/* * Register map access API - debugfs * * Copyright 2011 Wolfson Microelectronics plc * * Author: Mark Brown <broonie@opensource.wolfsonmicro.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/slab.h> #include <linux/mutex.h> #include <linux/debugfs.h> #include <linux/uaccess.h> #include <linux/device.h> #include "internal.h" static struct dentry *regmap_debugfs_root; /* Calculate the length of a fixed format */ static size_t regmap_calc_reg_len(int max_val, char *buf, size_t buf_size) { snprintf(buf, buf_size, "%x", max_val); return strlen(buf); } static ssize_t regmap_name_read_file(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct regmap *map = file->private_data; int ret; char *buf; buf = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; ret = snprintf(buf, PAGE_SIZE, "%s\n", map->dev->driver->name); if (ret < 0) { kfree(buf); return ret; } ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); kfree(buf); return ret; } static const struct file_operations regmap_name_fops = { .open = simple_open, .read = regmap_name_read_file, .llseek = default_llseek, }; static void regmap_debugfs_free_dump_cache(struct regmap *map) { struct regmap_debugfs_off_cache *c; while (!list_empty(&map->debugfs_off_cache)) { c = list_first_entry(&map->debugfs_off_cache, struct regmap_debugfs_off_cache, list); list_del(&c->list); kfree(c); } } /* * Work out where the start offset maps into register numbers, bearing * in mind that we suppress hidden registers. */ static unsigned int regmap_debugfs_get_dump_start(struct regmap *map, unsigned int base, loff_t from, loff_t *pos) { struct regmap_debugfs_off_cache *c = NULL; loff_t p = 0; unsigned int i, ret; unsigned int fpos_offset; unsigned int reg_offset; /* * If we don't have a cache build one so we don't have to do a * linear scan each time. */ mutex_lock(&map->cache_lock); i = base; if (list_empty(&map->debugfs_off_cache)) { for (; i <= map->max_register; i += map->reg_stride) { /* Skip unprinted registers, closing off cache entry */ if (!regmap_readable(map, i) || regmap_precious(map, i)) { if (c) { c->max = p - 1; c->max_reg = i - map->reg_stride; list_add_tail(&c->list, &map->debugfs_off_cache); c = NULL; } continue; } /* No cache entry? Start a new one */ if (!c) { c = kzalloc(sizeof(*c), GFP_KERNEL); if (!c) { regmap_debugfs_free_dump_cache(map); mutex_unlock(&map->cache_lock); return base; } c->min = p; c->base_reg = i; } p += map->debugfs_tot_len; } } /* Close the last entry off if we didn't scan beyond it */ if (c) { c->max = p - 1; c->max_reg = i - map->reg_stride; list_add_tail(&c->list, &map->debugfs_off_cache); } /* * This should never happen; we return above if we fail to * allocate and we should never be in this code if there are * no registers at all. */ WARN_ON(list_empty(&map->debugfs_off_cache)); ret = base; /* Find the relevant block:offset */ list_for_each_entry(c, &map->debugfs_off_cache, list) { if (from >= c->min && from <= c->max) { fpos_offset = from - c->min; reg_offset = fpos_offset / map->debugfs_tot_len; *pos = c->min + (reg_offset * map->debugfs_tot_len); mutex_unlock(&map->cache_lock); return c->base_reg + reg_offset; } *pos = c->max; ret = c->max_reg; } mutex_unlock(&map->cache_lock); return ret; } static inline void regmap_calc_tot_len(struct regmap *map, void *buf, size_t count) { /* Calculate the length of a fixed format */ if (!map->debugfs_tot_len) { map->debugfs_reg_len = regmap_calc_reg_len(map->max_register, buf, count); map->debugfs_val_len = 2 * map->format.val_bytes; map->debugfs_tot_len = map->debugfs_reg_len + map->debugfs_val_len + 3; /* : \n */ } } static ssize_t regmap_read_debugfs(struct regmap *map, unsigned int from, unsigned int to, char __user *user_buf, size_t count, loff_t *ppos) { size_t buf_pos = 0; loff_t p = *ppos; ssize_t ret; int i; char *buf; unsigned int val, start_reg; if (*ppos < 0 || !count) return -EINVAL; buf = kmalloc(count, GFP_KERNEL); if (!buf) return -ENOMEM; regmap_calc_tot_len(map, buf, count); /* Work out which register we're starting at */ start_reg = regmap_debugfs_get_dump_start(map, from, *ppos, &p); for (i = start_reg; i <= to; i += map->reg_stride) { if (!regmap_readable(map, i)) continue; if (regmap_precious(map, i)) continue; /* If we're in the region the user is trying to read */ if (p >= *ppos) { /* ...but not beyond it */ if (buf_pos + map->debugfs_tot_len > count) break; /* Format the register */ snprintf(buf + buf_pos, count - buf_pos, "%.*x: ", map->debugfs_reg_len, i - from); buf_pos += map->debugfs_reg_len + 2; /* Format the value, write all X if we can't read */ ret = regmap_read(map, i, &val); if (ret == 0) snprintf(buf + buf_pos, count - buf_pos, "%.*x", map->debugfs_val_len, val); else memset(buf + buf_pos, 'X', map->debugfs_val_len); buf_pos += 2 * map->format.val_bytes; buf[buf_pos++] = '\n'; } p += map->debugfs_tot_len; } ret = buf_pos; if (copy_to_user(user_buf, buf, buf_pos)) { ret = -EFAULT; goto out; } *ppos += buf_pos; out: kfree(buf); return ret; } static ssize_t regmap_map_read_file(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct regmap *map = file->private_data; return regmap_read_debugfs(map, 0, map->max_register, user_buf, count, ppos); } #undef REGMAP_ALLOW_WRITE_DEBUGFS #ifdef REGMAP_ALLOW_WRITE_DEBUGFS /* * This can be dangerous especially when we have clients such as * PMICs, therefore don't provide any real compile time configuration option * for this feature, people who want to use this will need to modify * the source code directly. */ static ssize_t regmap_map_write_file(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { char buf[32]; size_t buf_size; char *start = buf; unsigned long reg, value; struct regmap *map = file->private_data; int ret; buf_size = min(count, (sizeof(buf)-1)); if (copy_from_user(buf, user_buf, buf_size)) return -EFAULT; buf[buf_size] = 0; while (*start == ' ') start++; reg = simple_strtoul(start, &start, 16); while (*start == ' ') start++; if (strict_strtoul(start, 16, &value)) return -EINVAL; /* Userspace has been fiddling around behind the kernel's back */ add_taint(TAINT_USER, LOCKDEP_NOW_UNRELIABLE); ret = regmap_write(map, reg, value); if (ret < 0) return ret; return buf_size; } #else #define regmap_map_write_file NULL #endif static const struct file_operations regmap_map_fops = { .open = simple_open, .read = regmap_map_read_file, .write = regmap_map_write_file, .llseek = default_llseek, }; static ssize_t regmap_range_read_file(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct regmap_range_node *range = file->private_data; struct regmap *map = range->map; return regmap_read_debugfs(map, range->range_min, range->range_max, user_buf, count, ppos); } static const struct file_operations regmap_range_fops = { .open = simple_open, .read = regmap_range_read_file, .llseek = default_llseek, }; static ssize_t regmap_reg_ranges_read_file(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct regmap *map = file->private_data; struct regmap_debugfs_off_cache *c; loff_t p = 0; size_t buf_pos = 0; char *buf; char *entry; int ret; if (*ppos < 0 || !count) return -EINVAL; buf = kmalloc(count, GFP_KERNEL); if (!buf) return -ENOMEM; entry = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!entry) { kfree(buf); return -ENOMEM; } /* While we are at it, build the register dump cache * now so the read() operation on the `registers' file * can benefit from using the cache. We do not care * about the file position information that is contained * in the cache, just about the actual register blocks */ regmap_calc_tot_len(map, buf, count); regmap_debugfs_get_dump_start(map, 0, *ppos, &p); /* Reset file pointer as the fixed-format of the `registers' * file is not compatible with the `range' file */ p = 0; mutex_lock(&map->cache_lock); list_for_each_entry(c, &map->debugfs_off_cache, list) { snprintf(entry, PAGE_SIZE, "%x-%x", c->base_reg, c->max_reg); if (p >= *ppos) { if (buf_pos + 1 + strlen(entry) > count) break; snprintf(buf + buf_pos, count - buf_pos, "%s", entry); buf_pos += strlen(entry); buf[buf_pos] = '\n'; buf_pos++; } p += strlen(entry) + 1; } mutex_unlock(&map->cache_lock); kfree(entry); ret = buf_pos; if (copy_to_user(user_buf, buf, buf_pos)) { ret = -EFAULT; goto out_buf; } *ppos += buf_pos; out_buf: kfree(buf); return ret; } static const struct file_operations regmap_reg_ranges_fops = { .open = simple_open, .read = regmap_reg_ranges_read_file, .llseek = default_llseek, }; static ssize_t regmap_access_read_file(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { int reg_len, tot_len; size_t buf_pos = 0; loff_t p = 0; ssize_t ret; int i; struct regmap *map = file->private_data; char *buf; if (*ppos < 0 || !count) return -EINVAL; buf = kmalloc(count, GFP_KERNEL); if (!buf) return -ENOMEM; /* Calculate the length of a fixed format */ reg_len = regmap_calc_reg_len(map->max_register, buf, count); tot_len = reg_len + 10; /* ': R W V P\n' */ for (i = 0; i <= map->max_register; i += map->reg_stride) { /* Ignore registers which are neither readable nor writable */ if (!regmap_readable(map, i) && !regmap_writeable(map, i)) continue; /* If we're in the region the user is trying to read */ if (p >= *ppos) { /* ...but not beyond it */ if (buf_pos >= count - 1 - tot_len) break; /* Format the register */ snprintf(buf + buf_pos, count - buf_pos, "%.*x: %c %c %c %c\n", reg_len, i, regmap_readable(map, i) ? 'y' : 'n', regmap_writeable(map, i) ? 'y' : 'n', regmap_volatile(map, i) ? 'y' : 'n', regmap_precious(map, i) ? 'y' : 'n'); buf_pos += tot_len; } p += tot_len; } ret = buf_pos; if (copy_to_user(user_buf, buf, buf_pos)) { ret = -EFAULT; goto out; } *ppos += buf_pos; out: kfree(buf); return ret; } static const struct file_operations regmap_access_fops = { .open = simple_open, .read = regmap_access_read_file, .llseek = default_llseek, }; void regmap_debugfs_init(struct regmap *map, const char *name) { struct rb_node *next; struct regmap_range_node *range_node; INIT_LIST_HEAD(&map->debugfs_off_cache); mutex_init(&map->cache_lock); if (name) { map->debugfs_name = kasprintf(GFP_KERNEL, "%s-%s", dev_name(map->dev), name); name = map->debugfs_name; } else { name = dev_name(map->dev); } map->debugfs = debugfs_create_dir(name, regmap_debugfs_root); if (!map->debugfs) { dev_warn(map->dev, "Failed to create debugfs directory\n"); return; } debugfs_create_file("name", 0400, map->debugfs, map, ®map_name_fops); debugfs_create_file("range", 0400, map->debugfs, map, ®map_reg_ranges_fops); if (map->max_register) { debugfs_create_file("registers", 0400, map->debugfs, map, ®map_map_fops); debugfs_create_file("access", 0400, map->debugfs, map, ®map_access_fops); } if (map->cache_type) { debugfs_create_bool("cache_only", 0400, map->debugfs, &map->cache_only); debugfs_create_bool("cache_dirty", 0400, map->debugfs, &map->cache_dirty); debugfs_create_bool("cache_bypass", 0400, map->debugfs, &map->cache_bypass); } next = rb_first(&map->range_tree); while (next) { range_node = rb_entry(next, struct regmap_range_node, node); if (range_node->name) debugfs_create_file(range_node->name, 0400, map->debugfs, range_node, ®map_range_fops); next = rb_next(&range_node->node); } } void regmap_debugfs_exit(struct regmap *map) { debugfs_remove_recursive(map->debugfs); mutex_lock(&map->cache_lock); regmap_debugfs_free_dump_cache(map); mutex_unlock(&map->cache_lock); kfree(map->debugfs_name); } void regmap_debugfs_initcall(void) { regmap_debugfs_root = debugfs_create_dir("regmap", NULL); if (!regmap_debugfs_root) { pr_warn("regmap: Failed to create debugfs root\n"); return; } }