/* * Copyright IBM Corp. 2012 * Author(s): Jan Glauber <jang@linux.vnet.ibm.com> */ #include <linux/kernel.h> #include <linux/syscalls.h> #include <linux/signal.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/kernel_stat.h> #include <asm/runtime_instr.h> #include <asm/cpu_mf.h> #include <asm/irq.h> /* empty control block to disable RI by loading it */ struct runtime_instr_cb runtime_instr_empty_cb; static int runtime_instr_avail(void) { return test_facility(64); } static void disable_runtime_instr(void) { struct pt_regs *regs = task_pt_regs(current); load_runtime_instr_cb(&runtime_instr_empty_cb); /* * Make sure the RI bit is deleted from the PSW. If the user did not * switch off RI before the system call the process will get a * specification exception otherwise. */ regs->psw.mask &= ~PSW_MASK_RI; } static void init_runtime_instr_cb(struct runtime_instr_cb *cb) { cb->buf_limit = 0xfff; if (s390_user_mode == HOME_SPACE_MODE) cb->home_space = 1; cb->int_requested = 1; cb->pstate = 1; cb->pstate_set_buf = 1; cb->pstate_sample = 1; cb->pstate_collect = 1; cb->key = PAGE_DEFAULT_KEY; cb->valid = 1; } void exit_thread_runtime_instr(void) { struct task_struct *task = current; if (!task->thread.ri_cb) return; disable_runtime_instr(); kfree(task->thread.ri_cb); task->thread.ri_signum = 0; task->thread.ri_cb = NULL; } static void runtime_instr_int_handler(struct ext_code ext_code, unsigned int param32, unsigned long param64) { struct siginfo info; if (!(param32 & CPU_MF_INT_RI_MASK)) return; inc_irq_stat(IRQEXT_CMR); if (!current->thread.ri_cb) return; if (current->thread.ri_signum < SIGRTMIN || current->thread.ri_signum > SIGRTMAX) { WARN_ON_ONCE(1); return; } memset(&info, 0, sizeof(info)); info.si_signo = current->thread.ri_signum; info.si_code = SI_QUEUE; if (param32 & CPU_MF_INT_RI_BUF_FULL) info.si_int = ENOBUFS; else if (param32 & CPU_MF_INT_RI_HALTED) info.si_int = ECANCELED; else return; /* unknown reason */ send_sig_info(current->thread.ri_signum, &info, current); } SYSCALL_DEFINE2(s390_runtime_instr, int, command, int, signum) { struct runtime_instr_cb *cb; if (!runtime_instr_avail()) return -EOPNOTSUPP; if (command == S390_RUNTIME_INSTR_STOP) { preempt_disable(); exit_thread_runtime_instr(); preempt_enable(); return 0; } if (command != S390_RUNTIME_INSTR_START || (signum < SIGRTMIN || signum > SIGRTMAX)) return -EINVAL; if (!current->thread.ri_cb) { cb = kzalloc(sizeof(*cb), GFP_KERNEL); if (!cb) return -ENOMEM; } else { cb = current->thread.ri_cb; memset(cb, 0, sizeof(*cb)); } init_runtime_instr_cb(cb); current->thread.ri_signum = signum; /* now load the control block to make it available */ preempt_disable(); current->thread.ri_cb = cb; load_runtime_instr_cb(cb); preempt_enable(); return 0; } static int __init runtime_instr_init(void) { int rc; if (!runtime_instr_avail()) return 0; measurement_alert_subclass_register(); rc = register_external_interrupt(0x1407, runtime_instr_int_handler); if (rc) measurement_alert_subclass_unregister(); else pr_info("Runtime instrumentation facility initialized\n"); return rc; } device_initcall(runtime_instr_init);