/* * Copyright 2010 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. * * A code-rewriter that enables instruction single-stepping. * Derived from iLib's single-stepping code. */ #ifndef __tilegx__ /* Hardware support for single step unavailable. */ /* These functions are only used on the TILE platform */ #include <linux/slab.h> #include <linux/thread_info.h> #include <linux/uaccess.h> #include <linux/mman.h> #include <linux/types.h> #include <linux/err.h> #include <asm/cacheflush.h> #include <asm/unaligned.h> #include <arch/abi.h> #include <arch/opcode.h> #define signExtend17(val) sign_extend((val), 17) #define TILE_X1_MASK (0xffffffffULL << 31) int unaligned_printk; static int __init setup_unaligned_printk(char *str) { long val; if (strict_strtol(str, 0, &val) != 0) return 0; unaligned_printk = val; pr_info("Printk for each unaligned data accesses is %s\n", unaligned_printk ? "enabled" : "disabled"); return 1; } __setup("unaligned_printk=", setup_unaligned_printk); unsigned int unaligned_fixup_count; enum mem_op { MEMOP_NONE, MEMOP_LOAD, MEMOP_STORE, MEMOP_LOAD_POSTINCR, MEMOP_STORE_POSTINCR }; static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, s32 offset) { tile_bundle_bits result; /* mask out the old offset */ tile_bundle_bits mask = create_BrOff_X1(-1); result = n & (~mask); /* or in the new offset */ result |= create_BrOff_X1(offset); return result; } static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src) { tile_bundle_bits result; tile_bundle_bits op; result = n & (~TILE_X1_MASK); op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) | create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) | create_Dest_X1(dest) | create_SrcB_X1(TREG_ZERO) | create_SrcA_X1(src) ; result |= op; return result; } static inline tile_bundle_bits nop_X1(tile_bundle_bits n) { return move_X1(n, TREG_ZERO, TREG_ZERO); } static inline tile_bundle_bits addi_X1( tile_bundle_bits n, int dest, int src, int imm) { n &= ~TILE_X1_MASK; n |= (create_SrcA_X1(src) | create_Dest_X1(dest) | create_Imm8_X1(imm) | create_S_X1(0) | create_Opcode_X1(IMM_0_OPCODE_X1) | create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1)); return n; } static tile_bundle_bits rewrite_load_store_unaligned( struct single_step_state *state, tile_bundle_bits bundle, struct pt_regs *regs, enum mem_op mem_op, int size, int sign_ext) { unsigned char __user *addr; int val_reg, addr_reg, err, val; /* Get address and value registers */ if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) { addr_reg = get_SrcA_Y2(bundle); val_reg = get_SrcBDest_Y2(bundle); } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) { addr_reg = get_SrcA_X1(bundle); val_reg = get_Dest_X1(bundle); } else { addr_reg = get_SrcA_X1(bundle); val_reg = get_SrcB_X1(bundle); } /* * If registers are not GPRs, don't try to handle it. * * FIXME: we could handle non-GPR loads by getting the real value * from memory, writing it to the single step buffer, using a * temp_reg to hold a pointer to that memory, then executing that * instruction and resetting temp_reg. For non-GPR stores, it's a * little trickier; we could use the single step buffer for that * too, but we'd have to add some more state bits so that we could * call back in here to copy that value to the real target. For * now, we just handle the simple case. */ if ((val_reg >= PTREGS_NR_GPRS && (val_reg != TREG_ZERO || mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR)) || addr_reg >= PTREGS_NR_GPRS) return bundle; /* If it's aligned, don't handle it specially */ addr = (void __user *)regs->regs[addr_reg]; if (((unsigned long)addr % size) == 0) return bundle; /* * Return SIGBUS with the unaligned address, if requested. * Note that we return SIGBUS even for completely invalid addresses * as long as they are in fact unaligned; this matches what the * tilepro hardware would be doing, if it could provide us with the * actual bad address in an SPR, which it doesn't. */ if (unaligned_fixup == 0) { siginfo_t info = { .si_signo = SIGBUS, .si_code = BUS_ADRALN, .si_addr = addr }; trace_unhandled_signal("unaligned trap", regs, (unsigned long)addr, SIGBUS); force_sig_info(info.si_signo, &info, current); return (tilepro_bundle_bits) 0; } /* Handle unaligned load/store */ if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) { unsigned short val_16; switch (size) { case 2: err = copy_from_user(&val_16, addr, sizeof(val_16)); val = sign_ext ? ((short)val_16) : val_16; break; case 4: err = copy_from_user(&val, addr, sizeof(val)); break; default: BUG(); } if (err == 0) { state->update_reg = val_reg; state->update_value = val; state->update = 1; } } else { unsigned short val_16; val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg]; switch (size) { case 2: val_16 = val; err = copy_to_user(addr, &val_16, sizeof(val_16)); break; case 4: err = copy_to_user(addr, &val, sizeof(val)); break; default: BUG(); } } if (err) { siginfo_t info = { .si_signo = SIGSEGV, .si_code = SEGV_MAPERR, .si_addr = addr }; trace_unhandled_signal("segfault", regs, (unsigned long)addr, SIGSEGV); force_sig_info(info.si_signo, &info, current); return (tile_bundle_bits) 0; } if (unaligned_printk || unaligned_fixup_count == 0) { pr_info("Process %d/%s: PC %#lx: Fixup of" " unaligned %s at %#lx.\n", current->pid, current->comm, regs->pc, (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) ? "load" : "store", (unsigned long)addr); if (!unaligned_printk) { #define P pr_info P("\n"); P("Unaligned fixups in the kernel will slow your application considerably.\n"); P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n"); P("which requests the kernel show all unaligned fixups, or write a \"0\"\n"); P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n"); P("access will become a SIGBUS you can debug. No further warnings will be\n"); P("shown so as to avoid additional slowdown, but you can track the number\n"); P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n"); P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n"); P("\n"); #undef P } } ++unaligned_fixup_count; if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) { /* Convert the Y2 instruction to a prefetch. */ bundle &= ~(create_SrcBDest_Y2(-1) | create_Opcode_Y2(-1)); bundle |= (create_SrcBDest_Y2(TREG_ZERO) | create_Opcode_Y2(LW_OPCODE_Y2)); /* Replace the load postincr with an addi */ } else if (mem_op == MEMOP_LOAD_POSTINCR) { bundle = addi_X1(bundle, addr_reg, addr_reg, get_Imm8_X1(bundle)); /* Replace the store postincr with an addi */ } else if (mem_op == MEMOP_STORE_POSTINCR) { bundle = addi_X1(bundle, addr_reg, addr_reg, get_Dest_Imm8_X1(bundle)); } else { /* Convert the X1 instruction to a nop. */ bundle &= ~(create_Opcode_X1(-1) | create_UnShOpcodeExtension_X1(-1) | create_UnOpcodeExtension_X1(-1)); bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) | create_UnShOpcodeExtension_X1( UN_0_SHUN_0_OPCODE_X1) | create_UnOpcodeExtension_X1( NOP_UN_0_SHUN_0_OPCODE_X1)); } return bundle; } /* * Called after execve() has started the new image. This allows us * to reset the info state. Note that the the mmap'ed memory, if there * was any, has already been unmapped by the exec. */ void single_step_execve(void) { struct thread_info *ti = current_thread_info(); kfree(ti->step_state); ti->step_state = NULL; } /** * single_step_once() - entry point when single stepping has been triggered. * @regs: The machine register state * * When we arrive at this routine via a trampoline, the single step * engine copies the executing bundle to the single step buffer. * If the instruction is a condition branch, then the target is * reset to one past the next instruction. If the instruction * sets the lr, then that is noted. If the instruction is a jump * or call, then the new target pc is preserved and the current * bundle instruction set to null. * * The necessary post-single-step rewriting information is stored in * single_step_state-> We use data segment values because the * stack will be rewound when we run the rewritten single-stepped * instruction. */ void single_step_once(struct pt_regs *regs) { extern tile_bundle_bits __single_step_ill_insn; extern tile_bundle_bits __single_step_j_insn; extern tile_bundle_bits __single_step_addli_insn; extern tile_bundle_bits __single_step_auli_insn; struct thread_info *info = (void *)current_thread_info(); struct single_step_state *state = info->step_state; int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP); tile_bundle_bits __user *buffer, *pc; tile_bundle_bits bundle; int temp_reg; int target_reg = TREG_LR; int err; enum mem_op mem_op = MEMOP_NONE; int size = 0, sign_ext = 0; /* happy compiler */ asm( " .pushsection .rodata.single_step\n" " .align 8\n" " .globl __single_step_ill_insn\n" "__single_step_ill_insn:\n" " ill\n" " .globl __single_step_addli_insn\n" "__single_step_addli_insn:\n" " { nop; addli r0, zero, 0 }\n" " .globl __single_step_auli_insn\n" "__single_step_auli_insn:\n" " { nop; auli r0, r0, 0 }\n" " .globl __single_step_j_insn\n" "__single_step_j_insn:\n" " j .\n" " .popsection\n" ); /* * Enable interrupts here to allow touching userspace and the like. * The callers expect this: do_trap() already has interrupts * enabled, and do_work_pending() handles functions that enable * interrupts internally. */ local_irq_enable(); if (state == NULL) { /* allocate a page of writable, executable memory */ state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL); if (state == NULL) { pr_err("Out of kernel memory trying to single-step\n"); return; } /* allocate a cache line of writable, executable memory */ buffer = (void __user *) vm_mmap(NULL, 0, 64, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0); if (IS_ERR((void __force *)buffer)) { kfree(state); pr_err("Out of kernel pages trying to single-step\n"); return; } state->buffer = buffer; state->is_enabled = 0; info->step_state = state; /* Validate our stored instruction patterns */ BUG_ON(get_Opcode_X1(__single_step_addli_insn) != ADDLI_OPCODE_X1); BUG_ON(get_Opcode_X1(__single_step_auli_insn) != AULI_OPCODE_X1); BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO); BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0); BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0); } /* * If we are returning from a syscall, we still haven't hit the * "ill" for the swint1 instruction. So back the PC up to be * pointing at the swint1, but we'll actually return directly * back to the "ill" so we come back in via SIGILL as if we * had "executed" the swint1 without ever being in kernel space. */ if (regs->faultnum == INT_SWINT_1) regs->pc -= 8; pc = (tile_bundle_bits __user *)(regs->pc); if (get_user(bundle, pc) != 0) { pr_err("Couldn't read instruction at %p trying to step\n", pc); return; } /* We'll follow the instruction with 2 ill op bundles */ state->orig_pc = (unsigned long)pc; state->next_pc = (unsigned long)(pc + 1); state->branch_next_pc = 0; state->update = 0; if (!(bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK)) { /* two wide, check for control flow */ int opcode = get_Opcode_X1(bundle); switch (opcode) { /* branches */ case BRANCH_OPCODE_X1: { s32 offset = signExtend17(get_BrOff_X1(bundle)); /* * For branches, we use a rewriting trick to let the * hardware evaluate whether the branch is taken or * untaken. We record the target offset and then * rewrite the branch instruction to target 1 insn * ahead if the branch is taken. We then follow the * rewritten branch with two bundles, each containing * an "ill" instruction. The supervisor examines the * pc after the single step code is executed, and if * the pc is the first ill instruction, then the * branch (if any) was not taken. If the pc is the * second ill instruction, then the branch was * taken. The new pc is computed for these cases, and * inserted into the registers for the thread. If * the pc is the start of the single step code, then * an exception or interrupt was taken before the * code started processing, and the same "original" * pc is restored. This change, different from the * original implementation, has the advantage of * executing a single user instruction. */ state->branch_next_pc = (unsigned long)(pc + offset); /* rewrite branch offset to go forward one bundle */ bundle = set_BrOff_X1(bundle, 2); } break; /* jumps */ case JALB_OPCODE_X1: case JALF_OPCODE_X1: state->update = 1; state->next_pc = (unsigned long) (pc + get_JOffLong_X1(bundle)); break; case JB_OPCODE_X1: case JF_OPCODE_X1: state->next_pc = (unsigned long) (pc + get_JOffLong_X1(bundle)); bundle = nop_X1(bundle); break; case SPECIAL_0_OPCODE_X1: switch (get_RRROpcodeExtension_X1(bundle)) { /* jump-register */ case JALRP_SPECIAL_0_OPCODE_X1: case JALR_SPECIAL_0_OPCODE_X1: state->update = 1; state->next_pc = regs->regs[get_SrcA_X1(bundle)]; break; case JRP_SPECIAL_0_OPCODE_X1: case JR_SPECIAL_0_OPCODE_X1: state->next_pc = regs->regs[get_SrcA_X1(bundle)]; bundle = nop_X1(bundle); break; case LNK_SPECIAL_0_OPCODE_X1: state->update = 1; target_reg = get_Dest_X1(bundle); break; /* stores */ case SH_SPECIAL_0_OPCODE_X1: mem_op = MEMOP_STORE; size = 2; break; case SW_SPECIAL_0_OPCODE_X1: mem_op = MEMOP_STORE; size = 4; break; } break; /* loads and iret */ case SHUN_0_OPCODE_X1: if (get_UnShOpcodeExtension_X1(bundle) == UN_0_SHUN_0_OPCODE_X1) { switch (get_UnOpcodeExtension_X1(bundle)) { case LH_UN_0_SHUN_0_OPCODE_X1: mem_op = MEMOP_LOAD; size = 2; sign_ext = 1; break; case LH_U_UN_0_SHUN_0_OPCODE_X1: mem_op = MEMOP_LOAD; size = 2; sign_ext = 0; break; case LW_UN_0_SHUN_0_OPCODE_X1: mem_op = MEMOP_LOAD; size = 4; break; case IRET_UN_0_SHUN_0_OPCODE_X1: { unsigned long ex0_0 = __insn_mfspr( SPR_EX_CONTEXT_0_0); unsigned long ex0_1 = __insn_mfspr( SPR_EX_CONTEXT_0_1); /* * Special-case it if we're iret'ing * to PL0 again. Otherwise just let * it run and it will generate SIGILL. */ if (EX1_PL(ex0_1) == USER_PL) { state->next_pc = ex0_0; regs->ex1 = ex0_1; bundle = nop_X1(bundle); } } } } break; #if CHIP_HAS_WH64() /* postincrement operations */ case IMM_0_OPCODE_X1: switch (get_ImmOpcodeExtension_X1(bundle)) { case LWADD_IMM_0_OPCODE_X1: mem_op = MEMOP_LOAD_POSTINCR; size = 4; break; case LHADD_IMM_0_OPCODE_X1: mem_op = MEMOP_LOAD_POSTINCR; size = 2; sign_ext = 1; break; case LHADD_U_IMM_0_OPCODE_X1: mem_op = MEMOP_LOAD_POSTINCR; size = 2; sign_ext = 0; break; case SWADD_IMM_0_OPCODE_X1: mem_op = MEMOP_STORE_POSTINCR; size = 4; break; case SHADD_IMM_0_OPCODE_X1: mem_op = MEMOP_STORE_POSTINCR; size = 2; break; default: break; } break; #endif /* CHIP_HAS_WH64() */ } if (state->update) { /* * Get an available register. We start with a * bitmask with 1's for available registers. * We truncate to the low 32 registers since * we are guaranteed to have set bits in the * low 32 bits, then use ctz to pick the first. */ u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) | (1ULL << get_SrcA_X0(bundle)) | (1ULL << get_SrcB_X0(bundle)) | (1ULL << target_reg)); temp_reg = __builtin_ctz(mask); state->update_reg = temp_reg; state->update_value = regs->regs[temp_reg]; regs->regs[temp_reg] = (unsigned long) (pc+1); regs->flags |= PT_FLAGS_RESTORE_REGS; bundle = move_X1(bundle, target_reg, temp_reg); } } else { int opcode = get_Opcode_Y2(bundle); switch (opcode) { /* loads */ case LH_OPCODE_Y2: mem_op = MEMOP_LOAD; size = 2; sign_ext = 1; break; case LH_U_OPCODE_Y2: mem_op = MEMOP_LOAD; size = 2; sign_ext = 0; break; case LW_OPCODE_Y2: mem_op = MEMOP_LOAD; size = 4; break; /* stores */ case SH_OPCODE_Y2: mem_op = MEMOP_STORE; size = 2; break; case SW_OPCODE_Y2: mem_op = MEMOP_STORE; size = 4; break; } } /* * Check if we need to rewrite an unaligned load/store. * Returning zero is a special value meaning we need to SIGSEGV. */ if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) { bundle = rewrite_load_store_unaligned(state, bundle, regs, mem_op, size, sign_ext); if (bundle == 0) return; } /* write the bundle to our execution area */ buffer = state->buffer; err = __put_user(bundle, buffer++); /* * If we're really single-stepping, we take an INT_ILL after. * If we're just handling an unaligned access, we can just * jump directly back to where we were in user code. */ if (is_single_step) { err |= __put_user(__single_step_ill_insn, buffer++); err |= __put_user(__single_step_ill_insn, buffer++); } else { long delta; if (state->update) { /* We have some state to update; do it inline */ int ha16; bundle = __single_step_addli_insn; bundle |= create_Dest_X1(state->update_reg); bundle |= create_Imm16_X1(state->update_value); err |= __put_user(bundle, buffer++); bundle = __single_step_auli_insn; bundle |= create_Dest_X1(state->update_reg); bundle |= create_SrcA_X1(state->update_reg); ha16 = (state->update_value + 0x8000) >> 16; bundle |= create_Imm16_X1(ha16); err |= __put_user(bundle, buffer++); state->update = 0; } /* End with a jump back to the next instruction */ delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) - (unsigned long)buffer) >> TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES; bundle = __single_step_j_insn; bundle |= create_JOffLong_X1(delta); err |= __put_user(bundle, buffer++); } if (err) { pr_err("Fault when writing to single-step buffer\n"); return; } /* * Flush the buffer. * We do a local flush only, since this is a thread-specific buffer. */ __flush_icache_range((unsigned long)state->buffer, (unsigned long)buffer); /* Indicate enabled */ state->is_enabled = is_single_step; regs->pc = (unsigned long)state->buffer; /* Fault immediately if we are coming back from a syscall. */ if (regs->faultnum == INT_SWINT_1) regs->pc += 8; } #else #include <linux/smp.h> #include <linux/ptrace.h> #include <arch/spr_def.h> static DEFINE_PER_CPU(unsigned long, ss_saved_pc); /* * Called directly on the occasion of an interrupt. * * If the process doesn't have single step set, then we use this as an * opportunity to turn single step off. * * It has been mentioned that we could conditionally turn off single stepping * on each entry into the kernel and rely on single_step_once to turn it * on for the processes that matter (as we already do), but this * implementation is somewhat more efficient in that we muck with registers * once on a bum interrupt rather than on every entry into the kernel. * * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred, * so we have to run through this process again before we can say that an * instruction has executed. * * swint will set CANCELED, but it's a legitimate instruction. Fortunately * it changes the PC. If it hasn't changed, then we know that the interrupt * wasn't generated by swint and we'll need to run this process again before * we can say an instruction has executed. * * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get * on with our lives. */ void gx_singlestep_handle(struct pt_regs *regs, int fault_num) { unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc); struct thread_info *info = (void *)current_thread_info(); int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP); unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K); if (is_single_step == 0) { __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0); } else if ((*ss_pc != regs->pc) || (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) { ptrace_notify(SIGTRAP); control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK; control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK; __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control); } } /* * Called from need_singlestep. Set up the control registers and the enable * register, then return back. */ void single_step_once(struct pt_regs *regs) { unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc); unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K); *ss_pc = regs->pc; control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK; control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK; __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control); __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL); } void single_step_execve(void) { /* Nothing */ } #endif /* !__tilegx__ */