/* * Copyright 2010 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. */ #include <linux/sched.h> #include <linux/kernel.h> #include <linux/mmzone.h> #include <linux/bootmem.h> #include <linux/module.h> #include <linux/node.h> #include <linux/cpu.h> #include <linux/ioport.h> #include <linux/irq.h> #include <linux/kexec.h> #include <linux/pci.h> #include <linux/swiotlb.h> #include <linux/initrd.h> #include <linux/io.h> #include <linux/highmem.h> #include <linux/smp.h> #include <linux/timex.h> #include <linux/hugetlb.h> #include <linux/start_kernel.h> #include <linux/screen_info.h> #include <asm/setup.h> #include <asm/sections.h> #include <asm/cacheflush.h> #include <asm/pgalloc.h> #include <asm/mmu_context.h> #include <hv/hypervisor.h> #include <arch/interrupts.h> /* <linux/smp.h> doesn't provide this definition. */ #ifndef CONFIG_SMP #define setup_max_cpus 1 #endif static inline int ABS(int x) { return x >= 0 ? x : -x; } /* Chip information */ char chip_model[64] __write_once; #ifdef CONFIG_VT struct screen_info screen_info; #endif struct pglist_data node_data[MAX_NUMNODES] __read_mostly; EXPORT_SYMBOL(node_data); /* Information on the NUMA nodes that we compute early */ unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES]; unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES]; unsigned long __initdata node_memmap_pfn[MAX_NUMNODES]; unsigned long __initdata node_percpu_pfn[MAX_NUMNODES]; unsigned long __initdata node_free_pfn[MAX_NUMNODES]; static unsigned long __initdata node_percpu[MAX_NUMNODES]; /* * per-CPU stack and boot info. */ DEFINE_PER_CPU(unsigned long, boot_sp) = (unsigned long)init_stack + THREAD_SIZE; #ifdef CONFIG_SMP DEFINE_PER_CPU(unsigned long, boot_pc) = (unsigned long)start_kernel; #else /* * The variable must be __initdata since it references __init code. * With CONFIG_SMP it is per-cpu data, which is exempt from validation. */ unsigned long __initdata boot_pc = (unsigned long)start_kernel; #endif #ifdef CONFIG_HIGHMEM /* Page frame index of end of lowmem on each controller. */ unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES]; /* Number of pages that can be mapped into lowmem. */ static unsigned long __initdata mappable_physpages; #endif /* Data on which physical memory controller corresponds to which NUMA node */ int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 }; #ifdef CONFIG_HIGHMEM /* Map information from VAs to PAs */ unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)] __write_once __attribute__((aligned(L2_CACHE_BYTES))); EXPORT_SYMBOL(pbase_map); /* Map information from PAs to VAs */ void *vbase_map[NR_PA_HIGHBIT_VALUES] __write_once __attribute__((aligned(L2_CACHE_BYTES))); EXPORT_SYMBOL(vbase_map); #endif /* Node number as a function of the high PA bits */ int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once; EXPORT_SYMBOL(highbits_to_node); static unsigned int __initdata maxmem_pfn = -1U; static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1U }; static nodemask_t __initdata isolnodes; #if defined(CONFIG_PCI) && !defined(__tilegx__) enum { DEFAULT_PCI_RESERVE_MB = 64 }; static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB; unsigned long __initdata pci_reserve_start_pfn = -1U; unsigned long __initdata pci_reserve_end_pfn = -1U; #endif static int __init setup_maxmem(char *str) { unsigned long long maxmem; if (str == NULL || (maxmem = memparse(str, NULL)) == 0) return -EINVAL; maxmem_pfn = (maxmem >> HPAGE_SHIFT) << (HPAGE_SHIFT - PAGE_SHIFT); pr_info("Forcing RAM used to no more than %dMB\n", maxmem_pfn >> (20 - PAGE_SHIFT)); return 0; } early_param("maxmem", setup_maxmem); static int __init setup_maxnodemem(char *str) { char *endp; unsigned long long maxnodemem; long node; node = str ? simple_strtoul(str, &endp, 0) : INT_MAX; if (node >= MAX_NUMNODES || *endp != ':') return -EINVAL; maxnodemem = memparse(endp+1, NULL); maxnodemem_pfn[node] = (maxnodemem >> HPAGE_SHIFT) << (HPAGE_SHIFT - PAGE_SHIFT); pr_info("Forcing RAM used on node %ld to no more than %dMB\n", node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT)); return 0; } early_param("maxnodemem", setup_maxnodemem); static int __init setup_isolnodes(char *str) { char buf[MAX_NUMNODES * 5]; if (str == NULL || nodelist_parse(str, isolnodes) != 0) return -EINVAL; nodelist_scnprintf(buf, sizeof(buf), isolnodes); pr_info("Set isolnodes value to '%s'\n", buf); return 0; } early_param("isolnodes", setup_isolnodes); #if defined(CONFIG_PCI) && !defined(__tilegx__) static int __init setup_pci_reserve(char* str) { unsigned long mb; if (str == NULL || strict_strtoul(str, 0, &mb) != 0 || mb > 3 * 1024) return -EINVAL; pci_reserve_mb = mb; pr_info("Reserving %dMB for PCIE root complex mappings\n", pci_reserve_mb); return 0; } early_param("pci_reserve", setup_pci_reserve); #endif #ifndef __tilegx__ /* * vmalloc=size forces the vmalloc area to be exactly 'size' bytes. * This can be used to increase (or decrease) the vmalloc area. */ static int __init parse_vmalloc(char *arg) { if (!arg) return -EINVAL; VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK; /* See validate_va() for more on this test. */ if ((long)_VMALLOC_START >= 0) early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n", VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL); return 0; } early_param("vmalloc", parse_vmalloc); #endif #ifdef CONFIG_HIGHMEM /* * Determine for each controller where its lowmem is mapped and how much of * it is mapped there. On controller zero, the first few megabytes are * already mapped in as code at MEM_SV_INTRPT, so in principle we could * start our data mappings higher up, but for now we don't bother, to avoid * additional confusion. * * One question is whether, on systems with more than 768 Mb and * controllers of different sizes, to map in a proportionate amount of * each one, or to try to map the same amount from each controller. * (E.g. if we have three controllers with 256MB, 1GB, and 256MB * respectively, do we map 256MB from each, or do we map 128 MB, 512 * MB, and 128 MB respectively?) For now we use a proportionate * solution like the latter. * * The VA/PA mapping demands that we align our decisions at 16 MB * boundaries so that we can rapidly convert VA to PA. */ static void *__init setup_pa_va_mapping(void) { unsigned long curr_pages = 0; unsigned long vaddr = PAGE_OFFSET; nodemask_t highonlynodes = isolnodes; int i, j; memset(pbase_map, -1, sizeof(pbase_map)); memset(vbase_map, -1, sizeof(vbase_map)); /* Node zero cannot be isolated for LOWMEM purposes. */ node_clear(0, highonlynodes); /* Count up the number of pages on non-highonlynodes controllers. */ mappable_physpages = 0; for_each_online_node(i) { if (!node_isset(i, highonlynodes)) mappable_physpages += node_end_pfn[i] - node_start_pfn[i]; } for_each_online_node(i) { unsigned long start = node_start_pfn[i]; unsigned long end = node_end_pfn[i]; unsigned long size = end - start; unsigned long vaddr_end; if (node_isset(i, highonlynodes)) { /* Mark this controller as having no lowmem. */ node_lowmem_end_pfn[i] = start; continue; } curr_pages += size; if (mappable_physpages > MAXMEM_PFN) { vaddr_end = PAGE_OFFSET + (((u64)curr_pages * MAXMEM_PFN / mappable_physpages) << PAGE_SHIFT); } else { vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT); } for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) { unsigned long this_pfn = start + (j << HUGETLB_PAGE_ORDER); pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn; if (vbase_map[__pfn_to_highbits(this_pfn)] == (void *)-1) vbase_map[__pfn_to_highbits(this_pfn)] = (void *)(vaddr & HPAGE_MASK); } node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER); BUG_ON(node_lowmem_end_pfn[i] > end); } /* Return highest address of any mapped memory. */ return (void *)vaddr; } #endif /* CONFIG_HIGHMEM */ /* * Register our most important memory mappings with the debug stub. * * This is up to 4 mappings for lowmem, one mapping per memory * controller, plus one for our text segment. */ static void __cpuinit store_permanent_mappings(void) { int i; for_each_online_node(i) { HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT; #ifdef CONFIG_HIGHMEM HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i]; #else HV_PhysAddr high_mapped_pa = node_end_pfn[i]; #endif unsigned long pages = high_mapped_pa - node_start_pfn[i]; HV_VirtAddr addr = (HV_VirtAddr) __va(pa); hv_store_mapping(addr, pages << PAGE_SHIFT, pa); } hv_store_mapping((HV_VirtAddr)_stext, (uint32_t)(_einittext - _stext), 0); } /* * Use hv_inquire_physical() to populate node_{start,end}_pfn[] * and node_online_map, doing suitable sanity-checking. * Also set min_low_pfn, max_low_pfn, and max_pfn. */ static void __init setup_memory(void) { int i, j; int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 }; #ifdef CONFIG_HIGHMEM long highmem_pages; #endif #ifndef __tilegx__ int cap; #endif #if defined(CONFIG_HIGHMEM) || defined(__tilegx__) long lowmem_pages; #endif /* We are using a char to hold the cpu_2_node[] mapping */ BUILD_BUG_ON(MAX_NUMNODES > 127); /* Discover the ranges of memory available to us */ for (i = 0; ; ++i) { unsigned long start, size, end, highbits; HV_PhysAddrRange range = hv_inquire_physical(i); if (range.size == 0) break; #ifdef CONFIG_FLATMEM if (i > 0) { pr_err("Can't use discontiguous PAs: %#llx..%#llx\n", range.size, range.start + range.size); continue; } #endif #ifndef __tilegx__ if ((unsigned long)range.start) { pr_err("Range not at 4GB multiple: %#llx..%#llx\n", range.start, range.start + range.size); continue; } #endif if ((range.start & (HPAGE_SIZE-1)) != 0 || (range.size & (HPAGE_SIZE-1)) != 0) { unsigned long long start_pa = range.start; unsigned long long orig_size = range.size; range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK; range.size -= (range.start - start_pa); range.size &= HPAGE_MASK; pr_err("Range not hugepage-aligned: %#llx..%#llx:" " now %#llx-%#llx\n", start_pa, start_pa + orig_size, range.start, range.start + range.size); } highbits = __pa_to_highbits(range.start); if (highbits >= NR_PA_HIGHBIT_VALUES) { pr_err("PA high bits too high: %#llx..%#llx\n", range.start, range.start + range.size); continue; } if (highbits_seen[highbits]) { pr_err("Range overlaps in high bits: %#llx..%#llx\n", range.start, range.start + range.size); continue; } highbits_seen[highbits] = 1; if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) { int max_size = maxnodemem_pfn[i]; if (max_size > 0) { pr_err("Maxnodemem reduced node %d to" " %d pages\n", i, max_size); range.size = PFN_PHYS(max_size); } else { pr_err("Maxnodemem disabled node %d\n", i); continue; } } if (num_physpages + PFN_DOWN(range.size) > maxmem_pfn) { int max_size = maxmem_pfn - num_physpages; if (max_size > 0) { pr_err("Maxmem reduced node %d to %d pages\n", i, max_size); range.size = PFN_PHYS(max_size); } else { pr_err("Maxmem disabled node %d\n", i); continue; } } if (i >= MAX_NUMNODES) { pr_err("Too many PA nodes (#%d): %#llx...%#llx\n", i, range.size, range.size + range.start); continue; } start = range.start >> PAGE_SHIFT; size = range.size >> PAGE_SHIFT; end = start + size; #ifndef __tilegx__ if (((HV_PhysAddr)end << PAGE_SHIFT) != (range.start + range.size)) { pr_err("PAs too high to represent: %#llx..%#llx\n", range.start, range.start + range.size); continue; } #endif #if defined(CONFIG_PCI) && !defined(__tilegx__) /* * Blocks that overlap the pci reserved region must * have enough space to hold the maximum percpu data * region at the top of the range. If there isn't * enough space above the reserved region, just * truncate the node. */ if (start <= pci_reserve_start_pfn && end > pci_reserve_start_pfn) { unsigned int per_cpu_size = __per_cpu_end - __per_cpu_start; unsigned int percpu_pages = NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT); if (end < pci_reserve_end_pfn + percpu_pages) { end = pci_reserve_start_pfn; pr_err("PCI mapping region reduced node %d to" " %ld pages\n", i, end - start); } } #endif for (j = __pfn_to_highbits(start); j <= __pfn_to_highbits(end - 1); j++) highbits_to_node[j] = i; node_start_pfn[i] = start; node_end_pfn[i] = end; node_controller[i] = range.controller; num_physpages += size; max_pfn = end; /* Mark node as online */ node_set(i, node_online_map); node_set(i, node_possible_map); } #ifndef __tilegx__ /* * For 4KB pages, mem_map "struct page" data is 1% of the size * of the physical memory, so can be quite big (640 MB for * four 16G zones). These structures must be mapped in * lowmem, and since we currently cap out at about 768 MB, * it's impractical to try to use this much address space. * For now, arbitrarily cap the amount of physical memory * we're willing to use at 8 million pages (32GB of 4KB pages). */ cap = 8 * 1024 * 1024; /* 8 million pages */ if (num_physpages > cap) { int num_nodes = num_online_nodes(); int cap_each = cap / num_nodes; unsigned long dropped_pages = 0; for (i = 0; i < num_nodes; ++i) { int size = node_end_pfn[i] - node_start_pfn[i]; if (size > cap_each) { dropped_pages += (size - cap_each); node_end_pfn[i] = node_start_pfn[i] + cap_each; } } num_physpages -= dropped_pages; pr_warning("Only using %ldMB memory;" " ignoring %ldMB.\n", num_physpages >> (20 - PAGE_SHIFT), dropped_pages >> (20 - PAGE_SHIFT)); pr_warning("Consider using a larger page size.\n"); } #endif /* Heap starts just above the last loaded address. */ min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET); #ifdef CONFIG_HIGHMEM /* Find where we map lowmem from each controller. */ high_memory = setup_pa_va_mapping(); /* Set max_low_pfn based on what node 0 can directly address. */ max_low_pfn = node_lowmem_end_pfn[0]; lowmem_pages = (mappable_physpages > MAXMEM_PFN) ? MAXMEM_PFN : mappable_physpages; highmem_pages = (long) (num_physpages - lowmem_pages); pr_notice("%ldMB HIGHMEM available.\n", pages_to_mb(highmem_pages > 0 ? highmem_pages : 0)); pr_notice("%ldMB LOWMEM available.\n", pages_to_mb(lowmem_pages)); #else /* Set max_low_pfn based on what node 0 can directly address. */ max_low_pfn = node_end_pfn[0]; #ifndef __tilegx__ if (node_end_pfn[0] > MAXMEM_PFN) { pr_warning("Only using %ldMB LOWMEM.\n", MAXMEM>>20); pr_warning("Use a HIGHMEM enabled kernel.\n"); max_low_pfn = MAXMEM_PFN; max_pfn = MAXMEM_PFN; num_physpages = MAXMEM_PFN; node_end_pfn[0] = MAXMEM_PFN; } else { pr_notice("%ldMB memory available.\n", pages_to_mb(node_end_pfn[0])); } for (i = 1; i < MAX_NUMNODES; ++i) { node_start_pfn[i] = 0; node_end_pfn[i] = 0; } high_memory = __va(node_end_pfn[0]); #else lowmem_pages = 0; for (i = 0; i < MAX_NUMNODES; ++i) { int pages = node_end_pfn[i] - node_start_pfn[i]; lowmem_pages += pages; if (pages) high_memory = pfn_to_kaddr(node_end_pfn[i]); } pr_notice("%ldMB memory available.\n", pages_to_mb(lowmem_pages)); #endif #endif } /* * On 32-bit machines, we only put bootmem on the low controller, * since PAs > 4GB can't be used in bootmem. In principle one could * imagine, e.g., multiple 1 GB controllers all of which could support * bootmem, but in practice using controllers this small isn't a * particularly interesting scenario, so we just keep it simple and * use only the first controller for bootmem on 32-bit machines. */ static inline int node_has_bootmem(int nid) { #ifdef CONFIG_64BIT return 1; #else return nid == 0; #endif } static inline unsigned long alloc_bootmem_pfn(int nid, unsigned long size, unsigned long goal) { void *kva = __alloc_bootmem_node(NODE_DATA(nid), size, PAGE_SIZE, goal); unsigned long pfn = kaddr_to_pfn(kva); BUG_ON(goal && PFN_PHYS(pfn) != goal); return pfn; } static void __init setup_bootmem_allocator_node(int i) { unsigned long start, end, mapsize, mapstart; if (node_has_bootmem(i)) { NODE_DATA(i)->bdata = &bootmem_node_data[i]; } else { /* Share controller zero's bdata for now. */ NODE_DATA(i)->bdata = &bootmem_node_data[0]; return; } /* Skip up to after the bss in node 0. */ start = (i == 0) ? min_low_pfn : node_start_pfn[i]; /* Only lowmem, if we're a HIGHMEM build. */ #ifdef CONFIG_HIGHMEM end = node_lowmem_end_pfn[i]; #else end = node_end_pfn[i]; #endif /* No memory here. */ if (end == start) return; /* Figure out where the bootmem bitmap is located. */ mapsize = bootmem_bootmap_pages(end - start); if (i == 0) { /* Use some space right before the heap on node 0. */ mapstart = start; start += mapsize; } else { /* Allocate bitmap on node 0 to avoid page table issues. */ mapstart = alloc_bootmem_pfn(0, PFN_PHYS(mapsize), 0); } /* Initialize a node. */ init_bootmem_node(NODE_DATA(i), mapstart, start, end); /* Free all the space back into the allocator. */ free_bootmem(PFN_PHYS(start), PFN_PHYS(end - start)); #if defined(CONFIG_PCI) && !defined(__tilegx__) /* * Throw away any memory aliased by the PCI region. */ if (pci_reserve_start_pfn < end && pci_reserve_end_pfn > start) reserve_bootmem(PFN_PHYS(pci_reserve_start_pfn), PFN_PHYS(pci_reserve_end_pfn - pci_reserve_start_pfn), BOOTMEM_EXCLUSIVE); #endif } static void __init setup_bootmem_allocator(void) { int i; for (i = 0; i < MAX_NUMNODES; ++i) setup_bootmem_allocator_node(i); #ifdef CONFIG_KEXEC if (crashk_res.start != crashk_res.end) reserve_bootmem(crashk_res.start, resource_size(&crashk_res), 0); #endif } void *__init alloc_remap(int nid, unsigned long size) { int pages = node_end_pfn[nid] - node_start_pfn[nid]; void *map = pfn_to_kaddr(node_memmap_pfn[nid]); BUG_ON(size != pages * sizeof(struct page)); memset(map, 0, size); return map; } static int __init percpu_size(void) { int size = __per_cpu_end - __per_cpu_start; size += PERCPU_MODULE_RESERVE; size += PERCPU_DYNAMIC_EARLY_SIZE; if (size < PCPU_MIN_UNIT_SIZE) size = PCPU_MIN_UNIT_SIZE; size = roundup(size, PAGE_SIZE); /* In several places we assume the per-cpu data fits on a huge page. */ BUG_ON(kdata_huge && size > HPAGE_SIZE); return size; } static void __init zone_sizes_init(void) { unsigned long zones_size[MAX_NR_ZONES] = { 0 }; int size = percpu_size(); int num_cpus = smp_height * smp_width; const unsigned long dma_end = (1UL << (32 - PAGE_SHIFT)); int i; for (i = 0; i < num_cpus; ++i) node_percpu[cpu_to_node(i)] += size; for_each_online_node(i) { unsigned long start = node_start_pfn[i]; unsigned long end = node_end_pfn[i]; #ifdef CONFIG_HIGHMEM unsigned long lowmem_end = node_lowmem_end_pfn[i]; #else unsigned long lowmem_end = end; #endif int memmap_size = (end - start) * sizeof(struct page); node_free_pfn[i] = start; /* * Set aside pages for per-cpu data and the mem_map array. * * Since the per-cpu data requires special homecaching, * if we are in kdata_huge mode, we put it at the end of * the lowmem region. If we're not in kdata_huge mode, * we take the per-cpu pages from the bottom of the * controller, since that avoids fragmenting a huge page * that users might want. We always take the memmap * from the bottom of the controller, since with * kdata_huge that lets it be under a huge TLB entry. * * If the user has requested isolnodes for a controller, * though, there'll be no lowmem, so we just alloc_bootmem * the memmap. There will be no percpu memory either. */ if (i != 0 && cpu_isset(i, isolnodes)) { node_memmap_pfn[i] = alloc_bootmem_pfn(0, memmap_size, 0); BUG_ON(node_percpu[i] != 0); } else if (node_has_bootmem(start)) { unsigned long goal = 0; node_memmap_pfn[i] = alloc_bootmem_pfn(i, memmap_size, 0); if (kdata_huge) goal = PFN_PHYS(lowmem_end) - node_percpu[i]; if (node_percpu[i]) node_percpu_pfn[i] = alloc_bootmem_pfn(i, node_percpu[i], goal); } else { /* In non-bootmem zones, just reserve some pages. */ node_memmap_pfn[i] = node_free_pfn[i]; node_free_pfn[i] += PFN_UP(memmap_size); if (!kdata_huge) { node_percpu_pfn[i] = node_free_pfn[i]; node_free_pfn[i] += PFN_UP(node_percpu[i]); } else { node_percpu_pfn[i] = lowmem_end - PFN_UP(node_percpu[i]); } } #ifdef CONFIG_HIGHMEM if (start > lowmem_end) { zones_size[ZONE_NORMAL] = 0; zones_size[ZONE_HIGHMEM] = end - start; } else { zones_size[ZONE_NORMAL] = lowmem_end - start; zones_size[ZONE_HIGHMEM] = end - lowmem_end; } #else zones_size[ZONE_NORMAL] = end - start; #endif if (start < dma_end) { zones_size[ZONE_DMA] = min(zones_size[ZONE_NORMAL], dma_end - start); zones_size[ZONE_NORMAL] -= zones_size[ZONE_DMA]; } else { zones_size[ZONE_DMA] = 0; } /* Take zone metadata from controller 0 if we're isolnode. */ if (node_isset(i, isolnodes)) NODE_DATA(i)->bdata = &bootmem_node_data[0]; free_area_init_node(i, zones_size, start, NULL); printk(KERN_DEBUG " Normal zone: %ld per-cpu pages\n", PFN_UP(node_percpu[i])); /* Track the type of memory on each node */ if (zones_size[ZONE_NORMAL] || zones_size[ZONE_DMA]) node_set_state(i, N_NORMAL_MEMORY); #ifdef CONFIG_HIGHMEM if (end != start) node_set_state(i, N_HIGH_MEMORY); #endif node_set_online(i); } } #ifdef CONFIG_NUMA /* which logical CPUs are on which nodes */ struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once; EXPORT_SYMBOL(node_2_cpu_mask); /* which node each logical CPU is on */ char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES))); EXPORT_SYMBOL(cpu_2_node); /* Return cpu_to_node() except for cpus not yet assigned, which return -1 */ static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus) { if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus)) return -1; else return cpu_to_node(cpu); } /* Return number of immediately-adjacent tiles sharing the same NUMA node. */ static int __init node_neighbors(int node, int cpu, struct cpumask *unbound_cpus) { int neighbors = 0; int w = smp_width; int h = smp_height; int x = cpu % w; int y = cpu / w; if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node) ++neighbors; if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node) ++neighbors; if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node) ++neighbors; if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node) ++neighbors; return neighbors; } static void __init setup_numa_mapping(void) { int distance[MAX_NUMNODES][NR_CPUS]; HV_Coord coord; int cpu, node, cpus, i, x, y; int num_nodes = num_online_nodes(); struct cpumask unbound_cpus; nodemask_t default_nodes; cpumask_clear(&unbound_cpus); /* Get set of nodes we will use for defaults */ nodes_andnot(default_nodes, node_online_map, isolnodes); if (nodes_empty(default_nodes)) { BUG_ON(!node_isset(0, node_online_map)); pr_err("Forcing NUMA node zero available as a default node\n"); node_set(0, default_nodes); } /* Populate the distance[] array */ memset(distance, -1, sizeof(distance)); cpu = 0; for (coord.y = 0; coord.y < smp_height; ++coord.y) { for (coord.x = 0; coord.x < smp_width; ++coord.x, ++cpu) { BUG_ON(cpu >= nr_cpu_ids); if (!cpu_possible(cpu)) { cpu_2_node[cpu] = -1; continue; } for_each_node_mask(node, default_nodes) { HV_MemoryControllerInfo info = hv_inquire_memory_controller( coord, node_controller[node]); distance[node][cpu] = ABS(info.coord.x) + ABS(info.coord.y); } cpumask_set_cpu(cpu, &unbound_cpus); } } cpus = cpu; /* * Round-robin through the NUMA nodes until all the cpus are * assigned. We could be more clever here (e.g. create four * sorted linked lists on the same set of cpu nodes, and pull * off them in round-robin sequence, removing from all four * lists each time) but given the relatively small numbers * involved, O(n^2) seem OK for a one-time cost. */ node = first_node(default_nodes); while (!cpumask_empty(&unbound_cpus)) { int best_cpu = -1; int best_distance = INT_MAX; for (cpu = 0; cpu < cpus; ++cpu) { if (cpumask_test_cpu(cpu, &unbound_cpus)) { /* * Compute metric, which is how much * closer the cpu is to this memory * controller than the others, shifted * up, and then the number of * neighbors already in the node as an * epsilon adjustment to try to keep * the nodes compact. */ int d = distance[node][cpu] * num_nodes; for_each_node_mask(i, default_nodes) { if (i != node) d -= distance[i][cpu]; } d *= 8; /* allow space for epsilon */ d -= node_neighbors(node, cpu, &unbound_cpus); if (d < best_distance) { best_cpu = cpu; best_distance = d; } } } BUG_ON(best_cpu < 0); cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]); cpu_2_node[best_cpu] = node; cpumask_clear_cpu(best_cpu, &unbound_cpus); node = next_node(node, default_nodes); if (node == MAX_NUMNODES) node = first_node(default_nodes); } /* Print out node assignments and set defaults for disabled cpus */ cpu = 0; for (y = 0; y < smp_height; ++y) { printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y); for (x = 0; x < smp_width; ++x, ++cpu) { if (cpu_to_node(cpu) < 0) { pr_cont(" -"); cpu_2_node[cpu] = first_node(default_nodes); } else { pr_cont(" %d", cpu_to_node(cpu)); } } pr_cont("\n"); } } static struct cpu cpu_devices[NR_CPUS]; static int __init topology_init(void) { int i; for_each_online_node(i) register_one_node(i); for (i = 0; i < smp_height * smp_width; ++i) register_cpu(&cpu_devices[i], i); return 0; } subsys_initcall(topology_init); #else /* !CONFIG_NUMA */ #define setup_numa_mapping() do { } while (0) #endif /* CONFIG_NUMA */ /* * Initialize hugepage support on this cpu. We do this on all cores * early in boot: before argument parsing for the boot cpu, and after * argument parsing but before the init functions run on the secondaries. * So the values we set up here in the hypervisor may be overridden on * the boot cpu as arguments are parsed. */ static __cpuinit void init_super_pages(void) { #ifdef CONFIG_HUGETLB_SUPER_PAGES int i; for (i = 0; i < HUGE_SHIFT_ENTRIES; ++i) hv_set_pte_super_shift(i, huge_shift[i]); #endif } /** * setup_cpu() - Do all necessary per-cpu, tile-specific initialization. * @boot: Is this the boot cpu? * * Called from setup_arch() on the boot cpu, or online_secondary(). */ void __cpuinit setup_cpu(int boot) { /* The boot cpu sets up its permanent mappings much earlier. */ if (!boot) store_permanent_mappings(); /* Allow asynchronous TLB interrupts. */ #if CHIP_HAS_TILE_DMA() arch_local_irq_unmask(INT_DMATLB_MISS); arch_local_irq_unmask(INT_DMATLB_ACCESS); #endif #if CHIP_HAS_SN_PROC() arch_local_irq_unmask(INT_SNITLB_MISS); #endif #ifdef __tilegx__ arch_local_irq_unmask(INT_SINGLE_STEP_K); #endif /* * Allow user access to many generic SPRs, like the cycle * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc. */ __insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1); #if CHIP_HAS_SN() /* Static network is not restricted. */ __insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1); #endif #if CHIP_HAS_SN_PROC() __insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1); __insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1); #endif /* * Set the MPL for interrupt control 0 & 1 to the corresponding * values. This includes access to the SYSTEM_SAVE and EX_CONTEXT * SPRs, as well as the interrupt mask. */ __insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1); __insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1); /* Initialize IRQ support for this cpu. */ setup_irq_regs(); #ifdef CONFIG_HARDWALL /* Reset the network state on this cpu. */ reset_network_state(); #endif init_super_pages(); } #ifdef CONFIG_BLK_DEV_INITRD static int __initdata set_initramfs_file; static char __initdata initramfs_file[128] = "initramfs"; static int __init setup_initramfs_file(char *str) { if (str == NULL) return -EINVAL; strncpy(initramfs_file, str, sizeof(initramfs_file) - 1); set_initramfs_file = 1; return 0; } early_param("initramfs_file", setup_initramfs_file); /* * We look for a file called "initramfs" in the hvfs. If there is one, we * allocate some memory for it and it will be unpacked to the initramfs. * If it's compressed, the initd code will uncompress it first. */ static void __init load_hv_initrd(void) { HV_FS_StatInfo stat; int fd, rc; void *initrd; fd = hv_fs_findfile((HV_VirtAddr) initramfs_file); if (fd == HV_ENOENT) { if (set_initramfs_file) { pr_warning("No such hvfs initramfs file '%s'\n", initramfs_file); return; } else { /* Try old backwards-compatible name. */ fd = hv_fs_findfile((HV_VirtAddr)"initramfs.cpio.gz"); if (fd == HV_ENOENT) return; } } BUG_ON(fd < 0); stat = hv_fs_fstat(fd); BUG_ON(stat.size < 0); if (stat.flags & HV_FS_ISDIR) { pr_warning("Ignoring hvfs file '%s': it's a directory.\n", initramfs_file); return; } initrd = alloc_bootmem_pages(stat.size); rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0); if (rc != stat.size) { pr_err("Error reading %d bytes from hvfs file '%s': %d\n", stat.size, initramfs_file, rc); free_initrd_mem((unsigned long) initrd, stat.size); return; } initrd_start = (unsigned long) initrd; initrd_end = initrd_start + stat.size; } void __init free_initrd_mem(unsigned long begin, unsigned long end) { free_bootmem(__pa(begin), end - begin); } #else static inline void load_hv_initrd(void) {} #endif /* CONFIG_BLK_DEV_INITRD */ static void __init validate_hv(void) { /* * It may already be too late, but let's check our built-in * configuration against what the hypervisor is providing. */ unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE); int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL); int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE); HV_ASIDRange asid_range; #ifndef CONFIG_SMP HV_Topology topology = hv_inquire_topology(); BUG_ON(topology.coord.x != 0 || topology.coord.y != 0); if (topology.width != 1 || topology.height != 1) { pr_warning("Warning: booting UP kernel on %dx%d grid;" " will ignore all but first tile.\n", topology.width, topology.height); } #endif if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text) early_panic("Hypervisor glue size %ld is too big!\n", glue_size); if (hv_page_size != PAGE_SIZE) early_panic("Hypervisor page size %#x != our %#lx\n", hv_page_size, PAGE_SIZE); if (hv_hpage_size != HPAGE_SIZE) early_panic("Hypervisor huge page size %#x != our %#lx\n", hv_hpage_size, HPAGE_SIZE); #ifdef CONFIG_SMP /* * Some hypervisor APIs take a pointer to a bitmap array * whose size is at least the number of cpus on the chip. * We use a struct cpumask for this, so it must be big enough. */ if ((smp_height * smp_width) > nr_cpu_ids) early_panic("Hypervisor %d x %d grid too big for Linux" " NR_CPUS %d\n", smp_height, smp_width, nr_cpu_ids); #endif /* * Check that we're using allowed ASIDs, and initialize the * various asid variables to their appropriate initial states. */ asid_range = hv_inquire_asid(0); __get_cpu_var(current_asid) = min_asid = asid_range.start; max_asid = asid_range.start + asid_range.size - 1; if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model, sizeof(chip_model)) < 0) { pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n"); strlcpy(chip_model, "unknown", sizeof(chip_model)); } } static void __init validate_va(void) { #ifndef __tilegx__ /* FIXME: GX: probably some validation relevant here */ /* * Similarly, make sure we're only using allowed VAs. * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT, * and 0 .. KERNEL_HIGH_VADDR. * In addition, make sure we CAN'T use the end of memory, since * we use the last chunk of each pgd for the pgd_list. */ int i, user_kernel_ok = 0; unsigned long max_va = 0; unsigned long list_va = ((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT); for (i = 0; ; ++i) { HV_VirtAddrRange range = hv_inquire_virtual(i); if (range.size == 0) break; if (range.start <= MEM_USER_INTRPT && range.start + range.size >= MEM_HV_INTRPT) user_kernel_ok = 1; if (range.start == 0) max_va = range.size; BUG_ON(range.start + range.size > list_va); } if (!user_kernel_ok) early_panic("Hypervisor not configured for user/kernel VAs\n"); if (max_va == 0) early_panic("Hypervisor not configured for low VAs\n"); if (max_va < KERNEL_HIGH_VADDR) early_panic("Hypervisor max VA %#lx smaller than %#lx\n", max_va, KERNEL_HIGH_VADDR); /* Kernel PCs must have their high bit set; see intvec.S. */ if ((long)VMALLOC_START >= 0) early_panic( "Linux VMALLOC region below the 2GB line (%#lx)!\n" "Reconfigure the kernel with fewer NR_HUGE_VMAPS\n" "or smaller VMALLOC_RESERVE.\n", VMALLOC_START); #endif } /* * cpu_lotar_map lists all the cpus that are valid for the supervisor * to cache data on at a page level, i.e. what cpus can be placed in * the LOTAR field of a PTE. It is equivalent to the set of possible * cpus plus any other cpus that are willing to share their cache. * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR). */ struct cpumask __write_once cpu_lotar_map; EXPORT_SYMBOL(cpu_lotar_map); #if CHIP_HAS_CBOX_HOME_MAP() /* * hash_for_home_map lists all the tiles that hash-for-home data * will be cached on. Note that this may includes tiles that are not * valid for this supervisor to use otherwise (e.g. if a hypervisor * device is being shared between multiple supervisors). * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE). */ struct cpumask hash_for_home_map; EXPORT_SYMBOL(hash_for_home_map); #endif /* * cpu_cacheable_map lists all the cpus whose caches the hypervisor can * flush on our behalf. It is set to cpu_possible_mask OR'ed with * hash_for_home_map, and it is what should be passed to * hv_flush_remote() to flush all caches. Note that if there are * dedicated hypervisor driver tiles that have authorized use of their * cache, those tiles will only appear in cpu_lotar_map, NOT in * cpu_cacheable_map, as they are a special case. */ struct cpumask __write_once cpu_cacheable_map; EXPORT_SYMBOL(cpu_cacheable_map); static __initdata struct cpumask disabled_map; static int __init disabled_cpus(char *str) { int boot_cpu = smp_processor_id(); if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0) return -EINVAL; if (cpumask_test_cpu(boot_cpu, &disabled_map)) { pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu); cpumask_clear_cpu(boot_cpu, &disabled_map); } return 0; } early_param("disabled_cpus", disabled_cpus); void __init print_disabled_cpus(void) { if (!cpumask_empty(&disabled_map)) { char buf[100]; cpulist_scnprintf(buf, sizeof(buf), &disabled_map); pr_info("CPUs not available for Linux: %s\n", buf); } } static void __init setup_cpu_maps(void) { struct cpumask hv_disabled_map, cpu_possible_init; int boot_cpu = smp_processor_id(); int cpus, i, rc; /* Learn which cpus are allowed by the hypervisor. */ rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL, (HV_VirtAddr) cpumask_bits(&cpu_possible_init), sizeof(cpu_cacheable_map)); if (rc < 0) early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc); if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init)) early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu); /* Compute the cpus disabled by the hvconfig file. */ cpumask_complement(&hv_disabled_map, &cpu_possible_init); /* Include them with the cpus disabled by "disabled_cpus". */ cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map); /* * Disable every cpu after "setup_max_cpus". But don't mark * as disabled the cpus that are outside of our initial rectangle, * since that turns out to be confusing. */ cpus = 1; /* this cpu */ cpumask_set_cpu(boot_cpu, &disabled_map); /* ignore this cpu */ for (i = 0; cpus < setup_max_cpus; ++i) if (!cpumask_test_cpu(i, &disabled_map)) ++cpus; for (; i < smp_height * smp_width; ++i) cpumask_set_cpu(i, &disabled_map); cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */ for (i = smp_height * smp_width; i < NR_CPUS; ++i) cpumask_clear_cpu(i, &disabled_map); /* * Setup cpu_possible map as every cpu allocated to us, minus * the results of any "disabled_cpus" settings. */ cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map); init_cpu_possible(&cpu_possible_init); /* Learn which cpus are valid for LOTAR caching. */ rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR, (HV_VirtAddr) cpumask_bits(&cpu_lotar_map), sizeof(cpu_lotar_map)); if (rc < 0) { pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n"); cpu_lotar_map = *cpu_possible_mask; } #if CHIP_HAS_CBOX_HOME_MAP() /* Retrieve set of CPUs used for hash-for-home caching */ rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE, (HV_VirtAddr) hash_for_home_map.bits, sizeof(hash_for_home_map)); if (rc < 0) early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc); cpumask_or(&cpu_cacheable_map, cpu_possible_mask, &hash_for_home_map); #else cpu_cacheable_map = *cpu_possible_mask; #endif } static int __init dataplane(char *str) { pr_warning("WARNING: dataplane support disabled in this kernel\n"); return 0; } early_param("dataplane", dataplane); #ifdef CONFIG_CMDLINE_BOOL static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; #endif void __init setup_arch(char **cmdline_p) { int len; #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE) len = hv_get_command_line((HV_VirtAddr) boot_command_line, COMMAND_LINE_SIZE); if (boot_command_line[0]) pr_warning("WARNING: ignoring dynamic command line \"%s\"\n", boot_command_line); strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); #else char *hv_cmdline; #if defined(CONFIG_CMDLINE_BOOL) if (builtin_cmdline[0]) { int builtin_len = strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); if (builtin_len < COMMAND_LINE_SIZE-1) boot_command_line[builtin_len++] = ' '; hv_cmdline = &boot_command_line[builtin_len]; len = COMMAND_LINE_SIZE - builtin_len; } else #endif { hv_cmdline = boot_command_line; len = COMMAND_LINE_SIZE; } len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len); if (len < 0 || len > COMMAND_LINE_SIZE) early_panic("hv_get_command_line failed: %d\n", len); #endif *cmdline_p = boot_command_line; /* Set disabled_map and setup_max_cpus very early */ parse_early_param(); /* Make sure the kernel is compatible with the hypervisor. */ validate_hv(); validate_va(); setup_cpu_maps(); #if defined(CONFIG_PCI) && !defined(__tilegx__) /* * Initialize the PCI structures. This is done before memory * setup so that we know whether or not a pci_reserve region * is necessary. */ if (tile_pci_init() == 0) pci_reserve_mb = 0; /* PCI systems reserve a region just below 4GB for mapping iomem. */ pci_reserve_end_pfn = (1 << (32 - PAGE_SHIFT)); pci_reserve_start_pfn = pci_reserve_end_pfn - (pci_reserve_mb << (20 - PAGE_SHIFT)); #endif init_mm.start_code = (unsigned long) _text; init_mm.end_code = (unsigned long) _etext; init_mm.end_data = (unsigned long) _edata; init_mm.brk = (unsigned long) _end; setup_memory(); store_permanent_mappings(); setup_bootmem_allocator(); /* * NOTE: before this point _nobody_ is allowed to allocate * any memory using the bootmem allocator. */ #ifdef CONFIG_SWIOTLB swiotlb_init(0); #endif paging_init(); setup_numa_mapping(); zone_sizes_init(); set_page_homes(); setup_cpu(1); setup_clock(); load_hv_initrd(); } /* * Set up per-cpu memory. */ unsigned long __per_cpu_offset[NR_CPUS] __write_once; EXPORT_SYMBOL(__per_cpu_offset); static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 }; static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 }; /* * As the percpu code allocates pages, we return the pages from the * end of the node for the specified cpu. */ static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align) { int nid = cpu_to_node(cpu); unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid]; BUG_ON(size % PAGE_SIZE != 0); pfn_offset[nid] += size / PAGE_SIZE; BUG_ON(node_percpu[nid] < size); node_percpu[nid] -= size; if (percpu_pfn[cpu] == 0) percpu_pfn[cpu] = pfn; return pfn_to_kaddr(pfn); } /* * Pages reserved for percpu memory are not freeable, and in any case we are * on a short path to panic() in setup_per_cpu_area() at this point anyway. */ static void __init pcpu_fc_free(void *ptr, size_t size) { } /* * Set up vmalloc page tables using bootmem for the percpu code. */ static void __init pcpu_fc_populate_pte(unsigned long addr) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; BUG_ON(pgd_addr_invalid(addr)); if (addr < VMALLOC_START || addr >= VMALLOC_END) panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;" " try increasing CONFIG_VMALLOC_RESERVE\n", addr, VMALLOC_START, VMALLOC_END); pgd = swapper_pg_dir + pgd_index(addr); pud = pud_offset(pgd, addr); BUG_ON(!pud_present(*pud)); pmd = pmd_offset(pud, addr); if (pmd_present(*pmd)) { BUG_ON(pmd_huge_page(*pmd)); } else { pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0); pmd_populate_kernel(&init_mm, pmd, pte); } } void __init setup_per_cpu_areas(void) { struct page *pg; unsigned long delta, pfn, lowmem_va; unsigned long size = percpu_size(); char *ptr; int rc, cpu, i; rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc, pcpu_fc_free, pcpu_fc_populate_pte); if (rc < 0) panic("Cannot initialize percpu area (err=%d)", rc); delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; for_each_possible_cpu(cpu) { __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; /* finv the copy out of cache so we can change homecache */ ptr = pcpu_base_addr + pcpu_unit_offsets[cpu]; __finv_buffer(ptr, size); pfn = percpu_pfn[cpu]; /* Rewrite the page tables to cache on that cpu */ pg = pfn_to_page(pfn); for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) { /* Update the vmalloc mapping and page home. */ unsigned long addr = (unsigned long)ptr + i; pte_t *ptep = virt_to_pte(NULL, addr); pte_t pte = *ptep; BUG_ON(pfn != pte_pfn(pte)); pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3); pte = set_remote_cache_cpu(pte, cpu); set_pte_at(&init_mm, addr, ptep, pte); /* Update the lowmem mapping for consistency. */ lowmem_va = (unsigned long)pfn_to_kaddr(pfn); ptep = virt_to_pte(NULL, lowmem_va); if (pte_huge(*ptep)) { printk(KERN_DEBUG "early shatter of huge page" " at %#lx\n", lowmem_va); shatter_pmd((pmd_t *)ptep); ptep = virt_to_pte(NULL, lowmem_va); BUG_ON(pte_huge(*ptep)); } BUG_ON(pfn != pte_pfn(*ptep)); set_pte_at(&init_mm, lowmem_va, ptep, pte); } } /* Set our thread pointer appropriately. */ set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]); /* Make sure the finv's have completed. */ mb_incoherent(); /* Flush the TLB so we reference it properly from here on out. */ local_flush_tlb_all(); } static struct resource data_resource = { .name = "Kernel data", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_MEM }; static struct resource code_resource = { .name = "Kernel code", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_MEM }; /* * On Pro, we reserve all resources above 4GB so that PCI won't try to put * mappings above 4GB. */ #if defined(CONFIG_PCI) && !defined(__tilegx__) static struct resource* __init insert_non_bus_resource(void) { struct resource *res = kzalloc(sizeof(struct resource), GFP_ATOMIC); res->name = "Non-Bus Physical Address Space"; res->start = (1ULL << 32); res->end = -1LL; res->flags = IORESOURCE_BUSY | IORESOURCE_MEM; if (insert_resource(&iomem_resource, res)) { kfree(res); return NULL; } return res; } #endif static struct resource* __init insert_ram_resource(u64 start_pfn, u64 end_pfn) { struct resource *res = kzalloc(sizeof(struct resource), GFP_ATOMIC); res->name = "System RAM"; res->start = start_pfn << PAGE_SHIFT; res->end = (end_pfn << PAGE_SHIFT) - 1; res->flags = IORESOURCE_BUSY | IORESOURCE_MEM; if (insert_resource(&iomem_resource, res)) { kfree(res); return NULL; } return res; } /* * Request address space for all standard resources * * If the system includes PCI root complex drivers, we need to create * a window just below 4GB where PCI BARs can be mapped. */ static int __init request_standard_resources(void) { int i; enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET }; #if defined(CONFIG_PCI) && !defined(__tilegx__) insert_non_bus_resource(); #endif for_each_online_node(i) { u64 start_pfn = node_start_pfn[i]; u64 end_pfn = node_end_pfn[i]; #if defined(CONFIG_PCI) && !defined(__tilegx__) if (start_pfn <= pci_reserve_start_pfn && end_pfn > pci_reserve_start_pfn) { if (end_pfn > pci_reserve_end_pfn) insert_ram_resource(pci_reserve_end_pfn, end_pfn); end_pfn = pci_reserve_start_pfn; } #endif insert_ram_resource(start_pfn, end_pfn); } code_resource.start = __pa(_text - CODE_DELTA); code_resource.end = __pa(_etext - CODE_DELTA)-1; data_resource.start = __pa(_sdata); data_resource.end = __pa(_end)-1; insert_resource(&iomem_resource, &code_resource); insert_resource(&iomem_resource, &data_resource); #ifdef CONFIG_KEXEC insert_resource(&iomem_resource, &crashk_res); #endif return 0; } subsys_initcall(request_standard_resources);