/* * Copyright 2010 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. */ #include <linux/highmem.h> #include <linux/module.h> #include <linux/pagemap.h> #include <asm/homecache.h> #define kmap_get_pte(vaddr) \ pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr), (vaddr)),\ (vaddr)), (vaddr)) void *kmap(struct page *page) { void *kva; unsigned long flags; pte_t *ptep; might_sleep(); if (!PageHighMem(page)) return page_address(page); kva = kmap_high(page); /* * Rewrite the PTE under the lock. This ensures that the page * is not currently migrating. */ ptep = kmap_get_pte((unsigned long)kva); flags = homecache_kpte_lock(); set_pte_at(&init_mm, kva, ptep, mk_pte(page, page_to_kpgprot(page))); homecache_kpte_unlock(flags); return kva; } EXPORT_SYMBOL(kmap); void kunmap(struct page *page) { if (in_interrupt()) BUG(); if (!PageHighMem(page)) return; kunmap_high(page); } EXPORT_SYMBOL(kunmap); /* * Describe a single atomic mapping of a page on a given cpu at a * given address, and allow it to be linked into a list. */ struct atomic_mapped_page { struct list_head list; struct page *page; int cpu; unsigned long va; }; static spinlock_t amp_lock = __SPIN_LOCK_UNLOCKED(&_lock); static struct list_head amp_list = LIST_HEAD_INIT(amp_list); /* * Combining this structure with a per-cpu declaration lets us give * each cpu an atomic_mapped_page structure per type. */ struct kmap_amps { struct atomic_mapped_page per_type[KM_TYPE_NR]; }; static DEFINE_PER_CPU(struct kmap_amps, amps); /* * Add a page and va, on this cpu, to the list of kmap_atomic pages, * and write the new pte to memory. Writing the new PTE under the * lock guarantees that it is either on the list before migration starts * (if we won the race), or set_pte() sets the migrating bit in the PTE * (if we lost the race). And doing it under the lock guarantees * that when kmap_atomic_fix_one_pte() comes along, it finds a valid * PTE in memory, iff the mapping is still on the amp_list. * * Finally, doing it under the lock lets us safely examine the page * to see if it is immutable or not, for the generic kmap_atomic() case. * If we examine it earlier we are exposed to a race where it looks * writable earlier, but becomes immutable before we write the PTE. */ static void kmap_atomic_register(struct page *page, int type, unsigned long va, pte_t *ptep, pte_t pteval) { unsigned long flags; struct atomic_mapped_page *amp; flags = homecache_kpte_lock(); spin_lock(&_lock); /* With interrupts disabled, now fill in the per-cpu info. */ amp = &__get_cpu_var(amps).per_type[type]; amp->page = page; amp->cpu = smp_processor_id(); amp->va = va; /* For generic kmap_atomic(), choose the PTE writability now. */ if (!pte_read(pteval)) pteval = mk_pte(page, page_to_kpgprot(page)); list_add(&->list, &_list); set_pte(ptep, pteval); arch_flush_lazy_mmu_mode(); spin_unlock(&_lock); homecache_kpte_unlock(flags); } /* * Remove a page and va, on this cpu, from the list of kmap_atomic pages. * Linear-time search, but we count on the lists being short. * We don't need to adjust the PTE under the lock (as opposed to the * kmap_atomic_register() case), since we're just unconditionally * zeroing the PTE after it's off the list. */ static void kmap_atomic_unregister(struct page *page, unsigned long va) { unsigned long flags; struct atomic_mapped_page *amp; int cpu = smp_processor_id(); spin_lock_irqsave(&_lock, flags); list_for_each_entry(amp, &_list, list) { if (amp->page == page && amp->cpu == cpu && amp->va == va) break; } BUG_ON(&->list == &_list); list_del(&->list); spin_unlock_irqrestore(&_lock, flags); } /* Helper routine for kmap_atomic_fix_kpte(), below. */ static void kmap_atomic_fix_one_kpte(struct atomic_mapped_page *amp, int finished) { pte_t *ptep = kmap_get_pte(amp->va); if (!finished) { set_pte(ptep, pte_mkmigrate(*ptep)); flush_remote(0, 0, NULL, amp->va, PAGE_SIZE, PAGE_SIZE, cpumask_of(amp->cpu), NULL, 0); } else { /* * Rewrite a default kernel PTE for this page. * We rely on the fact that set_pte() writes the * present+migrating bits last. */ pte_t pte = mk_pte(amp->page, page_to_kpgprot(amp->page)); set_pte(ptep, pte); } } /* * This routine is a helper function for homecache_fix_kpte(); see * its comments for more information on the "finished" argument here. * * Note that we hold the lock while doing the remote flushes, which * will stall any unrelated cpus trying to do kmap_atomic operations. * We could just update the PTEs under the lock, and save away copies * of the structs (or just the va+cpu), then flush them after we * release the lock, but it seems easier just to do it all under the lock. */ void kmap_atomic_fix_kpte(struct page *page, int finished) { struct atomic_mapped_page *amp; unsigned long flags; spin_lock_irqsave(&_lock, flags); list_for_each_entry(amp, &_list, list) { if (amp->page == page) kmap_atomic_fix_one_kpte(amp, finished); } spin_unlock_irqrestore(&_lock, flags); } /* * kmap_atomic/kunmap_atomic is significantly faster than kmap/kunmap * because the kmap code must perform a global TLB invalidation when * the kmap pool wraps. * * Note that they may be slower than on x86 (etc.) because unlike on * those platforms, we do have to take a global lock to map and unmap * pages on Tile (see above). * * When holding an atomic kmap is is not legal to sleep, so atomic * kmaps are appropriate for short, tight code paths only. */ void *kmap_atomic_prot(struct page *page, pgprot_t prot) { unsigned long vaddr; int idx, type; pte_t *pte; /* even !CONFIG_PREEMPT needs this, for in_atomic in do_page_fault */ pagefault_disable(); /* Avoid icache flushes by disallowing atomic executable mappings. */ BUG_ON(pte_exec(prot)); if (!PageHighMem(page)) return page_address(page); type = kmap_atomic_idx_push(); idx = type + KM_TYPE_NR*smp_processor_id(); vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx); pte = kmap_get_pte(vaddr); BUG_ON(!pte_none(*pte)); /* Register that this page is mapped atomically on this cpu. */ kmap_atomic_register(page, type, vaddr, pte, mk_pte(page, prot)); return (void *)vaddr; } EXPORT_SYMBOL(kmap_atomic_prot); void *kmap_atomic(struct page *page) { /* PAGE_NONE is a magic value that tells us to check immutability. */ return kmap_atomic_prot(page, PAGE_NONE); } EXPORT_SYMBOL(kmap_atomic); void __kunmap_atomic(void *kvaddr) { unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK; if (vaddr >= __fix_to_virt(FIX_KMAP_END) && vaddr <= __fix_to_virt(FIX_KMAP_BEGIN)) { pte_t *pte = kmap_get_pte(vaddr); pte_t pteval = *pte; int idx, type; type = kmap_atomic_idx(); idx = type + KM_TYPE_NR*smp_processor_id(); /* * Force other mappings to Oops if they try to access this pte * without first remapping it. Keeping stale mappings around * is a bad idea. */ BUG_ON(!pte_present(pteval) && !pte_migrating(pteval)); kmap_atomic_unregister(pte_page(pteval), vaddr); kpte_clear_flush(pte, vaddr); kmap_atomic_idx_pop(); } else { /* Must be a lowmem page */ BUG_ON(vaddr < PAGE_OFFSET); BUG_ON(vaddr >= (unsigned long)high_memory); } arch_flush_lazy_mmu_mode(); pagefault_enable(); } EXPORT_SYMBOL(__kunmap_atomic); /* * This API is supposed to allow us to map memory without a "struct page". * Currently we don't support this, though this may change in the future. */ void *kmap_atomic_pfn(unsigned long pfn) { return kmap_atomic(pfn_to_page(pfn)); } void *kmap_atomic_prot_pfn(unsigned long pfn, pgprot_t prot) { return kmap_atomic_prot(pfn_to_page(pfn), prot); } struct page *kmap_atomic_to_page(void *ptr) { pte_t *pte; unsigned long vaddr = (unsigned long)ptr; if (vaddr < FIXADDR_START) return virt_to_page(ptr); pte = kmap_get_pte(vaddr); return pte_page(*pte); }