/* * Just-In-Time compiler for BPF filters on 32bit ARM * * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; version 2 of the License. */ #include <linux/bitops.h> #include <linux/compiler.h> #include <linux/errno.h> #include <linux/filter.h> #include <linux/moduleloader.h> #include <linux/netdevice.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/if_vlan.h> #include <asm/cacheflush.h> #include <asm/hwcap.h> #include "bpf_jit_32.h" /* * ABI: * * r0 scratch register * r4 BPF register A * r5 BPF register X * r6 pointer to the skb * r7 skb->data * r8 skb_headlen(skb) */ #define r_scratch ARM_R0 /* r1-r3 are (also) used for the unaligned loads on the non-ARMv7 slowpath */ #define r_off ARM_R1 #define r_A ARM_R4 #define r_X ARM_R5 #define r_skb ARM_R6 #define r_skb_data ARM_R7 #define r_skb_hl ARM_R8 #define SCRATCH_SP_OFFSET 0 #define SCRATCH_OFF(k) (SCRATCH_SP_OFFSET + 4 * (k)) #define SEEN_MEM ((1 << BPF_MEMWORDS) - 1) #define SEEN_MEM_WORD(k) (1 << (k)) #define SEEN_X (1 << BPF_MEMWORDS) #define SEEN_CALL (1 << (BPF_MEMWORDS + 1)) #define SEEN_SKB (1 << (BPF_MEMWORDS + 2)) #define SEEN_DATA (1 << (BPF_MEMWORDS + 3)) #define FLAG_NEED_X_RESET (1 << 0) struct jit_ctx { const struct sk_filter *skf; unsigned idx; unsigned prologue_bytes; int ret0_fp_idx; u32 seen; u32 flags; u32 *offsets; u32 *target; #if __LINUX_ARM_ARCH__ < 7 u16 epilogue_bytes; u16 imm_count; u32 *imms; #endif }; int bpf_jit_enable __read_mostly; static u64 jit_get_skb_b(struct sk_buff *skb, unsigned offset) { u8 ret; int err; err = skb_copy_bits(skb, offset, &ret, 1); return (u64)err << 32 | ret; } static u64 jit_get_skb_h(struct sk_buff *skb, unsigned offset) { u16 ret; int err; err = skb_copy_bits(skb, offset, &ret, 2); return (u64)err << 32 | ntohs(ret); } static u64 jit_get_skb_w(struct sk_buff *skb, unsigned offset) { u32 ret; int err; err = skb_copy_bits(skb, offset, &ret, 4); return (u64)err << 32 | ntohl(ret); } /* * Wrapper that handles both OABI and EABI and assures Thumb2 interworking * (where the assembly routines like __aeabi_uidiv could cause problems). */ static u32 jit_udiv(u32 dividend, u32 divisor) { return dividend / divisor; } static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx) { if (ctx->target != NULL) ctx->target[ctx->idx] = inst | (cond << 28); ctx->idx++; } /* * Emit an instruction that will be executed unconditionally. */ static inline void emit(u32 inst, struct jit_ctx *ctx) { _emit(ARM_COND_AL, inst, ctx); } static u16 saved_regs(struct jit_ctx *ctx) { u16 ret = 0; if ((ctx->skf->len > 1) || (ctx->skf->insns[0].code == BPF_S_RET_A)) ret |= 1 << r_A; #ifdef CONFIG_FRAME_POINTER ret |= (1 << ARM_FP) | (1 << ARM_IP) | (1 << ARM_LR) | (1 << ARM_PC); #else if (ctx->seen & SEEN_CALL) ret |= 1 << ARM_LR; #endif if (ctx->seen & (SEEN_DATA | SEEN_SKB)) ret |= 1 << r_skb; if (ctx->seen & SEEN_DATA) ret |= (1 << r_skb_data) | (1 << r_skb_hl); if (ctx->seen & SEEN_X) ret |= 1 << r_X; return ret; } static inline int mem_words_used(struct jit_ctx *ctx) { /* yes, we do waste some stack space IF there are "holes" in the set" */ return fls(ctx->seen & SEEN_MEM); } static inline bool is_load_to_a(u16 inst) { switch (inst) { case BPF_S_LD_W_LEN: case BPF_S_LD_W_ABS: case BPF_S_LD_H_ABS: case BPF_S_LD_B_ABS: case BPF_S_ANC_CPU: case BPF_S_ANC_IFINDEX: case BPF_S_ANC_MARK: case BPF_S_ANC_PROTOCOL: case BPF_S_ANC_RXHASH: case BPF_S_ANC_VLAN_TAG: case BPF_S_ANC_VLAN_TAG_PRESENT: case BPF_S_ANC_QUEUE: return true; default: return false; } } static void build_prologue(struct jit_ctx *ctx) { u16 reg_set = saved_regs(ctx); u16 first_inst = ctx->skf->insns[0].code; u16 off; #ifdef CONFIG_FRAME_POINTER emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx); emit(ARM_PUSH(reg_set), ctx); emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx); #else if (reg_set) emit(ARM_PUSH(reg_set), ctx); #endif if (ctx->seen & (SEEN_DATA | SEEN_SKB)) emit(ARM_MOV_R(r_skb, ARM_R0), ctx); if (ctx->seen & SEEN_DATA) { off = offsetof(struct sk_buff, data); emit(ARM_LDR_I(r_skb_data, r_skb, off), ctx); /* headlen = len - data_len */ off = offsetof(struct sk_buff, len); emit(ARM_LDR_I(r_skb_hl, r_skb, off), ctx); off = offsetof(struct sk_buff, data_len); emit(ARM_LDR_I(r_scratch, r_skb, off), ctx); emit(ARM_SUB_R(r_skb_hl, r_skb_hl, r_scratch), ctx); } if (ctx->flags & FLAG_NEED_X_RESET) emit(ARM_MOV_I(r_X, 0), ctx); /* do not leak kernel data to userspace */ if ((first_inst != BPF_S_RET_K) && !(is_load_to_a(first_inst))) emit(ARM_MOV_I(r_A, 0), ctx); /* stack space for the BPF_MEM words */ if (ctx->seen & SEEN_MEM) emit(ARM_SUB_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx); } static void build_epilogue(struct jit_ctx *ctx) { u16 reg_set = saved_regs(ctx); if (ctx->seen & SEEN_MEM) emit(ARM_ADD_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx); reg_set &= ~(1 << ARM_LR); #ifdef CONFIG_FRAME_POINTER /* the first instruction of the prologue was: mov ip, sp */ reg_set &= ~(1 << ARM_IP); reg_set |= (1 << ARM_SP); emit(ARM_LDM(ARM_SP, reg_set), ctx); #else if (reg_set) { if (ctx->seen & SEEN_CALL) reg_set |= 1 << ARM_PC; emit(ARM_POP(reg_set), ctx); } if (!(ctx->seen & SEEN_CALL)) emit(ARM_BX(ARM_LR), ctx); #endif } static int16_t imm8m(u32 x) { u32 rot; for (rot = 0; rot < 16; rot++) if ((x & ~ror32(0xff, 2 * rot)) == 0) return rol32(x, 2 * rot) | (rot << 8); return -1; } #if __LINUX_ARM_ARCH__ < 7 static u16 imm_offset(u32 k, struct jit_ctx *ctx) { unsigned i = 0, offset; u16 imm; /* on the "fake" run we just count them (duplicates included) */ if (ctx->target == NULL) { ctx->imm_count++; return 0; } while ((i < ctx->imm_count) && ctx->imms[i]) { if (ctx->imms[i] == k) break; i++; } if (ctx->imms[i] == 0) ctx->imms[i] = k; /* constants go just after the epilogue */ offset = ctx->offsets[ctx->skf->len]; offset += ctx->prologue_bytes; offset += ctx->epilogue_bytes; offset += i * 4; ctx->target[offset / 4] = k; /* PC in ARM mode == address of the instruction + 8 */ imm = offset - (8 + ctx->idx * 4); return imm; } #endif /* __LINUX_ARM_ARCH__ */ /* * Move an immediate that's not an imm8m to a core register. */ static inline void emit_mov_i_no8m(int rd, u32 val, struct jit_ctx *ctx) { #if __LINUX_ARM_ARCH__ < 7 emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx); #else emit(ARM_MOVW(rd, val & 0xffff), ctx); if (val > 0xffff) emit(ARM_MOVT(rd, val >> 16), ctx); #endif } static inline void emit_mov_i(int rd, u32 val, struct jit_ctx *ctx) { int imm12 = imm8m(val); if (imm12 >= 0) emit(ARM_MOV_I(rd, imm12), ctx); else emit_mov_i_no8m(rd, val, ctx); } #if __LINUX_ARM_ARCH__ < 6 static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx) { _emit(cond, ARM_LDRB_I(ARM_R3, r_addr, 1), ctx); _emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx); _emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 3), ctx); _emit(cond, ARM_LSL_I(ARM_R3, ARM_R3, 16), ctx); _emit(cond, ARM_LDRB_I(ARM_R0, r_addr, 2), ctx); _emit(cond, ARM_ORR_S(ARM_R3, ARM_R3, ARM_R1, SRTYPE_LSL, 24), ctx); _emit(cond, ARM_ORR_R(ARM_R3, ARM_R3, ARM_R2), ctx); _emit(cond, ARM_ORR_S(r_res, ARM_R3, ARM_R0, SRTYPE_LSL, 8), ctx); } static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx) { _emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx); _emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 1), ctx); _emit(cond, ARM_ORR_S(r_res, ARM_R2, ARM_R1, SRTYPE_LSL, 8), ctx); } static inline void emit_swap16(u8 r_dst, u8 r_src, struct jit_ctx *ctx) { /* r_dst = (r_src << 8) | (r_src >> 8) */ emit(ARM_LSL_I(ARM_R1, r_src, 8), ctx); emit(ARM_ORR_S(r_dst, ARM_R1, r_src, SRTYPE_LSR, 8), ctx); /* * we need to mask out the bits set in r_dst[23:16] due to * the first shift instruction. * * note that 0x8ff is the encoded immediate 0x00ff0000. */ emit(ARM_BIC_I(r_dst, r_dst, 0x8ff), ctx); } #else /* ARMv6+ */ static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx) { _emit(cond, ARM_LDR_I(r_res, r_addr, 0), ctx); #ifdef __LITTLE_ENDIAN _emit(cond, ARM_REV(r_res, r_res), ctx); #endif } static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx) { _emit(cond, ARM_LDRH_I(r_res, r_addr, 0), ctx); #ifdef __LITTLE_ENDIAN _emit(cond, ARM_REV16(r_res, r_res), ctx); #endif } static inline void emit_swap16(u8 r_dst __maybe_unused, u8 r_src __maybe_unused, struct jit_ctx *ctx __maybe_unused) { #ifdef __LITTLE_ENDIAN emit(ARM_REV16(r_dst, r_src), ctx); #endif } #endif /* __LINUX_ARM_ARCH__ < 6 */ /* Compute the immediate value for a PC-relative branch. */ static inline u32 b_imm(unsigned tgt, struct jit_ctx *ctx) { u32 imm; if (ctx->target == NULL) return 0; /* * BPF allows only forward jumps and the offset of the target is * still the one computed during the first pass. */ imm = ctx->offsets[tgt] + ctx->prologue_bytes - (ctx->idx * 4 + 8); return imm >> 2; } #define OP_IMM3(op, r1, r2, imm_val, ctx) \ do { \ imm12 = imm8m(imm_val); \ if (imm12 < 0) { \ emit_mov_i_no8m(r_scratch, imm_val, ctx); \ emit(op ## _R((r1), (r2), r_scratch), ctx); \ } else { \ emit(op ## _I((r1), (r2), imm12), ctx); \ } \ } while (0) static inline void emit_err_ret(u8 cond, struct jit_ctx *ctx) { if (ctx->ret0_fp_idx >= 0) { _emit(cond, ARM_B(b_imm(ctx->ret0_fp_idx, ctx)), ctx); /* NOP to keep the size constant between passes */ emit(ARM_MOV_R(ARM_R0, ARM_R0), ctx); } else { _emit(cond, ARM_MOV_I(ARM_R0, 0), ctx); _emit(cond, ARM_B(b_imm(ctx->skf->len, ctx)), ctx); } } static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx) { #if __LINUX_ARM_ARCH__ < 5 emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx); if (elf_hwcap & HWCAP_THUMB) emit(ARM_BX(tgt_reg), ctx); else emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx); #else emit(ARM_BLX_R(tgt_reg), ctx); #endif } static inline void emit_udiv(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx) { #if __LINUX_ARM_ARCH__ == 7 if (elf_hwcap & HWCAP_IDIVA) { emit(ARM_UDIV(rd, rm, rn), ctx); return; } #endif if (rm != ARM_R0) emit(ARM_MOV_R(ARM_R0, rm), ctx); if (rn != ARM_R1) emit(ARM_MOV_R(ARM_R1, rn), ctx); ctx->seen |= SEEN_CALL; emit_mov_i(ARM_R3, (u32)jit_udiv, ctx); emit_blx_r(ARM_R3, ctx); if (rd != ARM_R0) emit(ARM_MOV_R(rd, ARM_R0), ctx); } static inline void update_on_xread(struct jit_ctx *ctx) { if (!(ctx->seen & SEEN_X)) ctx->flags |= FLAG_NEED_X_RESET; ctx->seen |= SEEN_X; } static int build_body(struct jit_ctx *ctx) { void *load_func[] = {jit_get_skb_b, jit_get_skb_h, jit_get_skb_w}; const struct sk_filter *prog = ctx->skf; const struct sock_filter *inst; unsigned i, load_order, off, condt; int imm12; u32 k; for (i = 0; i < prog->len; i++) { inst = &(prog->insns[i]); /* K as an immediate value operand */ k = inst->k; /* compute offsets only in the fake pass */ if (ctx->target == NULL) ctx->offsets[i] = ctx->idx * 4; switch (inst->code) { case BPF_S_LD_IMM: emit_mov_i(r_A, k, ctx); break; case BPF_S_LD_W_LEN: ctx->seen |= SEEN_SKB; BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4); emit(ARM_LDR_I(r_A, r_skb, offsetof(struct sk_buff, len)), ctx); break; case BPF_S_LD_MEM: /* A = scratch[k] */ ctx->seen |= SEEN_MEM_WORD(k); emit(ARM_LDR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx); break; case BPF_S_LD_W_ABS: load_order = 2; goto load; case BPF_S_LD_H_ABS: load_order = 1; goto load; case BPF_S_LD_B_ABS: load_order = 0; load: /* the interpreter will deal with the negative K */ if ((int)k < 0) return -ENOTSUPP; emit_mov_i(r_off, k, ctx); load_common: ctx->seen |= SEEN_DATA | SEEN_CALL; if (load_order > 0) { emit(ARM_SUB_I(r_scratch, r_skb_hl, 1 << load_order), ctx); emit(ARM_CMP_R(r_scratch, r_off), ctx); condt = ARM_COND_HS; } else { emit(ARM_CMP_R(r_skb_hl, r_off), ctx); condt = ARM_COND_HI; } _emit(condt, ARM_ADD_R(r_scratch, r_off, r_skb_data), ctx); if (load_order == 0) _emit(condt, ARM_LDRB_I(r_A, r_scratch, 0), ctx); else if (load_order == 1) emit_load_be16(condt, r_A, r_scratch, ctx); else if (load_order == 2) emit_load_be32(condt, r_A, r_scratch, ctx); _emit(condt, ARM_B(b_imm(i + 1, ctx)), ctx); /* the slowpath */ emit_mov_i(ARM_R3, (u32)load_func[load_order], ctx); emit(ARM_MOV_R(ARM_R0, r_skb), ctx); /* the offset is already in R1 */ emit_blx_r(ARM_R3, ctx); /* check the result of skb_copy_bits */ emit(ARM_CMP_I(ARM_R1, 0), ctx); emit_err_ret(ARM_COND_NE, ctx); emit(ARM_MOV_R(r_A, ARM_R0), ctx); break; case BPF_S_LD_W_IND: load_order = 2; goto load_ind; case BPF_S_LD_H_IND: load_order = 1; goto load_ind; case BPF_S_LD_B_IND: load_order = 0; load_ind: OP_IMM3(ARM_ADD, r_off, r_X, k, ctx); goto load_common; case BPF_S_LDX_IMM: ctx->seen |= SEEN_X; emit_mov_i(r_X, k, ctx); break; case BPF_S_LDX_W_LEN: ctx->seen |= SEEN_X | SEEN_SKB; emit(ARM_LDR_I(r_X, r_skb, offsetof(struct sk_buff, len)), ctx); break; case BPF_S_LDX_MEM: ctx->seen |= SEEN_X | SEEN_MEM_WORD(k); emit(ARM_LDR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx); break; case BPF_S_LDX_B_MSH: /* x = ((*(frame + k)) & 0xf) << 2; */ ctx->seen |= SEEN_X | SEEN_DATA | SEEN_CALL; /* the interpreter should deal with the negative K */ if ((int)k < 0) return -1; /* offset in r1: we might have to take the slow path */ emit_mov_i(r_off, k, ctx); emit(ARM_CMP_R(r_skb_hl, r_off), ctx); /* load in r0: common with the slowpath */ _emit(ARM_COND_HI, ARM_LDRB_R(ARM_R0, r_skb_data, ARM_R1), ctx); /* * emit_mov_i() might generate one or two instructions, * the same holds for emit_blx_r() */ _emit(ARM_COND_HI, ARM_B(b_imm(i + 1, ctx) - 2), ctx); emit(ARM_MOV_R(ARM_R0, r_skb), ctx); /* r_off is r1 */ emit_mov_i(ARM_R3, (u32)jit_get_skb_b, ctx); emit_blx_r(ARM_R3, ctx); /* check the return value of skb_copy_bits */ emit(ARM_CMP_I(ARM_R1, 0), ctx); emit_err_ret(ARM_COND_NE, ctx); emit(ARM_AND_I(r_X, ARM_R0, 0x00f), ctx); emit(ARM_LSL_I(r_X, r_X, 2), ctx); break; case BPF_S_ST: ctx->seen |= SEEN_MEM_WORD(k); emit(ARM_STR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx); break; case BPF_S_STX: update_on_xread(ctx); ctx->seen |= SEEN_MEM_WORD(k); emit(ARM_STR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx); break; case BPF_S_ALU_ADD_K: /* A += K */ OP_IMM3(ARM_ADD, r_A, r_A, k, ctx); break; case BPF_S_ALU_ADD_X: update_on_xread(ctx); emit(ARM_ADD_R(r_A, r_A, r_X), ctx); break; case BPF_S_ALU_SUB_K: /* A -= K */ OP_IMM3(ARM_SUB, r_A, r_A, k, ctx); break; case BPF_S_ALU_SUB_X: update_on_xread(ctx); emit(ARM_SUB_R(r_A, r_A, r_X), ctx); break; case BPF_S_ALU_MUL_K: /* A *= K */ emit_mov_i(r_scratch, k, ctx); emit(ARM_MUL(r_A, r_A, r_scratch), ctx); break; case BPF_S_ALU_MUL_X: update_on_xread(ctx); emit(ARM_MUL(r_A, r_A, r_X), ctx); break; case BPF_S_ALU_DIV_K: /* current k == reciprocal_value(userspace k) */ emit_mov_i(r_scratch, k, ctx); /* A = top 32 bits of the product */ emit(ARM_UMULL(r_scratch, r_A, r_A, r_scratch), ctx); break; case BPF_S_ALU_DIV_X: update_on_xread(ctx); emit(ARM_CMP_I(r_X, 0), ctx); emit_err_ret(ARM_COND_EQ, ctx); emit_udiv(r_A, r_A, r_X, ctx); break; case BPF_S_ALU_OR_K: /* A |= K */ OP_IMM3(ARM_ORR, r_A, r_A, k, ctx); break; case BPF_S_ALU_OR_X: update_on_xread(ctx); emit(ARM_ORR_R(r_A, r_A, r_X), ctx); break; case BPF_S_ALU_XOR_K: /* A ^= K; */ OP_IMM3(ARM_EOR, r_A, r_A, k, ctx); break; case BPF_S_ANC_ALU_XOR_X: case BPF_S_ALU_XOR_X: /* A ^= X */ update_on_xread(ctx); emit(ARM_EOR_R(r_A, r_A, r_X), ctx); break; case BPF_S_ALU_AND_K: /* A &= K */ OP_IMM3(ARM_AND, r_A, r_A, k, ctx); break; case BPF_S_ALU_AND_X: update_on_xread(ctx); emit(ARM_AND_R(r_A, r_A, r_X), ctx); break; case BPF_S_ALU_LSH_K: if (unlikely(k > 31)) return -1; emit(ARM_LSL_I(r_A, r_A, k), ctx); break; case BPF_S_ALU_LSH_X: update_on_xread(ctx); emit(ARM_LSL_R(r_A, r_A, r_X), ctx); break; case BPF_S_ALU_RSH_K: if (unlikely(k > 31)) return -1; emit(ARM_LSR_I(r_A, r_A, k), ctx); break; case BPF_S_ALU_RSH_X: update_on_xread(ctx); emit(ARM_LSR_R(r_A, r_A, r_X), ctx); break; case BPF_S_ALU_NEG: /* A = -A */ emit(ARM_RSB_I(r_A, r_A, 0), ctx); break; case BPF_S_JMP_JA: /* pc += K */ emit(ARM_B(b_imm(i + k + 1, ctx)), ctx); break; case BPF_S_JMP_JEQ_K: /* pc += (A == K) ? pc->jt : pc->jf */ condt = ARM_COND_EQ; goto cmp_imm; case BPF_S_JMP_JGT_K: /* pc += (A > K) ? pc->jt : pc->jf */ condt = ARM_COND_HI; goto cmp_imm; case BPF_S_JMP_JGE_K: /* pc += (A >= K) ? pc->jt : pc->jf */ condt = ARM_COND_HS; cmp_imm: imm12 = imm8m(k); if (imm12 < 0) { emit_mov_i_no8m(r_scratch, k, ctx); emit(ARM_CMP_R(r_A, r_scratch), ctx); } else { emit(ARM_CMP_I(r_A, imm12), ctx); } cond_jump: if (inst->jt) _emit(condt, ARM_B(b_imm(i + inst->jt + 1, ctx)), ctx); if (inst->jf) _emit(condt ^ 1, ARM_B(b_imm(i + inst->jf + 1, ctx)), ctx); break; case BPF_S_JMP_JEQ_X: /* pc += (A == X) ? pc->jt : pc->jf */ condt = ARM_COND_EQ; goto cmp_x; case BPF_S_JMP_JGT_X: /* pc += (A > X) ? pc->jt : pc->jf */ condt = ARM_COND_HI; goto cmp_x; case BPF_S_JMP_JGE_X: /* pc += (A >= X) ? pc->jt : pc->jf */ condt = ARM_COND_CS; cmp_x: update_on_xread(ctx); emit(ARM_CMP_R(r_A, r_X), ctx); goto cond_jump; case BPF_S_JMP_JSET_K: /* pc += (A & K) ? pc->jt : pc->jf */ condt = ARM_COND_NE; /* not set iff all zeroes iff Z==1 iff EQ */ imm12 = imm8m(k); if (imm12 < 0) { emit_mov_i_no8m(r_scratch, k, ctx); emit(ARM_TST_R(r_A, r_scratch), ctx); } else { emit(ARM_TST_I(r_A, imm12), ctx); } goto cond_jump; case BPF_S_JMP_JSET_X: /* pc += (A & X) ? pc->jt : pc->jf */ update_on_xread(ctx); condt = ARM_COND_NE; emit(ARM_TST_R(r_A, r_X), ctx); goto cond_jump; case BPF_S_RET_A: emit(ARM_MOV_R(ARM_R0, r_A), ctx); goto b_epilogue; case BPF_S_RET_K: if ((k == 0) && (ctx->ret0_fp_idx < 0)) ctx->ret0_fp_idx = i; emit_mov_i(ARM_R0, k, ctx); b_epilogue: if (i != ctx->skf->len - 1) emit(ARM_B(b_imm(prog->len, ctx)), ctx); break; case BPF_S_MISC_TAX: /* X = A */ ctx->seen |= SEEN_X; emit(ARM_MOV_R(r_X, r_A), ctx); break; case BPF_S_MISC_TXA: /* A = X */ update_on_xread(ctx); emit(ARM_MOV_R(r_A, r_X), ctx); break; case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol) */ ctx->seen |= SEEN_SKB; BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2); off = offsetof(struct sk_buff, protocol); emit(ARM_LDRH_I(r_scratch, r_skb, off), ctx); emit_swap16(r_A, r_scratch, ctx); break; case BPF_S_ANC_CPU: /* r_scratch = current_thread_info() */ OP_IMM3(ARM_BIC, r_scratch, ARM_SP, THREAD_SIZE - 1, ctx); /* A = current_thread_info()->cpu */ BUILD_BUG_ON(FIELD_SIZEOF(struct thread_info, cpu) != 4); off = offsetof(struct thread_info, cpu); emit(ARM_LDR_I(r_A, r_scratch, off), ctx); break; case BPF_S_ANC_IFINDEX: /* A = skb->dev->ifindex */ ctx->seen |= SEEN_SKB; off = offsetof(struct sk_buff, dev); emit(ARM_LDR_I(r_scratch, r_skb, off), ctx); emit(ARM_CMP_I(r_scratch, 0), ctx); emit_err_ret(ARM_COND_EQ, ctx); BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4); off = offsetof(struct net_device, ifindex); emit(ARM_LDR_I(r_A, r_scratch, off), ctx); break; case BPF_S_ANC_MARK: ctx->seen |= SEEN_SKB; BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4); off = offsetof(struct sk_buff, mark); emit(ARM_LDR_I(r_A, r_skb, off), ctx); break; case BPF_S_ANC_RXHASH: ctx->seen |= SEEN_SKB; BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4); off = offsetof(struct sk_buff, rxhash); emit(ARM_LDR_I(r_A, r_skb, off), ctx); break; case BPF_S_ANC_VLAN_TAG: case BPF_S_ANC_VLAN_TAG_PRESENT: ctx->seen |= SEEN_SKB; BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2); off = offsetof(struct sk_buff, vlan_tci); emit(ARM_LDRH_I(r_A, r_skb, off), ctx); if (inst->code == BPF_S_ANC_VLAN_TAG) OP_IMM3(ARM_AND, r_A, r_A, VLAN_VID_MASK, ctx); else OP_IMM3(ARM_AND, r_A, r_A, VLAN_TAG_PRESENT, ctx); break; case BPF_S_ANC_QUEUE: ctx->seen |= SEEN_SKB; BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2); BUILD_BUG_ON(offsetof(struct sk_buff, queue_mapping) > 0xff); off = offsetof(struct sk_buff, queue_mapping); emit(ARM_LDRH_I(r_A, r_skb, off), ctx); break; default: return -1; } } /* compute offsets only during the first pass */ if (ctx->target == NULL) ctx->offsets[i] = ctx->idx * 4; return 0; } void bpf_jit_compile(struct sk_filter *fp) { struct jit_ctx ctx; unsigned tmp_idx; unsigned alloc_size; if (!bpf_jit_enable) return; memset(&ctx, 0, sizeof(ctx)); ctx.skf = fp; ctx.ret0_fp_idx = -1; ctx.offsets = kzalloc(4 * (ctx.skf->len + 1), GFP_KERNEL); if (ctx.offsets == NULL) return; /* fake pass to fill in the ctx->seen */ if (unlikely(build_body(&ctx))) goto out; tmp_idx = ctx.idx; build_prologue(&ctx); ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4; #if __LINUX_ARM_ARCH__ < 7 tmp_idx = ctx.idx; build_epilogue(&ctx); ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4; ctx.idx += ctx.imm_count; if (ctx.imm_count) { ctx.imms = kzalloc(4 * ctx.imm_count, GFP_KERNEL); if (ctx.imms == NULL) goto out; } #else /* there's nothing after the epilogue on ARMv7 */ build_epilogue(&ctx); #endif alloc_size = 4 * ctx.idx; ctx.target = module_alloc(max(sizeof(struct work_struct), alloc_size)); if (unlikely(ctx.target == NULL)) goto out; ctx.idx = 0; build_prologue(&ctx); build_body(&ctx); build_epilogue(&ctx); flush_icache_range((u32)ctx.target, (u32)(ctx.target + ctx.idx)); #if __LINUX_ARM_ARCH__ < 7 if (ctx.imm_count) kfree(ctx.imms); #endif if (bpf_jit_enable > 1) /* there are 2 passes here */ bpf_jit_dump(fp->len, alloc_size, 2, ctx.target); fp->bpf_func = (void *)ctx.target; out: kfree(ctx.offsets); return; } static void bpf_jit_free_worker(struct work_struct *work) { module_free(NULL, work); } void bpf_jit_free(struct sk_filter *fp) { struct work_struct *work; if (fp->bpf_func != sk_run_filter) { work = (struct work_struct *)fp->bpf_func; INIT_WORK(work, bpf_jit_free_worker); schedule_work(work); } }