/* * Copyright (C) 2003, Axis Communications AB. */ #include <asm/irq.h> #include <linux/irq.h> #include <linux/interrupt.h> #include <linux/smp.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/profile.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/threads.h> #include <linux/spinlock.h> #include <linux/kernel_stat.h> #include <hwregs/reg_map.h> #include <hwregs/reg_rdwr.h> #include <hwregs/intr_vect.h> #include <hwregs/intr_vect_defs.h> #define CPU_FIXED -1 /* IRQ masks (refer to comment for crisv32_do_multiple) */ #if TIMER0_INTR_VECT - FIRST_IRQ < 32 #define TIMER_MASK (1 << (TIMER0_INTR_VECT - FIRST_IRQ)) #undef TIMER_VECT1 #else #define TIMER_MASK (1 << (TIMER0_INTR_VECT - FIRST_IRQ - 32)) #define TIMER_VECT1 #endif #ifdef CONFIG_ETRAX_KGDB #if defined(CONFIG_ETRAX_KGDB_PORT0) #define IGNOREMASK (1 << (SER0_INTR_VECT - FIRST_IRQ)) #elif defined(CONFIG_ETRAX_KGDB_PORT1) #define IGNOREMASK (1 << (SER1_INTR_VECT - FIRST_IRQ)) #elif defined(CONFIG_ETRAX_KGB_PORT2) #define IGNOREMASK (1 << (SER2_INTR_VECT - FIRST_IRQ)) #elif defined(CONFIG_ETRAX_KGDB_PORT3) #define IGNOREMASK (1 << (SER3_INTR_VECT - FIRST_IRQ)) #endif #endif DEFINE_SPINLOCK(irq_lock); struct cris_irq_allocation { int cpu; /* The CPU to which the IRQ is currently allocated. */ cpumask_t mask; /* The CPUs to which the IRQ may be allocated. */ }; struct cris_irq_allocation irq_allocations[NR_REAL_IRQS] = { [0 ... NR_REAL_IRQS - 1] = {0, CPU_MASK_ALL} }; static unsigned long irq_regs[NR_CPUS] = { regi_irq, #ifdef CONFIG_SMP regi_irq2, #endif }; #if NR_REAL_IRQS > 32 #define NBR_REGS 2 #else #define NBR_REGS 1 #endif unsigned long cpu_irq_counters[NR_CPUS]; unsigned long irq_counters[NR_REAL_IRQS]; /* From irq.c. */ extern void weird_irq(void); /* From entry.S. */ extern void system_call(void); extern void nmi_interrupt(void); extern void multiple_interrupt(void); extern void gdb_handle_exception(void); extern void i_mmu_refill(void); extern void i_mmu_invalid(void); extern void i_mmu_access(void); extern void i_mmu_execute(void); extern void d_mmu_refill(void); extern void d_mmu_invalid(void); extern void d_mmu_access(void); extern void d_mmu_write(void); /* From kgdb.c. */ extern void kgdb_init(void); extern void breakpoint(void); /* From traps.c. */ extern void breakh_BUG(void); /* * Build the IRQ handler stubs using macros from irq.h. */ #ifdef CONFIG_CRIS_MACH_ARTPEC3 BUILD_TIMER_IRQ(0x31, 0) #else BUILD_IRQ(0x31) #endif BUILD_IRQ(0x32) BUILD_IRQ(0x33) BUILD_IRQ(0x34) BUILD_IRQ(0x35) BUILD_IRQ(0x36) BUILD_IRQ(0x37) BUILD_IRQ(0x38) BUILD_IRQ(0x39) BUILD_IRQ(0x3a) BUILD_IRQ(0x3b) BUILD_IRQ(0x3c) BUILD_IRQ(0x3d) BUILD_IRQ(0x3e) BUILD_IRQ(0x3f) BUILD_IRQ(0x40) BUILD_IRQ(0x41) BUILD_IRQ(0x42) BUILD_IRQ(0x43) BUILD_IRQ(0x44) BUILD_IRQ(0x45) BUILD_IRQ(0x46) BUILD_IRQ(0x47) BUILD_IRQ(0x48) BUILD_IRQ(0x49) BUILD_IRQ(0x4a) #ifdef CONFIG_ETRAXFS BUILD_TIMER_IRQ(0x4b, 0) #else BUILD_IRQ(0x4b) #endif BUILD_IRQ(0x4c) BUILD_IRQ(0x4d) BUILD_IRQ(0x4e) BUILD_IRQ(0x4f) BUILD_IRQ(0x50) #if MACH_IRQS > 32 BUILD_IRQ(0x51) BUILD_IRQ(0x52) BUILD_IRQ(0x53) BUILD_IRQ(0x54) BUILD_IRQ(0x55) BUILD_IRQ(0x56) BUILD_IRQ(0x57) BUILD_IRQ(0x58) BUILD_IRQ(0x59) BUILD_IRQ(0x5a) BUILD_IRQ(0x5b) BUILD_IRQ(0x5c) BUILD_IRQ(0x5d) BUILD_IRQ(0x5e) BUILD_IRQ(0x5f) BUILD_IRQ(0x60) BUILD_IRQ(0x61) BUILD_IRQ(0x62) BUILD_IRQ(0x63) BUILD_IRQ(0x64) BUILD_IRQ(0x65) BUILD_IRQ(0x66) BUILD_IRQ(0x67) BUILD_IRQ(0x68) BUILD_IRQ(0x69) BUILD_IRQ(0x6a) BUILD_IRQ(0x6b) BUILD_IRQ(0x6c) BUILD_IRQ(0x6d) BUILD_IRQ(0x6e) BUILD_IRQ(0x6f) BUILD_IRQ(0x70) #endif /* Pointers to the low-level handlers. */ static void (*interrupt[MACH_IRQS])(void) = { IRQ0x31_interrupt, IRQ0x32_interrupt, IRQ0x33_interrupt, IRQ0x34_interrupt, IRQ0x35_interrupt, IRQ0x36_interrupt, IRQ0x37_interrupt, IRQ0x38_interrupt, IRQ0x39_interrupt, IRQ0x3a_interrupt, IRQ0x3b_interrupt, IRQ0x3c_interrupt, IRQ0x3d_interrupt, IRQ0x3e_interrupt, IRQ0x3f_interrupt, IRQ0x40_interrupt, IRQ0x41_interrupt, IRQ0x42_interrupt, IRQ0x43_interrupt, IRQ0x44_interrupt, IRQ0x45_interrupt, IRQ0x46_interrupt, IRQ0x47_interrupt, IRQ0x48_interrupt, IRQ0x49_interrupt, IRQ0x4a_interrupt, IRQ0x4b_interrupt, IRQ0x4c_interrupt, IRQ0x4d_interrupt, IRQ0x4e_interrupt, IRQ0x4f_interrupt, IRQ0x50_interrupt, #if MACH_IRQS > 32 IRQ0x51_interrupt, IRQ0x52_interrupt, IRQ0x53_interrupt, IRQ0x54_interrupt, IRQ0x55_interrupt, IRQ0x56_interrupt, IRQ0x57_interrupt, IRQ0x58_interrupt, IRQ0x59_interrupt, IRQ0x5a_interrupt, IRQ0x5b_interrupt, IRQ0x5c_interrupt, IRQ0x5d_interrupt, IRQ0x5e_interrupt, IRQ0x5f_interrupt, IRQ0x60_interrupt, IRQ0x61_interrupt, IRQ0x62_interrupt, IRQ0x63_interrupt, IRQ0x64_interrupt, IRQ0x65_interrupt, IRQ0x66_interrupt, IRQ0x67_interrupt, IRQ0x68_interrupt, IRQ0x69_interrupt, IRQ0x6a_interrupt, IRQ0x6b_interrupt, IRQ0x6c_interrupt, IRQ0x6d_interrupt, IRQ0x6e_interrupt, IRQ0x6f_interrupt, IRQ0x70_interrupt, #endif }; void block_irq(int irq, int cpu) { int intr_mask; unsigned long flags; spin_lock_irqsave(&irq_lock, flags); /* Remember, 1 let thru, 0 block. */ if (irq - FIRST_IRQ < 32) { intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, 0); intr_mask &= ~(1 << (irq - FIRST_IRQ)); REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, 0, intr_mask); } else { intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, 1); intr_mask &= ~(1 << (irq - FIRST_IRQ - 32)); REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, 1, intr_mask); } spin_unlock_irqrestore(&irq_lock, flags); } void unblock_irq(int irq, int cpu) { int intr_mask; unsigned long flags; spin_lock_irqsave(&irq_lock, flags); /* Remember, 1 let thru, 0 block. */ if (irq - FIRST_IRQ < 32) { intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, 0); intr_mask |= (1 << (irq - FIRST_IRQ)); REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, 0, intr_mask); } else { intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, 1); intr_mask |= (1 << (irq - FIRST_IRQ - 32)); REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, 1, intr_mask); } spin_unlock_irqrestore(&irq_lock, flags); } /* Find out which CPU the irq should be allocated to. */ static int irq_cpu(int irq) { int cpu; unsigned long flags; spin_lock_irqsave(&irq_lock, flags); cpu = irq_allocations[irq - FIRST_IRQ].cpu; /* Fixed interrupts stay on the local CPU. */ if (cpu == CPU_FIXED) { spin_unlock_irqrestore(&irq_lock, flags); return smp_processor_id(); } /* Let the interrupt stay if possible */ if (cpumask_test_cpu(cpu, &irq_allocations[irq - FIRST_IRQ].mask)) goto out; /* IRQ must be moved to another CPU. */ cpu = cpumask_first(&irq_allocations[irq - FIRST_IRQ].mask); irq_allocations[irq - FIRST_IRQ].cpu = cpu; out: spin_unlock_irqrestore(&irq_lock, flags); return cpu; } void crisv32_mask_irq(int irq) { int cpu; for (cpu = 0; cpu < NR_CPUS; cpu++) block_irq(irq, cpu); } void crisv32_unmask_irq(int irq) { unblock_irq(irq, irq_cpu(irq)); } static void enable_crisv32_irq(struct irq_data *data) { crisv32_unmask_irq(data->irq); } static void disable_crisv32_irq(struct irq_data *data) { crisv32_mask_irq(data->irq); } static int set_affinity_crisv32_irq(struct irq_data *data, const struct cpumask *dest, bool force) { unsigned long flags; spin_lock_irqsave(&irq_lock, flags); irq_allocations[data->irq - FIRST_IRQ].mask = *dest; spin_unlock_irqrestore(&irq_lock, flags); return 0; } static struct irq_chip crisv32_irq_type = { .name = "CRISv32", .irq_shutdown = disable_crisv32_irq, .irq_enable = enable_crisv32_irq, .irq_disable = disable_crisv32_irq, .irq_set_affinity = set_affinity_crisv32_irq, }; void set_exception_vector(int n, irqvectptr addr) { etrax_irv->v[n] = (irqvectptr) addr; } extern void do_IRQ(int irq, struct pt_regs * regs); void crisv32_do_IRQ(int irq, int block, struct pt_regs* regs) { /* Interrupts that may not be moved to another CPU and * are IRQF_DISABLED may skip blocking. This is currently * only valid for the timer IRQ and the IPI and is used * for the timer interrupt to avoid watchdog starvation. */ if (!block) { do_IRQ(irq, regs); return; } block_irq(irq, smp_processor_id()); do_IRQ(irq, regs); unblock_irq(irq, irq_cpu(irq)); } /* If multiple interrupts occur simultaneously we get a multiple * interrupt from the CPU and software has to sort out which * interrupts that happened. There are two special cases here: * * 1. Timer interrupts may never be blocked because of the * watchdog (refer to comment in include/asr/arch/irq.h) * 2. GDB serial port IRQs are unhandled here and will be handled * as a single IRQ when it strikes again because the GDB * stubb wants to save the registers in its own fashion. */ void crisv32_do_multiple(struct pt_regs* regs) { int cpu; int mask; int masked[NBR_REGS]; int bit; int i; cpu = smp_processor_id(); /* An extra irq_enter here to prevent softIRQs to run after * each do_IRQ. This will decrease the interrupt latency. */ irq_enter(); for (i = 0; i < NBR_REGS; i++) { /* Get which IRQs that happened. */ masked[i] = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], r_masked_vect, i); /* Calculate new IRQ mask with these IRQs disabled. */ mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i); mask &= ~masked[i]; /* Timer IRQ is never masked */ #ifdef TIMER_VECT1 if ((i == 1) && (masked[0] & TIMER_MASK)) mask |= TIMER_MASK; #else if ((i == 0) && (masked[0] & TIMER_MASK)) mask |= TIMER_MASK; #endif /* Block all the IRQs */ REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i, mask); /* Check for timer IRQ and handle it special. */ #ifdef TIMER_VECT1 if ((i == 1) && (masked[i] & TIMER_MASK)) { masked[i] &= ~TIMER_MASK; do_IRQ(TIMER0_INTR_VECT, regs); } #else if ((i == 0) && (masked[i] & TIMER_MASK)) { masked[i] &= ~TIMER_MASK; do_IRQ(TIMER0_INTR_VECT, regs); } #endif } #ifdef IGNORE_MASK /* Remove IRQs that can't be handled as multiple. */ masked[0] &= ~IGNORE_MASK; #endif /* Handle the rest of the IRQs. */ for (i = 0; i < NBR_REGS; i++) { for (bit = 0; bit < 32; bit++) { if (masked[i] & (1 << bit)) do_IRQ(bit + FIRST_IRQ + i*32, regs); } } /* Unblock all the IRQs. */ for (i = 0; i < NBR_REGS; i++) { mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i); mask |= masked[i]; REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i, mask); } /* This irq_exit() will trigger the soft IRQs. */ irq_exit(); } /* * This is called by start_kernel. It fixes the IRQ masks and setup the * interrupt vector table to point to bad_interrupt pointers. */ void __init init_IRQ(void) { int i; int j; reg_intr_vect_rw_mask vect_mask = {0}; /* Clear all interrupts masks. */ for (i = 0; i < NBR_REGS; i++) REG_WR_VECT(intr_vect, regi_irq, rw_mask, i, vect_mask); for (i = 0; i < 256; i++) etrax_irv->v[i] = weird_irq; /* Point all IRQ's to bad handlers. */ for (i = FIRST_IRQ, j = 0; j < NR_IRQS; i++, j++) { irq_set_chip_and_handler(j, &crisv32_irq_type, handle_simple_irq); set_exception_vector(i, interrupt[j]); } /* Mark Timer and IPI IRQs as CPU local */ irq_allocations[TIMER0_INTR_VECT - FIRST_IRQ].cpu = CPU_FIXED; irq_set_status_flags(TIMER0_INTR_VECT, IRQ_PER_CPU); irq_allocations[IPI_INTR_VECT - FIRST_IRQ].cpu = CPU_FIXED; irq_set_status_flags(IPI_INTR_VECT, IRQ_PER_CPU); set_exception_vector(0x00, nmi_interrupt); set_exception_vector(0x30, multiple_interrupt); /* Set up handler for various MMU bus faults. */ set_exception_vector(0x04, i_mmu_refill); set_exception_vector(0x05, i_mmu_invalid); set_exception_vector(0x06, i_mmu_access); set_exception_vector(0x07, i_mmu_execute); set_exception_vector(0x08, d_mmu_refill); set_exception_vector(0x09, d_mmu_invalid); set_exception_vector(0x0a, d_mmu_access); set_exception_vector(0x0b, d_mmu_write); #ifdef CONFIG_BUG /* Break 14 handler, used to implement cheap BUG(). */ set_exception_vector(0x1e, breakh_BUG); #endif /* The system-call trap is reached by "break 13". */ set_exception_vector(0x1d, system_call); /* Exception handlers for debugging, both user-mode and kernel-mode. */ /* Break 8. */ set_exception_vector(0x18, gdb_handle_exception); /* Hardware single step. */ set_exception_vector(0x3, gdb_handle_exception); /* Hardware breakpoint. */ set_exception_vector(0xc, gdb_handle_exception); #ifdef CONFIG_ETRAX_KGDB kgdb_init(); /* Everything is set up; now trap the kernel. */ breakpoint(); #endif }