/* * linux/arch/unicore32/kernel/process.c * * Code specific to PKUnity SoC and UniCore ISA * * Copyright (C) 2001-2010 GUAN Xue-tao * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <stdarg.h> #include <linux/module.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/stddef.h> #include <linux/unistd.h> #include <linux/delay.h> #include <linux/reboot.h> #include <linux/interrupt.h> #include <linux/kallsyms.h> #include <linux/init.h> #include <linux/cpu.h> #include <linux/elfcore.h> #include <linux/pm.h> #include <linux/tick.h> #include <linux/utsname.h> #include <linux/uaccess.h> #include <linux/random.h> #include <linux/gpio.h> #include <linux/stacktrace.h> #include <asm/cacheflush.h> #include <asm/processor.h> #include <asm/stacktrace.h> #include "setup.h" static const char * const processor_modes[] = { "UK00", "UK01", "UK02", "UK03", "UK04", "UK05", "UK06", "UK07", "UK08", "UK09", "UK0A", "UK0B", "UK0C", "UK0D", "UK0E", "UK0F", "USER", "REAL", "INTR", "PRIV", "UK14", "UK15", "UK16", "ABRT", "UK18", "UK19", "UK1A", "EXTN", "UK1C", "UK1D", "UK1E", "SUSR" }; void arch_cpu_idle(void) { cpu_do_idle(); local_irq_enable(); } static char reboot_mode = 'h'; int __init reboot_setup(char *str) { reboot_mode = str[0]; return 1; } __setup("reboot=", reboot_setup); void machine_halt(void) { gpio_set_value(GPO_SOFT_OFF, 0); } /* * Function pointers to optional machine specific functions */ void (*pm_power_off)(void) = NULL; void machine_power_off(void) { if (pm_power_off) pm_power_off(); machine_halt(); } void machine_restart(char *cmd) { /* Disable interrupts first */ local_irq_disable(); /* * Tell the mm system that we are going to reboot - * we may need it to insert some 1:1 mappings so that * soft boot works. */ setup_mm_for_reboot(reboot_mode); /* Clean and invalidate caches */ flush_cache_all(); /* Turn off caching */ cpu_proc_fin(); /* Push out any further dirty data, and ensure cache is empty */ flush_cache_all(); /* * Now handle reboot code. */ if (reboot_mode == 's') { /* Jump into ROM at address 0xffff0000 */ cpu_reset(VECTORS_BASE); } else { writel(0x00002001, PM_PLLSYSCFG); /* cpu clk = 250M */ writel(0x00100800, PM_PLLDDRCFG); /* ddr clk = 44M */ writel(0x00002001, PM_PLLVGACFG); /* vga clk = 250M */ /* Use on-chip reset capability */ /* following instructions must be in one icache line */ __asm__ __volatile__( " .align 5\n\t" " stw %1, [%0]\n\t" "201: ldw r0, [%0]\n\t" " cmpsub.a r0, #0\n\t" " bne 201b\n\t" " stw %3, [%2]\n\t" " nop; nop; nop\n\t" /* prefetch 3 instructions at most */ : : "r" (PM_PMCR), "r" (PM_PMCR_CFBSYS | PM_PMCR_CFBDDR | PM_PMCR_CFBVGA), "r" (RESETC_SWRR), "r" (RESETC_SWRR_SRB) : "r0", "memory"); } /* * Whoops - the architecture was unable to reboot. * Tell the user! */ mdelay(1000); printk(KERN_EMERG "Reboot failed -- System halted\n"); do { } while (1); } void __show_regs(struct pt_regs *regs) { unsigned long flags; char buf[64]; show_regs_print_info(KERN_DEFAULT); print_symbol("PC is at %s\n", instruction_pointer(regs)); print_symbol("LR is at %s\n", regs->UCreg_lr); printk(KERN_DEFAULT "pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n" "sp : %08lx ip : %08lx fp : %08lx\n", regs->UCreg_pc, regs->UCreg_lr, regs->UCreg_asr, regs->UCreg_sp, regs->UCreg_ip, regs->UCreg_fp); printk(KERN_DEFAULT "r26: %08lx r25: %08lx r24: %08lx\n", regs->UCreg_26, regs->UCreg_25, regs->UCreg_24); printk(KERN_DEFAULT "r23: %08lx r22: %08lx r21: %08lx r20: %08lx\n", regs->UCreg_23, regs->UCreg_22, regs->UCreg_21, regs->UCreg_20); printk(KERN_DEFAULT "r19: %08lx r18: %08lx r17: %08lx r16: %08lx\n", regs->UCreg_19, regs->UCreg_18, regs->UCreg_17, regs->UCreg_16); printk(KERN_DEFAULT "r15: %08lx r14: %08lx r13: %08lx r12: %08lx\n", regs->UCreg_15, regs->UCreg_14, regs->UCreg_13, regs->UCreg_12); printk(KERN_DEFAULT "r11: %08lx r10: %08lx r9 : %08lx r8 : %08lx\n", regs->UCreg_11, regs->UCreg_10, regs->UCreg_09, regs->UCreg_08); printk(KERN_DEFAULT "r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n", regs->UCreg_07, regs->UCreg_06, regs->UCreg_05, regs->UCreg_04); printk(KERN_DEFAULT "r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n", regs->UCreg_03, regs->UCreg_02, regs->UCreg_01, regs->UCreg_00); flags = regs->UCreg_asr; buf[0] = flags & PSR_S_BIT ? 'S' : 's'; buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z'; buf[2] = flags & PSR_C_BIT ? 'C' : 'c'; buf[3] = flags & PSR_V_BIT ? 'V' : 'v'; buf[4] = '\0'; printk(KERN_DEFAULT "Flags: %s INTR o%s REAL o%s Mode %s Segment %s\n", buf, interrupts_enabled(regs) ? "n" : "ff", fast_interrupts_enabled(regs) ? "n" : "ff", processor_modes[processor_mode(regs)], segment_eq(get_fs(), get_ds()) ? "kernel" : "user"); { unsigned int ctrl; buf[0] = '\0'; { unsigned int transbase; asm("movc %0, p0.c2, #0\n" : "=r" (transbase)); snprintf(buf, sizeof(buf), " Table: %08x", transbase); } asm("movc %0, p0.c1, #0\n" : "=r" (ctrl)); printk(KERN_DEFAULT "Control: %08x%s\n", ctrl, buf); } } void show_regs(struct pt_regs *regs) { printk(KERN_DEFAULT "\n"); printk(KERN_DEFAULT "Pid: %d, comm: %20s\n", task_pid_nr(current), current->comm); __show_regs(regs); __backtrace(); } /* * Free current thread data structures etc.. */ void exit_thread(void) { } void flush_thread(void) { struct thread_info *thread = current_thread_info(); struct task_struct *tsk = current; memset(thread->used_cp, 0, sizeof(thread->used_cp)); memset(&tsk->thread.debug, 0, sizeof(struct debug_info)); #ifdef CONFIG_UNICORE_FPU_F64 memset(&thread->fpstate, 0, sizeof(struct fp_state)); #endif } void release_thread(struct task_struct *dead_task) { } asmlinkage void ret_from_fork(void) __asm__("ret_from_fork"); asmlinkage void ret_from_kernel_thread(void) __asm__("ret_from_kernel_thread"); int copy_thread(unsigned long clone_flags, unsigned long stack_start, unsigned long stk_sz, struct task_struct *p) { struct thread_info *thread = task_thread_info(p); struct pt_regs *childregs = task_pt_regs(p); memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save)); thread->cpu_context.sp = (unsigned long)childregs; if (unlikely(p->flags & PF_KTHREAD)) { thread->cpu_context.pc = (unsigned long)ret_from_kernel_thread; thread->cpu_context.r4 = stack_start; thread->cpu_context.r5 = stk_sz; memset(childregs, 0, sizeof(struct pt_regs)); } else { thread->cpu_context.pc = (unsigned long)ret_from_fork; *childregs = *current_pt_regs(); childregs->UCreg_00 = 0; if (stack_start) childregs->UCreg_sp = stack_start; if (clone_flags & CLONE_SETTLS) childregs->UCreg_16 = childregs->UCreg_03; } return 0; } /* * Fill in the task's elfregs structure for a core dump. */ int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs) { elf_core_copy_regs(elfregs, task_pt_regs(t)); return 1; } /* * fill in the fpe structure for a core dump... */ int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fp) { struct thread_info *thread = current_thread_info(); int used_math = thread->used_cp[1] | thread->used_cp[2]; #ifdef CONFIG_UNICORE_FPU_F64 if (used_math) memcpy(fp, &thread->fpstate, sizeof(*fp)); #endif return used_math != 0; } EXPORT_SYMBOL(dump_fpu); unsigned long get_wchan(struct task_struct *p) { struct stackframe frame; int count = 0; if (!p || p == current || p->state == TASK_RUNNING) return 0; frame.fp = thread_saved_fp(p); frame.sp = thread_saved_sp(p); frame.lr = 0; /* recovered from the stack */ frame.pc = thread_saved_pc(p); do { int ret = unwind_frame(&frame); if (ret < 0) return 0; if (!in_sched_functions(frame.pc)) return frame.pc; } while ((count++) < 16); return 0; } unsigned long arch_randomize_brk(struct mm_struct *mm) { unsigned long range_end = mm->brk + 0x02000000; return randomize_range(mm->brk, range_end, 0) ? : mm->brk; } /* * The vectors page is always readable from user space for the * atomic helpers and the signal restart code. Let's declare a mapping * for it so it is visible through ptrace and /proc/<pid>/mem. */ int vectors_user_mapping(void) { struct mm_struct *mm = current->mm; return install_special_mapping(mm, 0xffff0000, PAGE_SIZE, VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC | VM_DONTEXPAND | VM_DONTDUMP, NULL); } const char *arch_vma_name(struct vm_area_struct *vma) { return (vma->vm_start == 0xffff0000) ? "[vectors]" : NULL; }