/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2000, 05 by Ralf Baechle (ralf@linux-mips.org) * Copyright (C) 2000 by Silicon Graphics, Inc. * Copyright (C) 2004 by Christoph Hellwig * * On SGI IP27 the ARC memory configuration data is completly bogus but * alternate easier to use mechanisms are available. */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/memblock.h> #include <linux/mm.h> #include <linux/mmzone.h> #include <linux/module.h> #include <linux/nodemask.h> #include <linux/swap.h> #include <linux/bootmem.h> #include <linux/pfn.h> #include <linux/highmem.h> #include <asm/page.h> #include <asm/pgalloc.h> #include <asm/sections.h> #include <asm/sn/arch.h> #include <asm/sn/hub.h> #include <asm/sn/klconfig.h> #include <asm/sn/sn_private.h> #define SLOT_PFNSHIFT (SLOT_SHIFT - PAGE_SHIFT) #define PFN_NASIDSHFT (NASID_SHFT - PAGE_SHIFT) struct node_data *__node_data[MAX_COMPACT_NODES]; EXPORT_SYMBOL(__node_data); static int fine_mode; static int is_fine_dirmode(void) { return (((LOCAL_HUB_L(NI_STATUS_REV_ID) & NSRI_REGIONSIZE_MASK) >> NSRI_REGIONSIZE_SHFT) & REGIONSIZE_FINE); } static hubreg_t get_region(cnodeid_t cnode) { if (fine_mode) return COMPACT_TO_NASID_NODEID(cnode) >> NASID_TO_FINEREG_SHFT; else return COMPACT_TO_NASID_NODEID(cnode) >> NASID_TO_COARSEREG_SHFT; } static hubreg_t region_mask; static void gen_region_mask(hubreg_t *region_mask) { cnodeid_t cnode; (*region_mask) = 0; for_each_online_node(cnode) { (*region_mask) |= 1ULL << get_region(cnode); } } #define rou_rflag rou_flags static int router_distance; static void router_recurse(klrou_t *router_a, klrou_t *router_b, int depth) { klrou_t *router; lboard_t *brd; int port; if (router_a->rou_rflag == 1) return; if (depth >= router_distance) return; router_a->rou_rflag = 1; for (port = 1; port <= MAX_ROUTER_PORTS; port++) { if (router_a->rou_port[port].port_nasid == INVALID_NASID) continue; brd = (lboard_t *)NODE_OFFSET_TO_K0( router_a->rou_port[port].port_nasid, router_a->rou_port[port].port_offset); if (brd->brd_type == KLTYPE_ROUTER) { router = (klrou_t *)NODE_OFFSET_TO_K0(NASID_GET(brd), brd->brd_compts[0]); if (router == router_b) { if (depth < router_distance) router_distance = depth; } else router_recurse(router, router_b, depth + 1); } } router_a->rou_rflag = 0; } unsigned char __node_distances[MAX_COMPACT_NODES][MAX_COMPACT_NODES]; static int __init compute_node_distance(nasid_t nasid_a, nasid_t nasid_b) { klrou_t *router, *router_a = NULL, *router_b = NULL; lboard_t *brd, *dest_brd; cnodeid_t cnode; nasid_t nasid; int port; /* Figure out which routers nodes in question are connected to */ for_each_online_node(cnode) { nasid = COMPACT_TO_NASID_NODEID(cnode); if (nasid == -1) continue; brd = find_lboard_class((lboard_t *)KL_CONFIG_INFO(nasid), KLTYPE_ROUTER); if (!brd) continue; do { if (brd->brd_flags & DUPLICATE_BOARD) continue; router = (klrou_t *)NODE_OFFSET_TO_K0(NASID_GET(brd), brd->brd_compts[0]); router->rou_rflag = 0; for (port = 1; port <= MAX_ROUTER_PORTS; port++) { if (router->rou_port[port].port_nasid == INVALID_NASID) continue; dest_brd = (lboard_t *)NODE_OFFSET_TO_K0( router->rou_port[port].port_nasid, router->rou_port[port].port_offset); if (dest_brd->brd_type == KLTYPE_IP27) { if (dest_brd->brd_nasid == nasid_a) router_a = router; if (dest_brd->brd_nasid == nasid_b) router_b = router; } } } while ((brd = find_lboard_class(KLCF_NEXT(brd), KLTYPE_ROUTER))); } if (router_a == NULL) { printk("node_distance: router_a NULL\n"); return -1; } if (router_b == NULL) { printk("node_distance: router_b NULL\n"); return -1; } if (nasid_a == nasid_b) return 0; if (router_a == router_b) return 1; router_distance = 100; router_recurse(router_a, router_b, 2); return router_distance; } static void __init init_topology_matrix(void) { nasid_t nasid, nasid2; cnodeid_t row, col; for (row = 0; row < MAX_COMPACT_NODES; row++) for (col = 0; col < MAX_COMPACT_NODES; col++) __node_distances[row][col] = -1; for_each_online_node(row) { nasid = COMPACT_TO_NASID_NODEID(row); for_each_online_node(col) { nasid2 = COMPACT_TO_NASID_NODEID(col); __node_distances[row][col] = compute_node_distance(nasid, nasid2); } } } static void __init dump_topology(void) { nasid_t nasid; cnodeid_t cnode; lboard_t *brd, *dest_brd; int port; int router_num = 0; klrou_t *router; cnodeid_t row, col; printk("************** Topology ********************\n"); printk(" "); for_each_online_node(col) printk("%02d ", col); printk("\n"); for_each_online_node(row) { printk("%02d ", row); for_each_online_node(col) printk("%2d ", node_distance(row, col)); printk("\n"); } for_each_online_node(cnode) { nasid = COMPACT_TO_NASID_NODEID(cnode); if (nasid == -1) continue; brd = find_lboard_class((lboard_t *)KL_CONFIG_INFO(nasid), KLTYPE_ROUTER); if (!brd) continue; do { if (brd->brd_flags & DUPLICATE_BOARD) continue; printk("Router %d:", router_num); router_num++; router = (klrou_t *)NODE_OFFSET_TO_K0(NASID_GET(brd), brd->brd_compts[0]); for (port = 1; port <= MAX_ROUTER_PORTS; port++) { if (router->rou_port[port].port_nasid == INVALID_NASID) continue; dest_brd = (lboard_t *)NODE_OFFSET_TO_K0( router->rou_port[port].port_nasid, router->rou_port[port].port_offset); if (dest_brd->brd_type == KLTYPE_IP27) printk(" %d", dest_brd->brd_nasid); if (dest_brd->brd_type == KLTYPE_ROUTER) printk(" r"); } printk("\n"); } while ( (brd = find_lboard_class(KLCF_NEXT(brd), KLTYPE_ROUTER)) ); } } static unsigned long __init slot_getbasepfn(cnodeid_t cnode, int slot) { nasid_t nasid = COMPACT_TO_NASID_NODEID(cnode); return ((unsigned long)nasid << PFN_NASIDSHFT) | (slot << SLOT_PFNSHIFT); } static unsigned long __init slot_psize_compute(cnodeid_t node, int slot) { nasid_t nasid; lboard_t *brd; klmembnk_t *banks; unsigned long size; nasid = COMPACT_TO_NASID_NODEID(node); /* Find the node board */ brd = find_lboard((lboard_t *)KL_CONFIG_INFO(nasid), KLTYPE_IP27); if (!brd) return 0; /* Get the memory bank structure */ banks = (klmembnk_t *) find_first_component(brd, KLSTRUCT_MEMBNK); if (!banks) return 0; /* Size in _Megabytes_ */ size = (unsigned long)banks->membnk_bnksz[slot/4]; /* hack for 128 dimm banks */ if (size <= 128) { if (slot % 4 == 0) { size <<= 20; /* size in bytes */ return(size >> PAGE_SHIFT); } else return 0; } else { size /= 4; size <<= 20; return size >> PAGE_SHIFT; } } static void __init mlreset(void) { int i; master_nasid = get_nasid(); fine_mode = is_fine_dirmode(); /* * Probe for all CPUs - this creates the cpumask and sets up the * mapping tables. We need to do this as early as possible. */ #ifdef CONFIG_SMP cpu_node_probe(); #endif init_topology_matrix(); dump_topology(); gen_region_mask(®ion_mask); setup_replication_mask(); /* * Set all nodes' calias sizes to 8k */ for_each_online_node(i) { nasid_t nasid; nasid = COMPACT_TO_NASID_NODEID(i); /* * Always have node 0 in the region mask, otherwise * CALIAS accesses get exceptions since the hub * thinks it is a node 0 address. */ REMOTE_HUB_S(nasid, PI_REGION_PRESENT, (region_mask | 1)); #ifdef CONFIG_REPLICATE_EXHANDLERS REMOTE_HUB_S(nasid, PI_CALIAS_SIZE, PI_CALIAS_SIZE_8K); #else REMOTE_HUB_S(nasid, PI_CALIAS_SIZE, PI_CALIAS_SIZE_0); #endif #ifdef LATER /* * Set up all hubs to have a big window pointing at * widget 0. Memory mode, widget 0, offset 0 */ REMOTE_HUB_S(nasid, IIO_ITTE(SWIN0_BIGWIN), ((HUB_PIO_MAP_TO_MEM << IIO_ITTE_IOSP_SHIFT) | (0 << IIO_ITTE_WIDGET_SHIFT))); #endif } } static void __init szmem(void) { unsigned long slot_psize, slot0sz = 0, nodebytes; /* Hack to detect problem configs */ int slot; cnodeid_t node; num_physpages = 0; for_each_online_node(node) { nodebytes = 0; for (slot = 0; slot < MAX_MEM_SLOTS; slot++) { slot_psize = slot_psize_compute(node, slot); if (slot == 0) slot0sz = slot_psize; /* * We need to refine the hack when we have replicated * kernel text. */ nodebytes += (1LL << SLOT_SHIFT); if (!slot_psize) continue; if ((nodebytes >> PAGE_SHIFT) * (sizeof(struct page)) > (slot0sz << PAGE_SHIFT)) { printk("Ignoring slot %d onwards on node %d\n", slot, node); slot = MAX_MEM_SLOTS; continue; } num_physpages += slot_psize; memblock_add_node(PFN_PHYS(slot_getbasepfn(node, slot)), PFN_PHYS(slot_psize), node); } } } static void __init node_mem_init(cnodeid_t node) { unsigned long slot_firstpfn = slot_getbasepfn(node, 0); unsigned long slot_freepfn = node_getfirstfree(node); unsigned long bootmap_size; unsigned long start_pfn, end_pfn; get_pfn_range_for_nid(node, &start_pfn, &end_pfn); /* * Allocate the node data structures on the node first. */ __node_data[node] = __va(slot_freepfn << PAGE_SHIFT); memset(__node_data[node], 0, PAGE_SIZE); NODE_DATA(node)->bdata = &bootmem_node_data[node]; NODE_DATA(node)->node_start_pfn = start_pfn; NODE_DATA(node)->node_spanned_pages = end_pfn - start_pfn; cpus_clear(hub_data(node)->h_cpus); slot_freepfn += PFN_UP(sizeof(struct pglist_data) + sizeof(struct hub_data)); bootmap_size = init_bootmem_node(NODE_DATA(node), slot_freepfn, start_pfn, end_pfn); free_bootmem_with_active_regions(node, end_pfn); reserve_bootmem_node(NODE_DATA(node), slot_firstpfn << PAGE_SHIFT, ((slot_freepfn - slot_firstpfn) << PAGE_SHIFT) + bootmap_size, BOOTMEM_DEFAULT); sparse_memory_present_with_active_regions(node); } /* * A node with nothing. We use it to avoid any special casing in * cpumask_of_node */ static struct node_data null_node = { .hub = { .h_cpus = CPU_MASK_NONE } }; /* * Currently, the intranode memory hole support assumes that each slot * contains at least 32 MBytes of memory. We assume all bootmem data * fits on the first slot. */ void __init prom_meminit(void) { cnodeid_t node; mlreset(); szmem(); for (node = 0; node < MAX_COMPACT_NODES; node++) { if (node_online(node)) { node_mem_init(node); continue; } __node_data[node] = &null_node; } } void __init prom_free_prom_memory(void) { /* We got nothing to free here ... */ } extern void setup_zero_pages(void); void __init paging_init(void) { unsigned long zones_size[MAX_NR_ZONES] = {0, }; unsigned node; pagetable_init(); for_each_online_node(node) { unsigned long start_pfn, end_pfn; get_pfn_range_for_nid(node, &start_pfn, &end_pfn); if (end_pfn > max_low_pfn) max_low_pfn = end_pfn; } zones_size[ZONE_NORMAL] = max_low_pfn; free_area_init_nodes(zones_size); } void __init mem_init(void) { unsigned long codesize, datasize, initsize, tmp; unsigned node; high_memory = (void *) __va(num_physpages << PAGE_SHIFT); for_each_online_node(node) { /* * This will free up the bootmem, ie, slot 0 memory. */ totalram_pages += free_all_bootmem_node(NODE_DATA(node)); } setup_zero_pages(); /* This comes from node 0 */ codesize = (unsigned long) &_etext - (unsigned long) &_text; datasize = (unsigned long) &_edata - (unsigned long) &_etext; initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin; tmp = nr_free_pages(); printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, " "%ldk reserved, %ldk data, %ldk init, %ldk highmem)\n", tmp << (PAGE_SHIFT-10), num_physpages << (PAGE_SHIFT-10), codesize >> 10, (num_physpages - tmp) << (PAGE_SHIFT-10), datasize >> 10, initsize >> 10, totalhigh_pages << (PAGE_SHIFT-10)); }