/* * Copyright 2006 Jake Moilanen <moilanen@austin.ibm.com>, IBM Corp. * Copyright 2006-2007 Michael Ellerman, IBM Corp. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; version 2 of the * License. * */ #include <linux/device.h> #include <linux/irq.h> #include <linux/msi.h> #include <asm/rtas.h> #include <asm/hw_irq.h> #include <asm/ppc-pci.h> static int query_token, change_token; #define RTAS_QUERY_FN 0 #define RTAS_CHANGE_FN 1 #define RTAS_RESET_FN 2 #define RTAS_CHANGE_MSI_FN 3 #define RTAS_CHANGE_MSIX_FN 4 #define RTAS_CHANGE_32MSI_FN 5 /* RTAS Helpers */ static int rtas_change_msi(struct pci_dn *pdn, u32 func, u32 num_irqs) { u32 addr, seq_num, rtas_ret[3]; unsigned long buid; int rc; addr = rtas_config_addr(pdn->busno, pdn->devfn, 0); buid = pdn->phb->buid; seq_num = 1; do { if (func == RTAS_CHANGE_MSI_FN || func == RTAS_CHANGE_MSIX_FN || func == RTAS_CHANGE_32MSI_FN) rc = rtas_call(change_token, 6, 4, rtas_ret, addr, BUID_HI(buid), BUID_LO(buid), func, num_irqs, seq_num); else rc = rtas_call(change_token, 6, 3, rtas_ret, addr, BUID_HI(buid), BUID_LO(buid), func, num_irqs, seq_num); seq_num = rtas_ret[1]; } while (rtas_busy_delay(rc)); /* * If the RTAS call succeeded, return the number of irqs allocated. * If not, make sure we return a negative error code. */ if (rc == 0) rc = rtas_ret[0]; else if (rc > 0) rc = -rc; pr_debug("rtas_msi: ibm,change_msi(func=%d,num=%d), got %d rc = %d\n", func, num_irqs, rtas_ret[0], rc); return rc; } static void rtas_disable_msi(struct pci_dev *pdev) { struct pci_dn *pdn; pdn = pci_get_pdn(pdev); if (!pdn) return; /* * disabling MSI with the explicit interface also disables MSI-X */ if (rtas_change_msi(pdn, RTAS_CHANGE_MSI_FN, 0) != 0) { /* * may have failed because explicit interface is not * present */ if (rtas_change_msi(pdn, RTAS_CHANGE_FN, 0) != 0) { pr_debug("rtas_msi: Setting MSIs to 0 failed!\n"); } } } static int rtas_query_irq_number(struct pci_dn *pdn, int offset) { u32 addr, rtas_ret[2]; unsigned long buid; int rc; addr = rtas_config_addr(pdn->busno, pdn->devfn, 0); buid = pdn->phb->buid; do { rc = rtas_call(query_token, 4, 3, rtas_ret, addr, BUID_HI(buid), BUID_LO(buid), offset); } while (rtas_busy_delay(rc)); if (rc) { pr_debug("rtas_msi: error (%d) querying source number\n", rc); return rc; } return rtas_ret[0]; } static void rtas_teardown_msi_irqs(struct pci_dev *pdev) { struct msi_desc *entry; list_for_each_entry(entry, &pdev->msi_list, list) { if (entry->irq == NO_IRQ) continue; irq_set_msi_desc(entry->irq, NULL); irq_dispose_mapping(entry->irq); } rtas_disable_msi(pdev); } static int check_req(struct pci_dev *pdev, int nvec, char *prop_name) { struct device_node *dn; struct pci_dn *pdn; const u32 *req_msi; pdn = pci_get_pdn(pdev); if (!pdn) return -ENODEV; dn = pdn->node; req_msi = of_get_property(dn, prop_name, NULL); if (!req_msi) { pr_debug("rtas_msi: No %s on %s\n", prop_name, dn->full_name); return -ENOENT; } if (*req_msi < nvec) { pr_debug("rtas_msi: %s requests < %d MSIs\n", prop_name, nvec); if (*req_msi == 0) /* Be paranoid */ return -ENOSPC; return *req_msi; } return 0; } static int check_req_msi(struct pci_dev *pdev, int nvec) { return check_req(pdev, nvec, "ibm,req#msi"); } static int check_req_msix(struct pci_dev *pdev, int nvec) { return check_req(pdev, nvec, "ibm,req#msi-x"); } /* Quota calculation */ static struct device_node *find_pe_total_msi(struct pci_dev *dev, int *total) { struct device_node *dn; const u32 *p; dn = of_node_get(pci_device_to_OF_node(dev)); while (dn) { p = of_get_property(dn, "ibm,pe-total-#msi", NULL); if (p) { pr_debug("rtas_msi: found prop on dn %s\n", dn->full_name); *total = *p; return dn; } dn = of_get_next_parent(dn); } return NULL; } static struct device_node *find_pe_dn(struct pci_dev *dev, int *total) { struct device_node *dn; struct eeh_dev *edev; /* Found our PE and assume 8 at that point. */ dn = pci_device_to_OF_node(dev); if (!dn) return NULL; /* Get the top level device in the PE */ edev = of_node_to_eeh_dev(dn); if (edev->pe) edev = list_first_entry(&edev->pe->edevs, struct eeh_dev, list); dn = eeh_dev_to_of_node(edev); if (!dn) return NULL; /* We actually want the parent */ dn = of_get_parent(dn); if (!dn) return NULL; /* Hardcode of 8 for old firmwares */ *total = 8; pr_debug("rtas_msi: using PE dn %s\n", dn->full_name); return dn; } struct msi_counts { struct device_node *requestor; int num_devices; int request; int quota; int spare; int over_quota; }; static void *count_non_bridge_devices(struct device_node *dn, void *data) { struct msi_counts *counts = data; const u32 *p; u32 class; pr_debug("rtas_msi: counting %s\n", dn->full_name); p = of_get_property(dn, "class-code", NULL); class = p ? *p : 0; if ((class >> 8) != PCI_CLASS_BRIDGE_PCI) counts->num_devices++; return NULL; } static void *count_spare_msis(struct device_node *dn, void *data) { struct msi_counts *counts = data; const u32 *p; int req; if (dn == counts->requestor) req = counts->request; else { /* We don't know if a driver will try to use MSI or MSI-X, * so we just have to punt and use the larger of the two. */ req = 0; p = of_get_property(dn, "ibm,req#msi", NULL); if (p) req = *p; p = of_get_property(dn, "ibm,req#msi-x", NULL); if (p) req = max(req, (int)*p); } if (req < counts->quota) counts->spare += counts->quota - req; else if (req > counts->quota) counts->over_quota++; return NULL; } static int msi_quota_for_device(struct pci_dev *dev, int request) { struct device_node *pe_dn; struct msi_counts counts; int total; pr_debug("rtas_msi: calc quota for %s, request %d\n", pci_name(dev), request); pe_dn = find_pe_total_msi(dev, &total); if (!pe_dn) pe_dn = find_pe_dn(dev, &total); if (!pe_dn) { pr_err("rtas_msi: couldn't find PE for %s\n", pci_name(dev)); goto out; } pr_debug("rtas_msi: found PE %s\n", pe_dn->full_name); memset(&counts, 0, sizeof(struct msi_counts)); /* Work out how many devices we have below this PE */ traverse_pci_devices(pe_dn, count_non_bridge_devices, &counts); if (counts.num_devices == 0) { pr_err("rtas_msi: found 0 devices under PE for %s\n", pci_name(dev)); goto out; } counts.quota = total / counts.num_devices; if (request <= counts.quota) goto out; /* else, we have some more calculating to do */ counts.requestor = pci_device_to_OF_node(dev); counts.request = request; traverse_pci_devices(pe_dn, count_spare_msis, &counts); /* If the quota isn't an integer multiple of the total, we can * use the remainder as spare MSIs for anyone that wants them. */ counts.spare += total % counts.num_devices; /* Divide any spare by the number of over-quota requestors */ if (counts.over_quota) counts.quota += counts.spare / counts.over_quota; /* And finally clamp the request to the possibly adjusted quota */ request = min(counts.quota, request); pr_debug("rtas_msi: request clamped to quota %d\n", request); out: of_node_put(pe_dn); return request; } static int rtas_msi_check_device(struct pci_dev *pdev, int nvec, int type) { int quota, rc; if (type == PCI_CAP_ID_MSIX) rc = check_req_msix(pdev, nvec); else rc = check_req_msi(pdev, nvec); if (rc) return rc; quota = msi_quota_for_device(pdev, nvec); if (quota && quota < nvec) return quota; return 0; } static int check_msix_entries(struct pci_dev *pdev) { struct msi_desc *entry; int expected; /* There's no way for us to express to firmware that we want * a discontiguous, or non-zero based, range of MSI-X entries. * So we must reject such requests. */ expected = 0; list_for_each_entry(entry, &pdev->msi_list, list) { if (entry->msi_attrib.entry_nr != expected) { pr_debug("rtas_msi: bad MSI-X entries.\n"); return -EINVAL; } expected++; } return 0; } static void rtas_hack_32bit_msi_gen2(struct pci_dev *pdev) { u32 addr_hi, addr_lo; /* * We should only get in here for IODA1 configs. This is based on the * fact that we using RTAS for MSIs, we don't have the 32 bit MSI RTAS * support, and we are in a PCIe Gen2 slot. */ dev_info(&pdev->dev, "rtas_msi: No 32 bit MSI firmware support, forcing 32 bit MSI\n"); pci_read_config_dword(pdev, pdev->msi_cap + PCI_MSI_ADDRESS_HI, &addr_hi); addr_lo = 0xffff0000 | ((addr_hi >> (48 - 32)) << 4); pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_ADDRESS_LO, addr_lo); pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_ADDRESS_HI, 0); } static int rtas_setup_msi_irqs(struct pci_dev *pdev, int nvec_in, int type) { struct pci_dn *pdn; int hwirq, virq, i, rc; struct msi_desc *entry; struct msi_msg msg; int nvec = nvec_in; int use_32bit_msi_hack = 0; pdn = pci_get_pdn(pdev); if (!pdn) return -ENODEV; if (type == PCI_CAP_ID_MSIX && check_msix_entries(pdev)) return -EINVAL; /* * Firmware currently refuse any non power of two allocation * so we round up if the quota will allow it. */ if (type == PCI_CAP_ID_MSIX) { int m = roundup_pow_of_two(nvec); int quota = msi_quota_for_device(pdev, m); if (quota >= m) nvec = m; } /* * Try the new more explicit firmware interface, if that fails fall * back to the old interface. The old interface is known to never * return MSI-Xs. */ again: if (type == PCI_CAP_ID_MSI) { if (pdn->force_32bit_msi) { rc = rtas_change_msi(pdn, RTAS_CHANGE_32MSI_FN, nvec); if (rc < 0) { /* * We only want to run the 32 bit MSI hack below if * the max bus speed is Gen2 speed */ if (pdev->bus->max_bus_speed != PCIE_SPEED_5_0GT) return rc; use_32bit_msi_hack = 1; } } else rc = -1; if (rc < 0) rc = rtas_change_msi(pdn, RTAS_CHANGE_MSI_FN, nvec); if (rc < 0) { pr_debug("rtas_msi: trying the old firmware call.\n"); rc = rtas_change_msi(pdn, RTAS_CHANGE_FN, nvec); } if (use_32bit_msi_hack && rc > 0) rtas_hack_32bit_msi_gen2(pdev); } else rc = rtas_change_msi(pdn, RTAS_CHANGE_MSIX_FN, nvec); if (rc != nvec) { if (nvec != nvec_in) { nvec = nvec_in; goto again; } pr_debug("rtas_msi: rtas_change_msi() failed\n"); return rc; } i = 0; list_for_each_entry(entry, &pdev->msi_list, list) { hwirq = rtas_query_irq_number(pdn, i++); if (hwirq < 0) { pr_debug("rtas_msi: error (%d) getting hwirq\n", rc); return hwirq; } virq = irq_create_mapping(NULL, hwirq); if (virq == NO_IRQ) { pr_debug("rtas_msi: Failed mapping hwirq %d\n", hwirq); return -ENOSPC; } dev_dbg(&pdev->dev, "rtas_msi: allocated virq %d\n", virq); irq_set_msi_desc(virq, entry); /* Read config space back so we can restore after reset */ read_msi_msg(virq, &msg); entry->msg = msg; } return 0; } static void rtas_msi_pci_irq_fixup(struct pci_dev *pdev) { /* No LSI -> leave MSIs (if any) configured */ if (pdev->irq == NO_IRQ) { dev_dbg(&pdev->dev, "rtas_msi: no LSI, nothing to do.\n"); return; } /* No MSI -> MSIs can't have been assigned by fw, leave LSI */ if (check_req_msi(pdev, 1) && check_req_msix(pdev, 1)) { dev_dbg(&pdev->dev, "rtas_msi: no req#msi/x, nothing to do.\n"); return; } dev_dbg(&pdev->dev, "rtas_msi: disabling existing MSI.\n"); rtas_disable_msi(pdev); } static int rtas_msi_init(void) { query_token = rtas_token("ibm,query-interrupt-source-number"); change_token = rtas_token("ibm,change-msi"); if ((query_token == RTAS_UNKNOWN_SERVICE) || (change_token == RTAS_UNKNOWN_SERVICE)) { pr_debug("rtas_msi: no RTAS tokens, no MSI support.\n"); return -1; } pr_debug("rtas_msi: Registering RTAS MSI callbacks.\n"); WARN_ON(ppc_md.setup_msi_irqs); ppc_md.setup_msi_irqs = rtas_setup_msi_irqs; ppc_md.teardown_msi_irqs = rtas_teardown_msi_irqs; ppc_md.msi_check_device = rtas_msi_check_device; WARN_ON(ppc_md.pci_irq_fixup); ppc_md.pci_irq_fixup = rtas_msi_pci_irq_fixup; return 0; } arch_initcall(rtas_msi_init);