * v5 CPUs with Tauros2 have the L2 cache enable bit * located in the CPU Extra Features register. */ feat = read_extra_features(); if (!(feat & 0x00400000)) { printk(KERN_INFO "Tauros2: Enabling L2 cache.\n"); write_extra_features(feat | 0x00400000); } mode = "ARMv5"; outer_cache.inv_range = tauros2_inv_range; outer_cache.clean_range = tauros2_clean_range; outer_cache.flush_range = tauros2_flush_range; outer_cache.disable = tauros2_disable; outer_cache.resume = tauros2_resume; } #endif #ifdef CONFIG_CPU_32v6 /* * Check whether this CPU lacks support for the v7 hierarchical * cache ops. (PJ4 is in its v6 personality mode if the MMFR3 * register indicates no support for the v7 hierarchical cache * ops.) */ if (cpuid_scheme() && (read_mmfr3() & 0xf) == 0) { /* * When Tauros2 is used in an ARMv6 system, the L2 * enable bit is in the ARMv6 ARM-mandated position * (bit [26] of the System Control Register). */ if (!(get_cr() & 0x04000000)) { printk(KERN_INFO "Tauros2: Enabling L2 cache.\n"); adjust_cr(0x04000000, 0x04000000); } mode = "ARMv6"; outer_cache.inv_range = tauros2_inv_range; outer_cache.clean_range = tauros2_clean_range; outer_cache.flush_range = tauros2_flush_range; outer_cache.disable = tauros2_disable; outer_cache.resume = tauros2_resume; } #endif #ifdef CONFIG_CPU_32v7 /* * Check whether this CPU has support for the v7 hierarchical * cache ops. (PJ4 is in its v7 personality mode if the MMFR3 * register indicates support for the v7 hierarchical cache * ops.) * * (Although strictly speaking there may exist CPUs that * implement the v7 cache ops but are only ARMv6 CPUs (due to * not complying with all of the other ARMv7 requirements), * there are no real-life examples of Tauros2 being used on * such CPUs as of yet.) */ if (cpuid_scheme() && (read_mmfr3() & 0xf) == 1) { u32 actlr; /* * When Tauros2 is used in an ARMv7 system, the L2 * enable bit is located in the Auxiliary System Control * Register (which is the only register allowed by the * ARMv7 spec to contain fine-grained cache control bits). */ actlr = read_actlr(); if (!(actlr & 0x00000002)) { printk(KERN_INFO "Tauros2: Enabling L2 cache.\n"); write_actlr(actlr | 0x00000002); } mode = "ARMv7"; } #endif if (mode == NULL) { printk(KERN_CRIT "Tauros2: Unable to detect CPU mode.\n"); return; } printk(KERN_INFO "Tauros2: L2 cache support initialised " "in %s mode.\n", mode); } #ifdef CONFIG_OF static const struct of_device_id tauros2_ids[] __initconst = { { .compatible = "marvell,tauros2-cache"}, {} }; #endif void __init tauros2_init(unsigned int features) { #ifdef CONFIG_OF struct device_node *node; int ret; unsigned int f; node = of_find_matching_node(NULL, tauros2_ids); if (!node) { pr_info("Not found marvell,tauros2-cache, disable it\n"); return; } ret = of_property_read_u32(node, "marvell,tauros2-cache-features", &f); if (ret) { pr_info("Not found marvell,tauros-cache-features property, " "disable extra features\n"); features = 0; } else features = f; #endif tauros2_internal_init(features); }