/* * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation * August 2002: added remote node KVA remap - Martin J. Bligh * * Copyright (C) 2002, IBM Corp. * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/bootmem.h> #include <linux/memblock.h> #include <linux/module.h> #include "numa_internal.h" #ifdef CONFIG_DISCONTIGMEM /* * 4) physnode_map - the mapping between a pfn and owning node * physnode_map keeps track of the physical memory layout of a generic * numa node on a 64Mb break (each element of the array will * represent 64Mb of memory and will be marked by the node id. so, * if the first gig is on node 0, and the second gig is on node 1 * physnode_map will contain: * * physnode_map[0-15] = 0; * physnode_map[16-31] = 1; * physnode_map[32- ] = -1; */ s8 physnode_map[MAX_SECTIONS] __read_mostly = { [0 ... (MAX_SECTIONS - 1)] = -1}; EXPORT_SYMBOL(physnode_map); void memory_present(int nid, unsigned long start, unsigned long end) { unsigned long pfn; printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n", nid, start, end); printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid); printk(KERN_DEBUG " "); for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { physnode_map[pfn / PAGES_PER_SECTION] = nid; printk(KERN_CONT "%lx ", pfn); } printk(KERN_CONT "\n"); } unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn, unsigned long end_pfn) { unsigned long nr_pages = end_pfn - start_pfn; if (!nr_pages) return 0; return (nr_pages + 1) * sizeof(struct page); } #endif extern unsigned long highend_pfn, highstart_pfn; void __init initmem_init(void) { x86_numa_init(); #ifdef CONFIG_HIGHMEM highstart_pfn = highend_pfn = max_pfn; if (max_pfn > max_low_pfn) highstart_pfn = max_low_pfn; printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", pages_to_mb(highend_pfn - highstart_pfn)); num_physpages = highend_pfn; high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1; #else num_physpages = max_low_pfn; high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1; #endif printk(KERN_NOTICE "%ldMB LOWMEM available.\n", pages_to_mb(max_low_pfn)); printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n", max_low_pfn, highstart_pfn); printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n", (ulong) pfn_to_kaddr(max_low_pfn)); printk(KERN_DEBUG "High memory starts at vaddr %08lx\n", (ulong) pfn_to_kaddr(highstart_pfn)); setup_bootmem_allocator(); }