/* -*- linux-c -*- * linux/arch/blackfin/kernel/ipipe.c * * Copyright (C) 2005-2007 Philippe Gerum. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, Inc., 675 Mass Ave, Cambridge MA 02139, * USA; either version 2 of the License, or (at your option) any later * version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Architecture-dependent I-pipe support for the Blackfin. */ #include <linux/kernel.h> #include <linux/sched.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/percpu.h> #include <linux/bitops.h> #include <linux/errno.h> #include <linux/kthread.h> #include <linux/unistd.h> #include <linux/io.h> #include <linux/atomic.h> #include <asm/irq_handler.h> DEFINE_PER_CPU(struct pt_regs, __ipipe_tick_regs); asmlinkage void asm_do_IRQ(unsigned int irq, struct pt_regs *regs); static void __ipipe_no_irqtail(void); unsigned long __ipipe_irq_tail_hook = (unsigned long)&__ipipe_no_irqtail; EXPORT_SYMBOL(__ipipe_irq_tail_hook); unsigned long __ipipe_core_clock; EXPORT_SYMBOL(__ipipe_core_clock); unsigned long __ipipe_freq_scale; EXPORT_SYMBOL(__ipipe_freq_scale); atomic_t __ipipe_irq_lvdepth[IVG15 + 1]; unsigned long __ipipe_irq_lvmask = bfin_no_irqs; EXPORT_SYMBOL(__ipipe_irq_lvmask); static void __ipipe_ack_irq(unsigned irq, struct irq_desc *desc) { desc->ipipe_ack(irq, desc); } /* * __ipipe_enable_pipeline() -- We are running on the boot CPU, hw * interrupts are off, and secondary CPUs are still lost in space. */ void __ipipe_enable_pipeline(void) { unsigned irq; __ipipe_core_clock = get_cclk(); /* Fetch this once. */ __ipipe_freq_scale = 1000000000UL / __ipipe_core_clock; for (irq = 0; irq < NR_IRQS; ++irq) ipipe_virtualize_irq(ipipe_root_domain, irq, (ipipe_irq_handler_t)&asm_do_IRQ, NULL, &__ipipe_ack_irq, IPIPE_HANDLE_MASK | IPIPE_PASS_MASK); } /* * __ipipe_handle_irq() -- IPIPE's generic IRQ handler. An optimistic * interrupt protection log is maintained here for each domain. Hw * interrupts are masked on entry. */ void __ipipe_handle_irq(unsigned irq, struct pt_regs *regs) { struct ipipe_percpu_domain_data *p = ipipe_root_cpudom_ptr(); struct ipipe_domain *this_domain, *next_domain; struct list_head *head, *pos; struct ipipe_irqdesc *idesc; int m_ack, s = -1; /* * Software-triggered IRQs do not need any ack. The contents * of the register frame should only be used when processing * the timer interrupt, but not for handling any other * interrupt. */ m_ack = (regs == NULL || irq == IRQ_SYSTMR || irq == IRQ_CORETMR); this_domain = __ipipe_current_domain; idesc = &this_domain->irqs[irq]; if (unlikely(test_bit(IPIPE_STICKY_FLAG, &idesc->control))) head = &this_domain->p_link; else { head = __ipipe_pipeline.next; next_domain = list_entry(head, struct ipipe_domain, p_link); idesc = &next_domain->irqs[irq]; if (likely(test_bit(IPIPE_WIRED_FLAG, &idesc->control))) { if (!m_ack && idesc->acknowledge != NULL) idesc->acknowledge(irq, irq_to_desc(irq)); if (test_bit(IPIPE_SYNCDEFER_FLAG, &p->status)) s = __test_and_set_bit(IPIPE_STALL_FLAG, &p->status); __ipipe_dispatch_wired(next_domain, irq); goto out; } } /* Ack the interrupt. */ pos = head; while (pos != &__ipipe_pipeline) { next_domain = list_entry(pos, struct ipipe_domain, p_link); idesc = &next_domain->irqs[irq]; if (test_bit(IPIPE_HANDLE_FLAG, &idesc->control)) { __ipipe_set_irq_pending(next_domain, irq); if (!m_ack && idesc->acknowledge != NULL) { idesc->acknowledge(irq, irq_to_desc(irq)); m_ack = 1; } } if (!test_bit(IPIPE_PASS_FLAG, &idesc->control)) break; pos = next_domain->p_link.next; } /* * Now walk the pipeline, yielding control to the highest * priority domain that has pending interrupt(s) or * immediately to the current domain if the interrupt has been * marked as 'sticky'. This search does not go beyond the * current domain in the pipeline. We also enforce the * additional root stage lock (blackfin-specific). */ if (test_bit(IPIPE_SYNCDEFER_FLAG, &p->status)) s = __test_and_set_bit(IPIPE_STALL_FLAG, &p->status); /* * If the interrupt preempted the head domain, then do not * even try to walk the pipeline, unless an interrupt is * pending for it. */ if (test_bit(IPIPE_AHEAD_FLAG, &this_domain->flags) && !__ipipe_ipending_p(ipipe_head_cpudom_ptr())) goto out; __ipipe_walk_pipeline(head); out: if (!s) __clear_bit(IPIPE_STALL_FLAG, &p->status); } void __ipipe_enable_irqdesc(struct ipipe_domain *ipd, unsigned irq) { struct irq_desc *desc = irq_to_desc(irq); int prio = __ipipe_get_irq_priority(irq); desc->depth = 0; if (ipd != &ipipe_root && atomic_inc_return(&__ipipe_irq_lvdepth[prio]) == 1) __set_bit(prio, &__ipipe_irq_lvmask); } EXPORT_SYMBOL(__ipipe_enable_irqdesc); void __ipipe_disable_irqdesc(struct ipipe_domain *ipd, unsigned irq) { int prio = __ipipe_get_irq_priority(irq); if (ipd != &ipipe_root && atomic_dec_and_test(&__ipipe_irq_lvdepth[prio])) __clear_bit(prio, &__ipipe_irq_lvmask); } EXPORT_SYMBOL(__ipipe_disable_irqdesc); asmlinkage int __ipipe_syscall_root(struct pt_regs *regs) { struct ipipe_percpu_domain_data *p; void (*hook)(void); int ret; WARN_ON_ONCE(irqs_disabled_hw()); /* * We need to run the IRQ tail hook each time we intercept a * syscall, because we know that important operations might be * pending there (e.g. Xenomai deferred rescheduling). */ hook = (__typeof__(hook))__ipipe_irq_tail_hook; hook(); /* * This routine either returns: * 0 -- if the syscall is to be passed to Linux; * >0 -- if the syscall should not be passed to Linux, and no * tail work should be performed; * <0 -- if the syscall should not be passed to Linux but the * tail work has to be performed (for handling signals etc). */ if (!__ipipe_syscall_watched_p(current, regs->orig_p0) || !__ipipe_event_monitored_p(IPIPE_EVENT_SYSCALL)) return 0; ret = __ipipe_dispatch_event(IPIPE_EVENT_SYSCALL, regs); hard_local_irq_disable(); /* * This is the end of the syscall path, so we may * safely assume a valid Linux task stack here. */ if (current->ipipe_flags & PF_EVTRET) { current->ipipe_flags &= ~PF_EVTRET; __ipipe_dispatch_event(IPIPE_EVENT_RETURN, regs); } if (!__ipipe_root_domain_p) ret = -1; else { p = ipipe_root_cpudom_ptr(); if (__ipipe_ipending_p(p)) __ipipe_sync_pipeline(); } hard_local_irq_enable(); return -ret; } static void __ipipe_no_irqtail(void) { } int ipipe_get_sysinfo(struct ipipe_sysinfo *info) { info->sys_nr_cpus = num_online_cpus(); info->sys_cpu_freq = ipipe_cpu_freq(); info->sys_hrtimer_irq = IPIPE_TIMER_IRQ; info->sys_hrtimer_freq = __ipipe_core_clock; info->sys_hrclock_freq = __ipipe_core_clock; return 0; } /* * ipipe_trigger_irq() -- Push the interrupt at front of the pipeline * just like if it has been actually received from a hw source. Also * works for virtual interrupts. */ int ipipe_trigger_irq(unsigned irq) { unsigned long flags; #ifdef CONFIG_IPIPE_DEBUG if (irq >= IPIPE_NR_IRQS || (ipipe_virtual_irq_p(irq) && !test_bit(irq - IPIPE_VIRQ_BASE, &__ipipe_virtual_irq_map))) return -EINVAL; #endif flags = hard_local_irq_save(); __ipipe_handle_irq(irq, NULL); hard_local_irq_restore(flags); return 1; } asmlinkage void __ipipe_sync_root(void) { void (*irq_tail_hook)(void) = (void (*)(void))__ipipe_irq_tail_hook; struct ipipe_percpu_domain_data *p; unsigned long flags; BUG_ON(irqs_disabled()); flags = hard_local_irq_save(); if (irq_tail_hook) irq_tail_hook(); clear_thread_flag(TIF_IRQ_SYNC); p = ipipe_root_cpudom_ptr(); if (__ipipe_ipending_p(p)) __ipipe_sync_pipeline(); hard_local_irq_restore(flags); } void ___ipipe_sync_pipeline(void) { if (__ipipe_root_domain_p && test_bit(IPIPE_SYNCDEFER_FLAG, &ipipe_root_cpudom_var(status))) return; __ipipe_sync_stage(); } void __ipipe_disable_root_irqs_hw(void) { /* * This code is called by the ins{bwl} routines (see * arch/blackfin/lib/ins.S), which are heavily used by the * network stack. It masks all interrupts but those handled by * non-root domains, so that we keep decent network transfer * rates for Linux without inducing pathological jitter for * the real-time domain. */ bfin_sti(__ipipe_irq_lvmask); __set_bit(IPIPE_STALL_FLAG, &ipipe_root_cpudom_var(status)); } void __ipipe_enable_root_irqs_hw(void) { __clear_bit(IPIPE_STALL_FLAG, &ipipe_root_cpudom_var(status)); bfin_sti(bfin_irq_flags); } /* * We could use standard atomic bitops in the following root status * manipulation routines, but let's prepare for SMP support in the * same move, preventing CPU migration as required. */ void __ipipe_stall_root(void) { unsigned long *p, flags; flags = hard_local_irq_save(); p = &__ipipe_root_status; __set_bit(IPIPE_STALL_FLAG, p); hard_local_irq_restore(flags); } EXPORT_SYMBOL(__ipipe_stall_root); unsigned long __ipipe_test_and_stall_root(void) { unsigned long *p, flags; int x; flags = hard_local_irq_save(); p = &__ipipe_root_status; x = __test_and_set_bit(IPIPE_STALL_FLAG, p); hard_local_irq_restore(flags); return x; } EXPORT_SYMBOL(__ipipe_test_and_stall_root); unsigned long __ipipe_test_root(void) { const unsigned long *p; unsigned long flags; int x; flags = hard_local_irq_save_smp(); p = &__ipipe_root_status; x = test_bit(IPIPE_STALL_FLAG, p); hard_local_irq_restore_smp(flags); return x; } EXPORT_SYMBOL(__ipipe_test_root); void __ipipe_lock_root(void) { unsigned long *p, flags; flags = hard_local_irq_save(); p = &__ipipe_root_status; __set_bit(IPIPE_SYNCDEFER_FLAG, p); hard_local_irq_restore(flags); } EXPORT_SYMBOL(__ipipe_lock_root); void __ipipe_unlock_root(void) { unsigned long *p, flags; flags = hard_local_irq_save(); p = &__ipipe_root_status; __clear_bit(IPIPE_SYNCDEFER_FLAG, p); hard_local_irq_restore(flags); } EXPORT_SYMBOL(__ipipe_unlock_root);