/* * Suspend support specific for s390. * * Copyright IBM Corp. 2009 * * Author(s): Hans-Joachim Picht <hans@linux.vnet.ibm.com> */ #include <linux/pfn.h> #include <linux/suspend.h> #include <linux/mm.h> #include <asm/ctl_reg.h> /* * References to section boundaries */ extern const void __nosave_begin, __nosave_end; /* * The restore of the saved pages in an hibernation image will set * the change and referenced bits in the storage key for each page. * Overindication of the referenced bits after an hibernation cycle * does not cause any harm but the overindication of the change bits * would cause trouble. * Use the ARCH_SAVE_PAGE_KEYS hooks to save the storage key of each * page to the most significant byte of the associated page frame * number in the hibernation image. */ /* * Key storage is allocated as a linked list of pages. * The size of the keys array is (PAGE_SIZE - sizeof(long)) */ struct page_key_data { struct page_key_data *next; unsigned char data[]; }; #define PAGE_KEY_DATA_SIZE (PAGE_SIZE - sizeof(struct page_key_data *)) static struct page_key_data *page_key_data; static struct page_key_data *page_key_rp, *page_key_wp; static unsigned long page_key_rx, page_key_wx; unsigned long suspend_zero_pages; /* * For each page in the hibernation image one additional byte is * stored in the most significant byte of the page frame number. * On suspend no additional memory is required but on resume the * keys need to be memorized until the page data has been restored. * Only then can the storage keys be set to their old state. */ unsigned long page_key_additional_pages(unsigned long pages) { return DIV_ROUND_UP(pages, PAGE_KEY_DATA_SIZE); } /* * Free page_key_data list of arrays. */ void page_key_free(void) { struct page_key_data *pkd; while (page_key_data) { pkd = page_key_data; page_key_data = pkd->next; free_page((unsigned long) pkd); } } /* * Allocate page_key_data list of arrays with enough room to store * one byte for each page in the hibernation image. */ int page_key_alloc(unsigned long pages) { struct page_key_data *pk; unsigned long size; size = DIV_ROUND_UP(pages, PAGE_KEY_DATA_SIZE); while (size--) { pk = (struct page_key_data *) get_zeroed_page(GFP_KERNEL); if (!pk) { page_key_free(); return -ENOMEM; } pk->next = page_key_data; page_key_data = pk; } page_key_rp = page_key_wp = page_key_data; page_key_rx = page_key_wx = 0; return 0; } /* * Save the storage key into the upper 8 bits of the page frame number. */ void page_key_read(unsigned long *pfn) { unsigned long addr; addr = (unsigned long) page_address(pfn_to_page(*pfn)); *(unsigned char *) pfn = (unsigned char) page_get_storage_key(addr); } /* * Extract the storage key from the upper 8 bits of the page frame number * and store it in the page_key_data list of arrays. */ void page_key_memorize(unsigned long *pfn) { page_key_wp->data[page_key_wx] = *(unsigned char *) pfn; *(unsigned char *) pfn = 0; if (++page_key_wx < PAGE_KEY_DATA_SIZE) return; page_key_wp = page_key_wp->next; page_key_wx = 0; } /* * Get the next key from the page_key_data list of arrays and set the * storage key of the page referred by @address. If @address refers to * a "safe" page the swsusp_arch_resume code will transfer the storage * key from the buffer page to the original page. */ void page_key_write(void *address) { page_set_storage_key((unsigned long) address, page_key_rp->data[page_key_rx], 0); if (++page_key_rx >= PAGE_KEY_DATA_SIZE) return; page_key_rp = page_key_rp->next; page_key_rx = 0; } int pfn_is_nosave(unsigned long pfn) { unsigned long nosave_begin_pfn = PFN_DOWN(__pa(&__nosave_begin)); unsigned long nosave_end_pfn = PFN_DOWN(__pa(&__nosave_end)); /* Always save lowcore pages (LC protection might be enabled). */ if (pfn <= LC_PAGES) return 0; if (pfn >= nosave_begin_pfn && pfn < nosave_end_pfn) return 1; /* Skip memory holes and read-only pages (NSS, DCSS, ...). */ if (tprot(PFN_PHYS(pfn))) return 1; return 0; } /* * PM notifier callback for suspend */ static int suspend_pm_cb(struct notifier_block *nb, unsigned long action, void *ptr) { switch (action) { case PM_SUSPEND_PREPARE: case PM_HIBERNATION_PREPARE: suspend_zero_pages = __get_free_pages(GFP_KERNEL, LC_ORDER); if (!suspend_zero_pages) return NOTIFY_BAD; break; case PM_POST_SUSPEND: case PM_POST_HIBERNATION: free_pages(suspend_zero_pages, LC_ORDER); break; default: return NOTIFY_DONE; } return NOTIFY_OK; } static int __init suspend_pm_init(void) { pm_notifier(suspend_pm_cb, 0); return 0; } arch_initcall(suspend_pm_init); void save_processor_state(void) { /* swsusp_arch_suspend() actually saves all cpu register contents. * Machine checks must be disabled since swsusp_arch_suspend() stores * register contents to their lowcore save areas. That's the same * place where register contents on machine checks would be saved. * To avoid register corruption disable machine checks. * We must also disable machine checks in the new psw mask for * program checks, since swsusp_arch_suspend() may generate program * checks. Disabling machine checks for all other new psw masks is * just paranoia. */ local_mcck_disable(); /* Disable lowcore protection */ __ctl_clear_bit(0,28); S390_lowcore.external_new_psw.mask &= ~PSW_MASK_MCHECK; S390_lowcore.svc_new_psw.mask &= ~PSW_MASK_MCHECK; S390_lowcore.io_new_psw.mask &= ~PSW_MASK_MCHECK; S390_lowcore.program_new_psw.mask &= ~PSW_MASK_MCHECK; } void restore_processor_state(void) { S390_lowcore.external_new_psw.mask |= PSW_MASK_MCHECK; S390_lowcore.svc_new_psw.mask |= PSW_MASK_MCHECK; S390_lowcore.io_new_psw.mask |= PSW_MASK_MCHECK; S390_lowcore.program_new_psw.mask |= PSW_MASK_MCHECK; /* Enable lowcore protection */ __ctl_set_bit(0,28); local_mcck_enable(); }