/* provide some functions which dump the trace buffer, in a nice way for people * to read it, and understand what is going on * * Copyright 2004-2010 Analog Devices Inc. * * Licensed under the GPL-2 or later */ #include <linux/kernel.h> #include <linux/hardirq.h> #include <linux/thread_info.h> #include <linux/mm.h> #include <linux/oom.h> #include <linux/sched.h> #include <linux/uaccess.h> #include <linux/module.h> #include <linux/kallsyms.h> #include <linux/err.h> #include <linux/fs.h> #include <linux/irq.h> #include <asm/dma.h> #include <asm/trace.h> #include <asm/fixed_code.h> #include <asm/traps.h> #include <asm/irq_handler.h> #include <asm/pda.h> void decode_address(char *buf, unsigned long address) { struct task_struct *p; struct mm_struct *mm; unsigned long offset; struct rb_node *n; #ifdef CONFIG_KALLSYMS unsigned long symsize; const char *symname; char *modname; char *delim = ":"; char namebuf[128]; #endif buf += sprintf(buf, "<0x%08lx> ", address); #ifdef CONFIG_KALLSYMS /* look up the address and see if we are in kernel space */ symname = kallsyms_lookup(address, &symsize, &offset, &modname, namebuf); if (symname) { /* yeah! kernel space! */ if (!modname) modname = delim = ""; sprintf(buf, "{ %s%s%s%s + 0x%lx }", delim, modname, delim, symname, (unsigned long)offset); return; } #endif if (address >= FIXED_CODE_START && address < FIXED_CODE_END) { /* Problem in fixed code section? */ strcat(buf, "/* Maybe fixed code section */"); return; } else if (address < CONFIG_BOOT_LOAD) { /* Problem somewhere before the kernel start address */ strcat(buf, "/* Maybe null pointer? */"); return; } else if (address >= COREMMR_BASE) { strcat(buf, "/* core mmrs */"); return; } else if (address >= SYSMMR_BASE) { strcat(buf, "/* system mmrs */"); return; } else if (address >= L1_ROM_START && address < L1_ROM_START + L1_ROM_LENGTH) { strcat(buf, "/* on-chip L1 ROM */"); return; } else if (address >= L1_SCRATCH_START && address < L1_SCRATCH_START + L1_SCRATCH_LENGTH) { strcat(buf, "/* on-chip scratchpad */"); return; } else if (address >= physical_mem_end && address < ASYNC_BANK0_BASE) { strcat(buf, "/* unconnected memory */"); return; } else if (address >= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE && address < BOOT_ROM_START) { strcat(buf, "/* reserved memory */"); return; } else if (address >= L1_DATA_A_START && address < L1_DATA_A_START + L1_DATA_A_LENGTH) { strcat(buf, "/* on-chip Data Bank A */"); return; } else if (address >= L1_DATA_B_START && address < L1_DATA_B_START + L1_DATA_B_LENGTH) { strcat(buf, "/* on-chip Data Bank B */"); return; } /* * Don't walk any of the vmas if we are oopsing, it has been known * to cause problems - corrupt vmas (kernel crashes) cause double faults */ if (oops_in_progress) { strcat(buf, "/* kernel dynamic memory (maybe user-space) */"); return; } /* looks like we're off in user-land, so let's walk all the * mappings of all our processes and see if we can't be a whee * bit more specific */ read_lock(&tasklist_lock); for_each_process(p) { struct task_struct *t; t = find_lock_task_mm(p); if (!t) continue; mm = t->mm; if (!down_read_trylock(&mm->mmap_sem)) goto __continue; for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) { struct vm_area_struct *vma; vma = rb_entry(n, struct vm_area_struct, vm_rb); if (address >= vma->vm_start && address < vma->vm_end) { char _tmpbuf[256]; char *name = t->comm; struct file *file = vma->vm_file; if (file) { char *d_name = d_path(&file->f_path, _tmpbuf, sizeof(_tmpbuf)); if (!IS_ERR(d_name)) name = d_name; } /* FLAT does not have its text aligned to the start of * the map while FDPIC ELF does ... */ /* before we can check flat/fdpic, we need to * make sure current is valid */ if ((unsigned long)current >= FIXED_CODE_START && !((unsigned long)current & 0x3)) { if (current->mm && (address > current->mm->start_code) && (address < current->mm->end_code)) offset = address - current->mm->start_code; else offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT); sprintf(buf, "[ %s + 0x%lx ]", name, offset); } else sprintf(buf, "[ %s vma:0x%lx-0x%lx]", name, vma->vm_start, vma->vm_end); up_read(&mm->mmap_sem); task_unlock(t); if (buf[0] == '\0') sprintf(buf, "[ %s ] dynamic memory", name); goto done; } } up_read(&mm->mmap_sem); __continue: task_unlock(t); } /* * we were unable to find this address anywhere, * or some MMs were skipped because they were in use. */ sprintf(buf, "/* kernel dynamic memory */"); done: read_unlock(&tasklist_lock); } #define EXPAND_LEN ((1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 256 - 1) /* * Similar to get_user, do some address checking, then dereference * Return true on success, false on bad address */ bool get_mem16(unsigned short *val, unsigned short *address) { unsigned long addr = (unsigned long)address; /* Check for odd addresses */ if (addr & 0x1) return false; switch (bfin_mem_access_type(addr, 2)) { case BFIN_MEM_ACCESS_CORE: case BFIN_MEM_ACCESS_CORE_ONLY: *val = *address; return true; case BFIN_MEM_ACCESS_DMA: dma_memcpy(val, address, 2); return true; case BFIN_MEM_ACCESS_ITEST: isram_memcpy(val, address, 2); return true; default: /* invalid access */ return false; } } bool get_instruction(unsigned int *val, unsigned short *address) { unsigned long addr = (unsigned long)address; unsigned short opcode0, opcode1; /* Check for odd addresses */ if (addr & 0x1) return false; /* MMR region will never have instructions */ if (addr >= SYSMMR_BASE) return false; /* Scratchpad will never have instructions */ if (addr >= L1_SCRATCH_START && addr < L1_SCRATCH_START + L1_SCRATCH_LENGTH) return false; /* Data banks will never have instructions */ if (addr >= BOOT_ROM_START + BOOT_ROM_LENGTH && addr < L1_CODE_START) return false; if (!get_mem16(&opcode0, address)) return false; /* was this a 32-bit instruction? If so, get the next 16 bits */ if ((opcode0 & 0xc000) == 0xc000) { if (!get_mem16(&opcode1, address + 1)) return false; *val = (opcode0 << 16) + opcode1; } else *val = opcode0; return true; } #if defined(CONFIG_DEBUG_BFIN_HWTRACE_ON) /* * decode the instruction if we are printing out the trace, as it * makes things easier to follow, without running it through objdump * Decode the change of flow, and the common load/store instructions * which are the main cause for faults, and discontinuities in the trace * buffer. */ #define ProgCtrl_opcode 0x0000 #define ProgCtrl_poprnd_bits 0 #define ProgCtrl_poprnd_mask 0xf #define ProgCtrl_prgfunc_bits 4 #define ProgCtrl_prgfunc_mask 0xf #define ProgCtrl_code_bits 8 #define ProgCtrl_code_mask 0xff static void decode_ProgCtrl_0(unsigned int opcode) { int poprnd = ((opcode >> ProgCtrl_poprnd_bits) & ProgCtrl_poprnd_mask); int prgfunc = ((opcode >> ProgCtrl_prgfunc_bits) & ProgCtrl_prgfunc_mask); if (prgfunc == 0 && poprnd == 0) pr_cont("NOP"); else if (prgfunc == 1 && poprnd == 0) pr_cont("RTS"); else if (prgfunc == 1 && poprnd == 1) pr_cont("RTI"); else if (prgfunc == 1 && poprnd == 2) pr_cont("RTX"); else if (prgfunc == 1 && poprnd == 3) pr_cont("RTN"); else if (prgfunc == 1 && poprnd == 4) pr_cont("RTE"); else if (prgfunc == 2 && poprnd == 0) pr_cont("IDLE"); else if (prgfunc == 2 && poprnd == 3) pr_cont("CSYNC"); else if (prgfunc == 2 && poprnd == 4) pr_cont("SSYNC"); else if (prgfunc == 2 && poprnd == 5) pr_cont("EMUEXCPT"); else if (prgfunc == 3) pr_cont("CLI R%i", poprnd); else if (prgfunc == 4) pr_cont("STI R%i", poprnd); else if (prgfunc == 5) pr_cont("JUMP (P%i)", poprnd); else if (prgfunc == 6) pr_cont("CALL (P%i)", poprnd); else if (prgfunc == 7) pr_cont("CALL (PC + P%i)", poprnd); else if (prgfunc == 8) pr_cont("JUMP (PC + P%i", poprnd); else if (prgfunc == 9) pr_cont("RAISE %i", poprnd); else if (prgfunc == 10) pr_cont("EXCPT %i", poprnd); else pr_cont("0x%04x", opcode); } #define BRCC_opcode 0x1000 #define BRCC_offset_bits 0 #define BRCC_offset_mask 0x3ff #define BRCC_B_bits 10 #define BRCC_B_mask 0x1 #define BRCC_T_bits 11 #define BRCC_T_mask 0x1 #define BRCC_code_bits 12 #define BRCC_code_mask 0xf static void decode_BRCC_0(unsigned int opcode) { int B = ((opcode >> BRCC_B_bits) & BRCC_B_mask); int T = ((opcode >> BRCC_T_bits) & BRCC_T_mask); pr_cont("IF %sCC JUMP pcrel %s", T ? "" : "!", B ? "(BP)" : ""); } #define CALLa_opcode 0xe2000000 #define CALLa_addr_bits 0 #define CALLa_addr_mask 0xffffff #define CALLa_S_bits 24 #define CALLa_S_mask 0x1 #define CALLa_code_bits 25 #define CALLa_code_mask 0x7f static void decode_CALLa_0(unsigned int opcode) { int S = ((opcode >> (CALLa_S_bits - 16)) & CALLa_S_mask); if (S) pr_cont("CALL pcrel"); else pr_cont("JUMP.L"); } #define LoopSetup_opcode 0xe0800000 #define LoopSetup_eoffset_bits 0 #define LoopSetup_eoffset_mask 0x3ff #define LoopSetup_dontcare_bits 10 #define LoopSetup_dontcare_mask 0x3 #define LoopSetup_reg_bits 12 #define LoopSetup_reg_mask 0xf #define LoopSetup_soffset_bits 16 #define LoopSetup_soffset_mask 0xf #define LoopSetup_c_bits 20 #define LoopSetup_c_mask 0x1 #define LoopSetup_rop_bits 21 #define LoopSetup_rop_mask 0x3 #define LoopSetup_code_bits 23 #define LoopSetup_code_mask 0x1ff static void decode_LoopSetup_0(unsigned int opcode) { int c = ((opcode >> LoopSetup_c_bits) & LoopSetup_c_mask); int reg = ((opcode >> LoopSetup_reg_bits) & LoopSetup_reg_mask); int rop = ((opcode >> LoopSetup_rop_bits) & LoopSetup_rop_mask); pr_cont("LSETUP <> LC%i", c); if ((rop & 1) == 1) pr_cont("= P%i", reg); if ((rop & 2) == 2) pr_cont(" >> 0x1"); } #define DspLDST_opcode 0x9c00 #define DspLDST_reg_bits 0 #define DspLDST_reg_mask 0x7 #define DspLDST_i_bits 3 #define DspLDST_i_mask 0x3 #define DspLDST_m_bits 5 #define DspLDST_m_mask 0x3 #define DspLDST_aop_bits 7 #define DspLDST_aop_mask 0x3 #define DspLDST_W_bits 9 #define DspLDST_W_mask 0x1 #define DspLDST_code_bits 10 #define DspLDST_code_mask 0x3f static void decode_dspLDST_0(unsigned int opcode) { int i = ((opcode >> DspLDST_i_bits) & DspLDST_i_mask); int m = ((opcode >> DspLDST_m_bits) & DspLDST_m_mask); int W = ((opcode >> DspLDST_W_bits) & DspLDST_W_mask); int aop = ((opcode >> DspLDST_aop_bits) & DspLDST_aop_mask); int reg = ((opcode >> DspLDST_reg_bits) & DspLDST_reg_mask); if (W == 0) { pr_cont("R%i", reg); switch (m) { case 0: pr_cont(" = "); break; case 1: pr_cont(".L = "); break; case 2: pr_cont(".W = "); break; } } pr_cont("[ I%i", i); switch (aop) { case 0: pr_cont("++ ]"); break; case 1: pr_cont("-- ]"); break; } if (W == 1) { pr_cont(" = R%i", reg); switch (m) { case 1: pr_cont(".L = "); break; case 2: pr_cont(".W = "); break; } } } #define LDST_opcode 0x9000 #define LDST_reg_bits 0 #define LDST_reg_mask 0x7 #define LDST_ptr_bits 3 #define LDST_ptr_mask 0x7 #define LDST_Z_bits 6 #define LDST_Z_mask 0x1 #define LDST_aop_bits 7 #define LDST_aop_mask 0x3 #define LDST_W_bits 9 #define LDST_W_mask 0x1 #define LDST_sz_bits 10 #define LDST_sz_mask 0x3 #define LDST_code_bits 12 #define LDST_code_mask 0xf static void decode_LDST_0(unsigned int opcode) { int Z = ((opcode >> LDST_Z_bits) & LDST_Z_mask); int W = ((opcode >> LDST_W_bits) & LDST_W_mask); int sz = ((opcode >> LDST_sz_bits) & LDST_sz_mask); int aop = ((opcode >> LDST_aop_bits) & LDST_aop_mask); int reg = ((opcode >> LDST_reg_bits) & LDST_reg_mask); int ptr = ((opcode >> LDST_ptr_bits) & LDST_ptr_mask); if (W == 0) pr_cont("%s%i = ", (sz == 0 && Z == 1) ? "P" : "R", reg); switch (sz) { case 1: pr_cont("W"); break; case 2: pr_cont("B"); break; } pr_cont("[P%i", ptr); switch (aop) { case 0: pr_cont("++"); break; case 1: pr_cont("--"); break; } pr_cont("]"); if (W == 1) pr_cont(" = %s%i ", (sz == 0 && Z == 1) ? "P" : "R", reg); if (sz) { if (Z) pr_cont(" (X)"); else pr_cont(" (Z)"); } } #define LDSTii_opcode 0xa000 #define LDSTii_reg_bit 0 #define LDSTii_reg_mask 0x7 #define LDSTii_ptr_bit 3 #define LDSTii_ptr_mask 0x7 #define LDSTii_offset_bit 6 #define LDSTii_offset_mask 0xf #define LDSTii_op_bit 10 #define LDSTii_op_mask 0x3 #define LDSTii_W_bit 12 #define LDSTii_W_mask 0x1 #define LDSTii_code_bit 13 #define LDSTii_code_mask 0x7 static void decode_LDSTii_0(unsigned int opcode) { int reg = ((opcode >> LDSTii_reg_bit) & LDSTii_reg_mask); int ptr = ((opcode >> LDSTii_ptr_bit) & LDSTii_ptr_mask); int offset = ((opcode >> LDSTii_offset_bit) & LDSTii_offset_mask); int op = ((opcode >> LDSTii_op_bit) & LDSTii_op_mask); int W = ((opcode >> LDSTii_W_bit) & LDSTii_W_mask); if (W == 0) { pr_cont("%s%i = %s[P%i + %i]", op == 3 ? "R" : "P", reg, op == 1 || op == 2 ? "" : "W", ptr, offset); if (op == 2) pr_cont("(Z)"); if (op == 3) pr_cont("(X)"); } else { pr_cont("%s[P%i + %i] = %s%i", op == 0 ? "" : "W", ptr, offset, op == 3 ? "P" : "R", reg); } } #define LDSTidxI_opcode 0xe4000000 #define LDSTidxI_offset_bits 0 #define LDSTidxI_offset_mask 0xffff #define LDSTidxI_reg_bits 16 #define LDSTidxI_reg_mask 0x7 #define LDSTidxI_ptr_bits 19 #define LDSTidxI_ptr_mask 0x7 #define LDSTidxI_sz_bits 22 #define LDSTidxI_sz_mask 0x3 #define LDSTidxI_Z_bits 24 #define LDSTidxI_Z_mask 0x1 #define LDSTidxI_W_bits 25 #define LDSTidxI_W_mask 0x1 #define LDSTidxI_code_bits 26 #define LDSTidxI_code_mask 0x3f static void decode_LDSTidxI_0(unsigned int opcode) { int Z = ((opcode >> LDSTidxI_Z_bits) & LDSTidxI_Z_mask); int W = ((opcode >> LDSTidxI_W_bits) & LDSTidxI_W_mask); int sz = ((opcode >> LDSTidxI_sz_bits) & LDSTidxI_sz_mask); int reg = ((opcode >> LDSTidxI_reg_bits) & LDSTidxI_reg_mask); int ptr = ((opcode >> LDSTidxI_ptr_bits) & LDSTidxI_ptr_mask); int offset = ((opcode >> LDSTidxI_offset_bits) & LDSTidxI_offset_mask); if (W == 0) pr_cont("%s%i = ", sz == 0 && Z == 1 ? "P" : "R", reg); if (sz == 1) pr_cont("W"); if (sz == 2) pr_cont("B"); pr_cont("[P%i + %s0x%x]", ptr, offset & 0x20 ? "-" : "", (offset & 0x1f) << 2); if (W == 0 && sz != 0) { if (Z) pr_cont("(X)"); else pr_cont("(Z)"); } if (W == 1) pr_cont("= %s%i", (sz == 0 && Z == 1) ? "P" : "R", reg); } static void decode_opcode(unsigned int opcode) { #ifdef CONFIG_BUG if (opcode == BFIN_BUG_OPCODE) pr_cont("BUG"); else #endif if ((opcode & 0xffffff00) == ProgCtrl_opcode) decode_ProgCtrl_0(opcode); else if ((opcode & 0xfffff000) == BRCC_opcode) decode_BRCC_0(opcode); else if ((opcode & 0xfffff000) == 0x2000) pr_cont("JUMP.S"); else if ((opcode & 0xfe000000) == CALLa_opcode) decode_CALLa_0(opcode); else if ((opcode & 0xff8000C0) == LoopSetup_opcode) decode_LoopSetup_0(opcode); else if ((opcode & 0xfffffc00) == DspLDST_opcode) decode_dspLDST_0(opcode); else if ((opcode & 0xfffff000) == LDST_opcode) decode_LDST_0(opcode); else if ((opcode & 0xffffe000) == LDSTii_opcode) decode_LDSTii_0(opcode); else if ((opcode & 0xfc000000) == LDSTidxI_opcode) decode_LDSTidxI_0(opcode); else if (opcode & 0xffff0000) pr_cont("0x%08x", opcode); else pr_cont("0x%04x", opcode); } #define BIT_MULTI_INS 0x08000000 static void decode_instruction(unsigned short *address) { unsigned int opcode; if (!get_instruction(&opcode, address)) return; decode_opcode(opcode); /* If things are a 32-bit instruction, it has the possibility of being * a multi-issue instruction (a 32-bit, and 2 16 bit instrucitions) * This test collidates with the unlink instruction, so disallow that */ if ((opcode & 0xc0000000) == 0xc0000000 && (opcode & BIT_MULTI_INS) && (opcode & 0xe8000000) != 0xe8000000) { pr_cont(" || "); if (!get_instruction(&opcode, address + 2)) return; decode_opcode(opcode); pr_cont(" || "); if (!get_instruction(&opcode, address + 3)) return; decode_opcode(opcode); } } #endif void dump_bfin_trace_buffer(void) { #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON int tflags, i = 0, fault = 0; char buf[150]; unsigned short *addr; unsigned int cpu = raw_smp_processor_id(); #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND int j, index; #endif trace_buffer_save(tflags); pr_notice("Hardware Trace:\n"); #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND pr_notice("WARNING: Expanded trace turned on - can not trace exceptions\n"); #endif if (likely(bfin_read_TBUFSTAT() & TBUFCNT)) { for (; bfin_read_TBUFSTAT() & TBUFCNT; i++) { addr = (unsigned short *)bfin_read_TBUF(); decode_address(buf, (unsigned long)addr); pr_notice("%4i Target : %s\n", i, buf); /* Normally, the faulting instruction doesn't go into * the trace buffer, (since it doesn't commit), so * we print out the fault address here */ if (!fault && addr == ((unsigned short *)evt_ivhw)) { addr = (unsigned short *)bfin_read_TBUF(); decode_address(buf, (unsigned long)addr); pr_notice(" FAULT : %s ", buf); decode_instruction(addr); pr_cont("\n"); fault = 1; continue; } if (!fault && addr == (unsigned short *)trap && (cpu_pda[cpu].seqstat & SEQSTAT_EXCAUSE) > VEC_EXCPT15) { decode_address(buf, cpu_pda[cpu].icplb_fault_addr); pr_notice(" FAULT : %s ", buf); decode_instruction((unsigned short *)cpu_pda[cpu].icplb_fault_addr); pr_cont("\n"); fault = 1; } addr = (unsigned short *)bfin_read_TBUF(); decode_address(buf, (unsigned long)addr); pr_notice(" Source : %s ", buf); decode_instruction(addr); pr_cont("\n"); } } #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND if (trace_buff_offset) index = trace_buff_offset / 4; else index = EXPAND_LEN; j = (1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 128; while (j) { decode_address(buf, software_trace_buff[index]); pr_notice("%4i Target : %s\n", i, buf); index -= 1; if (index < 0) index = EXPAND_LEN; decode_address(buf, software_trace_buff[index]); pr_notice(" Source : %s ", buf); decode_instruction((unsigned short *)software_trace_buff[index]); pr_cont("\n"); index -= 1; if (index < 0) index = EXPAND_LEN; j--; i++; } #endif trace_buffer_restore(tflags); #endif } EXPORT_SYMBOL(dump_bfin_trace_buffer); void dump_bfin_process(struct pt_regs *fp) { /* We should be able to look at fp->ipend, but we don't push it on the * stack all the time, so do this until we fix that */ unsigned int context = bfin_read_IPEND(); if (oops_in_progress) pr_emerg("Kernel OOPS in progress\n"); if (context & 0x0020 && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR) pr_notice("HW Error context\n"); else if (context & 0x0020) pr_notice("Deferred Exception context\n"); else if (context & 0x3FC0) pr_notice("Interrupt context\n"); else if (context & 0x4000) pr_notice("Deferred Interrupt context\n"); else if (context & 0x8000) pr_notice("Kernel process context\n"); /* Because we are crashing, and pointers could be bad, we check things * pretty closely before we use them */ if ((unsigned long)current >= FIXED_CODE_START && !((unsigned long)current & 0x3) && current->pid) { pr_notice("CURRENT PROCESS:\n"); if (current->comm >= (char *)FIXED_CODE_START) pr_notice("COMM=%s PID=%d", current->comm, current->pid); else pr_notice("COMM= invalid"); pr_cont(" CPU=%d\n", current_thread_info()->cpu); if (!((unsigned long)current->mm & 0x3) && (unsigned long)current->mm >= FIXED_CODE_START) { pr_notice("TEXT = 0x%p-0x%p DATA = 0x%p-0x%p\n", (void *)current->mm->start_code, (void *)current->mm->end_code, (void *)current->mm->start_data, (void *)current->mm->end_data); pr_notice(" BSS = 0x%p-0x%p USER-STACK = 0x%p\n\n", (void *)current->mm->end_data, (void *)current->mm->brk, (void *)current->mm->start_stack); } else pr_notice("invalid mm\n"); } else pr_notice("No Valid process in current context\n"); } void dump_bfin_mem(struct pt_regs *fp) { unsigned short *addr, *erraddr, val = 0, err = 0; char sti = 0, buf[6]; erraddr = (void *)fp->pc; pr_notice("return address: [0x%p]; contents of:", erraddr); for (addr = (unsigned short *)((unsigned long)erraddr & ~0xF) - 0x10; addr < (unsigned short *)((unsigned long)erraddr & ~0xF) + 0x10; addr++) { if (!((unsigned long)addr & 0xF)) pr_notice("0x%p: ", addr); if (!get_mem16(&val, addr)) { val = 0; sprintf(buf, "????"); } else sprintf(buf, "%04x", val); if (addr == erraddr) { pr_cont("[%s]", buf); err = val; } else pr_cont(" %s ", buf); /* Do any previous instructions turn on interrupts? */ if (addr <= erraddr && /* in the past */ ((val >= 0x0040 && val <= 0x0047) || /* STI instruction */ val == 0x017b)) /* [SP++] = RETI */ sti = 1; } pr_cont("\n"); /* Hardware error interrupts can be deferred */ if (unlikely(sti && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR && oops_in_progress)){ pr_notice("Looks like this was a deferred error - sorry\n"); #ifndef CONFIG_DEBUG_HWERR pr_notice("The remaining message may be meaningless\n"); pr_notice("You should enable CONFIG_DEBUG_HWERR to get a better idea where it came from\n"); #else /* If we are handling only one peripheral interrupt * and current mm and pid are valid, and the last error * was in that user space process's text area * print it out - because that is where the problem exists */ if ((!(((fp)->ipend & ~0x30) & (((fp)->ipend & ~0x30) - 1))) && (current->pid && current->mm)) { /* And the last RETI points to the current userspace context */ if ((fp + 1)->pc >= current->mm->start_code && (fp + 1)->pc <= current->mm->end_code) { pr_notice("It might be better to look around here :\n"); pr_notice("-------------------------------------------\n"); show_regs(fp + 1); pr_notice("-------------------------------------------\n"); } } #endif } } void show_regs(struct pt_regs *fp) { char buf[150]; struct irqaction *action; unsigned int i; unsigned long flags = 0; unsigned int cpu = raw_smp_processor_id(); unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic(); pr_notice("\n"); show_regs_print_info(KERN_NOTICE); if (CPUID != bfin_cpuid()) pr_notice("Compiled for cpu family 0x%04x (Rev %d), " "but running on:0x%04x (Rev %d)\n", CPUID, bfin_compiled_revid(), bfin_cpuid(), bfin_revid()); pr_notice("ADSP-%s-0.%d", CPU, bfin_compiled_revid()); if (bfin_compiled_revid() != bfin_revid()) pr_cont("(Detected 0.%d)", bfin_revid()); pr_cont(" %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n", get_cclk()/1000000, get_sclk()/1000000, #ifdef CONFIG_MPU "mpu on" #else "mpu off" #endif ); pr_notice("%s", linux_banner); pr_notice("\nSEQUENCER STATUS:\t\t%s\n", print_tainted()); pr_notice(" SEQSTAT: %08lx IPEND: %04lx IMASK: %04lx SYSCFG: %04lx\n", (long)fp->seqstat, fp->ipend, cpu_pda[raw_smp_processor_id()].ex_imask, fp->syscfg); if (fp->ipend & EVT_IRPTEN) pr_notice(" Global Interrupts Disabled (IPEND[4])\n"); if (!(cpu_pda[raw_smp_processor_id()].ex_imask & (EVT_IVG13 | EVT_IVG12 | EVT_IVG11 | EVT_IVG10 | EVT_IVG9 | EVT_IVG8 | EVT_IVG7 | EVT_IVTMR))) pr_notice(" Peripheral interrupts masked off\n"); if (!(cpu_pda[raw_smp_processor_id()].ex_imask & (EVT_IVG15 | EVT_IVG14))) pr_notice(" Kernel interrupts masked off\n"); if ((fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR) { pr_notice(" HWERRCAUSE: 0x%lx\n", (fp->seqstat & SEQSTAT_HWERRCAUSE) >> 14); #ifdef EBIU_ERRMST /* If the error was from the EBIU, print it out */ if (bfin_read_EBIU_ERRMST() & CORE_ERROR) { pr_notice(" EBIU Error Reason : 0x%04x\n", bfin_read_EBIU_ERRMST()); pr_notice(" EBIU Error Address : 0x%08x\n", bfin_read_EBIU_ERRADD()); } #endif } pr_notice(" EXCAUSE : 0x%lx\n", fp->seqstat & SEQSTAT_EXCAUSE); for (i = 2; i <= 15 ; i++) { if (fp->ipend & (1 << i)) { if (i != 4) { decode_address(buf, bfin_read32(EVT0 + 4*i)); pr_notice(" physical IVG%i asserted : %s\n", i, buf); } else pr_notice(" interrupts disabled\n"); } } /* if no interrupts are going off, don't print this out */ if (fp->ipend & ~0x3F) { for (i = 0; i < (NR_IRQS - 1); i++) { struct irq_desc *desc = irq_to_desc(i); if (!in_atomic) raw_spin_lock_irqsave(&desc->lock, flags); action = desc->action; if (!action) goto unlock; decode_address(buf, (unsigned int)action->handler); pr_notice(" logical irq %3d mapped : %s", i, buf); for (action = action->next; action; action = action->next) { decode_address(buf, (unsigned int)action->handler); pr_cont(", %s", buf); } pr_cont("\n"); unlock: if (!in_atomic) raw_spin_unlock_irqrestore(&desc->lock, flags); } } decode_address(buf, fp->rete); pr_notice(" RETE: %s\n", buf); decode_address(buf, fp->retn); pr_notice(" RETN: %s\n", buf); decode_address(buf, fp->retx); pr_notice(" RETX: %s\n", buf); decode_address(buf, fp->rets); pr_notice(" RETS: %s\n", buf); decode_address(buf, fp->pc); pr_notice(" PC : %s\n", buf); if (((long)fp->seqstat & SEQSTAT_EXCAUSE) && (((long)fp->seqstat & SEQSTAT_EXCAUSE) != VEC_HWERR)) { decode_address(buf, cpu_pda[cpu].dcplb_fault_addr); pr_notice("DCPLB_FAULT_ADDR: %s\n", buf); decode_address(buf, cpu_pda[cpu].icplb_fault_addr); pr_notice("ICPLB_FAULT_ADDR: %s\n", buf); } pr_notice("PROCESSOR STATE:\n"); pr_notice(" R0 : %08lx R1 : %08lx R2 : %08lx R3 : %08lx\n", fp->r0, fp->r1, fp->r2, fp->r3); pr_notice(" R4 : %08lx R5 : %08lx R6 : %08lx R7 : %08lx\n", fp->r4, fp->r5, fp->r6, fp->r7); pr_notice(" P0 : %08lx P1 : %08lx P2 : %08lx P3 : %08lx\n", fp->p0, fp->p1, fp->p2, fp->p3); pr_notice(" P4 : %08lx P5 : %08lx FP : %08lx SP : %08lx\n", fp->p4, fp->p5, fp->fp, (long)fp); pr_notice(" LB0: %08lx LT0: %08lx LC0: %08lx\n", fp->lb0, fp->lt0, fp->lc0); pr_notice(" LB1: %08lx LT1: %08lx LC1: %08lx\n", fp->lb1, fp->lt1, fp->lc1); pr_notice(" B0 : %08lx L0 : %08lx M0 : %08lx I0 : %08lx\n", fp->b0, fp->l0, fp->m0, fp->i0); pr_notice(" B1 : %08lx L1 : %08lx M1 : %08lx I1 : %08lx\n", fp->b1, fp->l1, fp->m1, fp->i1); pr_notice(" B2 : %08lx L2 : %08lx M2 : %08lx I2 : %08lx\n", fp->b2, fp->l2, fp->m2, fp->i2); pr_notice(" B3 : %08lx L3 : %08lx M3 : %08lx I3 : %08lx\n", fp->b3, fp->l3, fp->m3, fp->i3); pr_notice("A0.w: %08lx A0.x: %08lx A1.w: %08lx A1.x: %08lx\n", fp->a0w, fp->a0x, fp->a1w, fp->a1x); pr_notice("USP : %08lx ASTAT: %08lx\n", rdusp(), fp->astat); pr_notice("\n"); }