/* * VDSO implementation for AArch64 and vector page setup for AArch32. * * Copyright (C) 2012 ARM Limited * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * * Author: Will Deacon <will.deacon@arm.com> */ #include <linux/kernel.h> #include <linux/clocksource.h> #include <linux/elf.h> #include <linux/err.h> #include <linux/errno.h> #include <linux/gfp.h> #include <linux/mm.h> #include <linux/sched.h> #include <linux/signal.h> #include <linux/slab.h> #include <linux/timekeeper_internal.h> #include <linux/vmalloc.h> #include <asm/cacheflush.h> #include <asm/signal32.h> #include <asm/vdso.h> #include <asm/vdso_datapage.h> extern char vdso_start, vdso_end; static unsigned long vdso_pages; static struct page **vdso_pagelist; /* * The vDSO data page. */ static union { struct vdso_data data; u8 page[PAGE_SIZE]; } vdso_data_store __page_aligned_data; struct vdso_data *vdso_data = &vdso_data_store.data; #ifdef CONFIG_COMPAT /* * Create and map the vectors page for AArch32 tasks. */ static struct page *vectors_page[1]; static int alloc_vectors_page(void) { extern char __kuser_helper_start[], __kuser_helper_end[]; int kuser_sz = __kuser_helper_end - __kuser_helper_start; unsigned long vpage; vpage = get_zeroed_page(GFP_ATOMIC); if (!vpage) return -ENOMEM; /* kuser helpers */ memcpy((void *)vpage + 0x1000 - kuser_sz, __kuser_helper_start, kuser_sz); /* sigreturn code */ memcpy((void *)vpage + AARCH32_KERN_SIGRET_CODE_OFFSET, aarch32_sigret_code, sizeof(aarch32_sigret_code)); flush_icache_range(vpage, vpage + PAGE_SIZE); vectors_page[0] = virt_to_page(vpage); return 0; } arch_initcall(alloc_vectors_page); int aarch32_setup_vectors_page(struct linux_binprm *bprm, int uses_interp) { struct mm_struct *mm = current->mm; unsigned long addr = AARCH32_VECTORS_BASE; int ret; down_write(&mm->mmap_sem); current->mm->context.vdso = (void *)addr; /* Map vectors page at the high address. */ ret = install_special_mapping(mm, addr, PAGE_SIZE, VM_READ|VM_EXEC|VM_MAYREAD|VM_MAYEXEC, vectors_page); up_write(&mm->mmap_sem); return ret; } #endif /* CONFIG_COMPAT */ static int __init vdso_init(void) { struct page *pg; char *vbase; int i, ret = 0; vdso_pages = (&vdso_end - &vdso_start) >> PAGE_SHIFT; pr_info("vdso: %ld pages (%ld code, %ld data) at base %p\n", vdso_pages + 1, vdso_pages, 1L, &vdso_start); /* Allocate the vDSO pagelist, plus a page for the data. */ vdso_pagelist = kzalloc(sizeof(struct page *) * (vdso_pages + 1), GFP_KERNEL); if (vdso_pagelist == NULL) { pr_err("Failed to allocate vDSO pagelist!\n"); return -ENOMEM; } /* Grab the vDSO code pages. */ for (i = 0; i < vdso_pages; i++) { pg = virt_to_page(&vdso_start + i*PAGE_SIZE); ClearPageReserved(pg); get_page(pg); vdso_pagelist[i] = pg; } /* Sanity check the shared object header. */ vbase = vmap(vdso_pagelist, 1, 0, PAGE_KERNEL); if (vbase == NULL) { pr_err("Failed to map vDSO pagelist!\n"); return -ENOMEM; } else if (memcmp(vbase, "\177ELF", 4)) { pr_err("vDSO is not a valid ELF object!\n"); ret = -EINVAL; goto unmap; } /* Grab the vDSO data page. */ pg = virt_to_page(vdso_data); get_page(pg); vdso_pagelist[i] = pg; unmap: vunmap(vbase); return ret; } arch_initcall(vdso_init); int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp) { struct mm_struct *mm = current->mm; unsigned long vdso_base, vdso_mapping_len; int ret; /* Be sure to map the data page */ vdso_mapping_len = (vdso_pages + 1) << PAGE_SHIFT; down_write(&mm->mmap_sem); vdso_base = get_unmapped_area(NULL, 0, vdso_mapping_len, 0, 0); if (IS_ERR_VALUE(vdso_base)) { ret = vdso_base; goto up_fail; } mm->context.vdso = (void *)vdso_base; ret = install_special_mapping(mm, vdso_base, vdso_mapping_len, VM_READ|VM_EXEC| VM_MAYREAD|VM_MAYWRITE|VM_MAYEXEC, vdso_pagelist); if (ret) { mm->context.vdso = NULL; goto up_fail; } up_fail: up_write(&mm->mmap_sem); return ret; } const char *arch_vma_name(struct vm_area_struct *vma) { /* * We can re-use the vdso pointer in mm_context_t for identifying * the vectors page for compat applications. The vDSO will always * sit above TASK_UNMAPPED_BASE and so we don't need to worry about * it conflicting with the vectors base. */ if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso) { #ifdef CONFIG_COMPAT if (vma->vm_start == AARCH32_VECTORS_BASE) return "[vectors]"; #endif return "[vdso]"; } return NULL; } /* * We define AT_SYSINFO_EHDR, so we need these function stubs to keep * Linux happy. */ int in_gate_area_no_mm(unsigned long addr) { return 0; } int in_gate_area(struct mm_struct *mm, unsigned long addr) { return 0; } struct vm_area_struct *get_gate_vma(struct mm_struct *mm) { return NULL; } /* * Update the vDSO data page to keep in sync with kernel timekeeping. */ void update_vsyscall(struct timekeeper *tk) { struct timespec xtime_coarse; u32 use_syscall = strcmp(tk->clock->name, "arch_sys_counter"); ++vdso_data->tb_seq_count; smp_wmb(); xtime_coarse = __current_kernel_time(); vdso_data->use_syscall = use_syscall; vdso_data->xtime_coarse_sec = xtime_coarse.tv_sec; vdso_data->xtime_coarse_nsec = xtime_coarse.tv_nsec; if (!use_syscall) { vdso_data->cs_cycle_last = tk->clock->cycle_last; vdso_data->xtime_clock_sec = tk->xtime_sec; vdso_data->xtime_clock_nsec = tk->xtime_nsec; vdso_data->cs_mult = tk->mult; vdso_data->cs_shift = tk->shift; vdso_data->wtm_clock_sec = tk->wall_to_monotonic.tv_sec; vdso_data->wtm_clock_nsec = tk->wall_to_monotonic.tv_nsec; } smp_wmb(); ++vdso_data->tb_seq_count; } void update_vsyscall_tz(void) { vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; vdso_data->tz_dsttime = sys_tz.tz_dsttime; }