/* * intel_pstate.c: Native P state management for Intel processors * * (C) Copyright 2012 Intel Corporation * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; version 2 * of the License. */ #include <linux/kernel.h> #include <linux/kernel_stat.h> #include <linux/module.h> #include <linux/ktime.h> #include <linux/hrtimer.h> #include <linux/tick.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/list.h> #include <linux/cpu.h> #include <linux/cpufreq.h> #include <linux/sysfs.h> #include <linux/types.h> #include <linux/fs.h> #include <linux/debugfs.h> #include <trace/events/power.h> #include <asm/div64.h> #include <asm/msr.h> #include <asm/cpu_device_id.h> #define SAMPLE_COUNT 3 #define FRAC_BITS 8 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) #define fp_toint(X) ((X) >> FRAC_BITS) static inline int32_t mul_fp(int32_t x, int32_t y) { return ((int64_t)x * (int64_t)y) >> FRAC_BITS; } static inline int32_t div_fp(int32_t x, int32_t y) { return div_s64((int64_t)x << FRAC_BITS, (int64_t)y); } struct sample { int core_pct_busy; u64 aperf; u64 mperf; int freq; }; struct pstate_data { int current_pstate; int min_pstate; int max_pstate; int turbo_pstate; }; struct _pid { int setpoint; int32_t integral; int32_t p_gain; int32_t i_gain; int32_t d_gain; int deadband; int last_err; }; struct cpudata { int cpu; char name[64]; struct timer_list timer; struct pstate_adjust_policy *pstate_policy; struct pstate_data pstate; struct _pid pid; int min_pstate_count; u64 prev_aperf; u64 prev_mperf; int sample_ptr; struct sample samples[SAMPLE_COUNT]; }; static struct cpudata **all_cpu_data; struct pstate_adjust_policy { int sample_rate_ms; int deadband; int setpoint; int p_gain_pct; int d_gain_pct; int i_gain_pct; }; static struct pstate_adjust_policy default_policy = { .sample_rate_ms = 10, .deadband = 0, .setpoint = 109, .p_gain_pct = 17, .d_gain_pct = 0, .i_gain_pct = 4, }; struct perf_limits { int no_turbo; int max_perf_pct; int min_perf_pct; int32_t max_perf; int32_t min_perf; int max_policy_pct; int max_sysfs_pct; }; static struct perf_limits limits = { .no_turbo = 0, .max_perf_pct = 100, .max_perf = int_tofp(1), .min_perf_pct = 0, .min_perf = 0, .max_policy_pct = 100, .max_sysfs_pct = 100, }; static inline void pid_reset(struct _pid *pid, int setpoint, int busy, int deadband, int integral) { pid->setpoint = setpoint; pid->deadband = deadband; pid->integral = int_tofp(integral); pid->last_err = setpoint - busy; } static inline void pid_p_gain_set(struct _pid *pid, int percent) { pid->p_gain = div_fp(int_tofp(percent), int_tofp(100)); } static inline void pid_i_gain_set(struct _pid *pid, int percent) { pid->i_gain = div_fp(int_tofp(percent), int_tofp(100)); } static inline void pid_d_gain_set(struct _pid *pid, int percent) { pid->d_gain = div_fp(int_tofp(percent), int_tofp(100)); } static signed int pid_calc(struct _pid *pid, int busy) { signed int err, result; int32_t pterm, dterm, fp_error; int32_t integral_limit; err = pid->setpoint - busy; fp_error = int_tofp(err); if (abs(err) <= pid->deadband) return 0; pterm = mul_fp(pid->p_gain, fp_error); pid->integral += fp_error; /* limit the integral term */ integral_limit = int_tofp(30); if (pid->integral > integral_limit) pid->integral = integral_limit; if (pid->integral < -integral_limit) pid->integral = -integral_limit; dterm = mul_fp(pid->d_gain, (err - pid->last_err)); pid->last_err = err; result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm; return (signed int)fp_toint(result); } static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu) { pid_p_gain_set(&cpu->pid, cpu->pstate_policy->p_gain_pct); pid_d_gain_set(&cpu->pid, cpu->pstate_policy->d_gain_pct); pid_i_gain_set(&cpu->pid, cpu->pstate_policy->i_gain_pct); pid_reset(&cpu->pid, cpu->pstate_policy->setpoint, 100, cpu->pstate_policy->deadband, 0); } static inline void intel_pstate_reset_all_pid(void) { unsigned int cpu; for_each_online_cpu(cpu) { if (all_cpu_data[cpu]) intel_pstate_busy_pid_reset(all_cpu_data[cpu]); } } /************************** debugfs begin ************************/ static int pid_param_set(void *data, u64 val) { *(u32 *)data = val; intel_pstate_reset_all_pid(); return 0; } static int pid_param_get(void *data, u64 *val) { *val = *(u32 *)data; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n"); struct pid_param { char *name; void *value; }; static struct pid_param pid_files[] = { {"sample_rate_ms", &default_policy.sample_rate_ms}, {"d_gain_pct", &default_policy.d_gain_pct}, {"i_gain_pct", &default_policy.i_gain_pct}, {"deadband", &default_policy.deadband}, {"setpoint", &default_policy.setpoint}, {"p_gain_pct", &default_policy.p_gain_pct}, {NULL, NULL} }; static struct dentry *debugfs_parent; static void intel_pstate_debug_expose_params(void) { int i = 0; debugfs_parent = debugfs_create_dir("pstate_snb", NULL); if (IS_ERR_OR_NULL(debugfs_parent)) return; while (pid_files[i].name) { debugfs_create_file(pid_files[i].name, 0660, debugfs_parent, pid_files[i].value, &fops_pid_param); i++; } } /************************** debugfs end ************************/ /************************** sysfs begin ************************/ #define show_one(file_name, object) \ static ssize_t show_##file_name \ (struct kobject *kobj, struct attribute *attr, char *buf) \ { \ return sprintf(buf, "%u\n", limits.object); \ } static ssize_t store_no_turbo(struct kobject *a, struct attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; limits.no_turbo = clamp_t(int, input, 0 , 1); return count; } static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; limits.max_sysfs_pct = clamp_t(int, input, 0 , 100); limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct); limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100)); return count; } static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; limits.min_perf_pct = clamp_t(int, input, 0 , 100); limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100)); return count; } show_one(no_turbo, no_turbo); show_one(max_perf_pct, max_perf_pct); show_one(min_perf_pct, min_perf_pct); define_one_global_rw(no_turbo); define_one_global_rw(max_perf_pct); define_one_global_rw(min_perf_pct); static struct attribute *intel_pstate_attributes[] = { &no_turbo.attr, &max_perf_pct.attr, &min_perf_pct.attr, NULL }; static struct attribute_group intel_pstate_attr_group = { .attrs = intel_pstate_attributes, }; static struct kobject *intel_pstate_kobject; static void intel_pstate_sysfs_expose_params(void) { int rc; intel_pstate_kobject = kobject_create_and_add("intel_pstate", &cpu_subsys.dev_root->kobj); BUG_ON(!intel_pstate_kobject); rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); BUG_ON(rc); } /************************** sysfs end ************************/ static int intel_pstate_min_pstate(void) { u64 value; rdmsrl(MSR_PLATFORM_INFO, value); return (value >> 40) & 0xFF; } static int intel_pstate_max_pstate(void) { u64 value; rdmsrl(MSR_PLATFORM_INFO, value); return (value >> 8) & 0xFF; } static int intel_pstate_turbo_pstate(void) { u64 value; int nont, ret; rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value); nont = intel_pstate_max_pstate(); ret = ((value) & 255); if (ret <= nont) ret = nont; return ret; } static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max) { int max_perf = cpu->pstate.turbo_pstate; int min_perf; if (limits.no_turbo) max_perf = cpu->pstate.max_pstate; max_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf)); *max = clamp_t(int, max_perf, cpu->pstate.min_pstate, cpu->pstate.turbo_pstate); min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf)); *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf); } static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) { int max_perf, min_perf; intel_pstate_get_min_max(cpu, &min_perf, &max_perf); pstate = clamp_t(int, pstate, min_perf, max_perf); if (pstate == cpu->pstate.current_pstate) return; trace_cpu_frequency(pstate * 100000, cpu->cpu); cpu->pstate.current_pstate = pstate; wrmsrl(MSR_IA32_PERF_CTL, pstate << 8); } static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps) { int target; target = cpu->pstate.current_pstate + steps; intel_pstate_set_pstate(cpu, target); } static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps) { int target; target = cpu->pstate.current_pstate - steps; intel_pstate_set_pstate(cpu, target); } static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) { sprintf(cpu->name, "Intel 2nd generation core"); cpu->pstate.min_pstate = intel_pstate_min_pstate(); cpu->pstate.max_pstate = intel_pstate_max_pstate(); cpu->pstate.turbo_pstate = intel_pstate_turbo_pstate(); /* * goto max pstate so we don't slow up boot if we are built-in if we are * a module we will take care of it during normal operation */ intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate); } static inline void intel_pstate_calc_busy(struct cpudata *cpu, struct sample *sample) { u64 core_pct; core_pct = div64_u64(sample->aperf * 100, sample->mperf); sample->freq = cpu->pstate.max_pstate * core_pct * 1000; sample->core_pct_busy = core_pct; } static inline void intel_pstate_sample(struct cpudata *cpu) { u64 aperf, mperf; rdmsrl(MSR_IA32_APERF, aperf); rdmsrl(MSR_IA32_MPERF, mperf); cpu->sample_ptr = (cpu->sample_ptr + 1) % SAMPLE_COUNT; cpu->samples[cpu->sample_ptr].aperf = aperf; cpu->samples[cpu->sample_ptr].mperf = mperf; cpu->samples[cpu->sample_ptr].aperf -= cpu->prev_aperf; cpu->samples[cpu->sample_ptr].mperf -= cpu->prev_mperf; intel_pstate_calc_busy(cpu, &cpu->samples[cpu->sample_ptr]); cpu->prev_aperf = aperf; cpu->prev_mperf = mperf; } static inline void intel_pstate_set_sample_time(struct cpudata *cpu) { int sample_time, delay; sample_time = cpu->pstate_policy->sample_rate_ms; delay = msecs_to_jiffies(sample_time); mod_timer_pinned(&cpu->timer, jiffies + delay); } static inline int intel_pstate_get_scaled_busy(struct cpudata *cpu) { int32_t busy_scaled; int32_t core_busy, turbo_pstate, current_pstate; core_busy = int_tofp(cpu->samples[cpu->sample_ptr].core_pct_busy); turbo_pstate = int_tofp(cpu->pstate.turbo_pstate); current_pstate = int_tofp(cpu->pstate.current_pstate); busy_scaled = mul_fp(core_busy, div_fp(turbo_pstate, current_pstate)); return fp_toint(busy_scaled); } static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu) { int busy_scaled; struct _pid *pid; signed int ctl = 0; int steps; pid = &cpu->pid; busy_scaled = intel_pstate_get_scaled_busy(cpu); ctl = pid_calc(pid, busy_scaled); steps = abs(ctl); if (ctl < 0) intel_pstate_pstate_increase(cpu, steps); else intel_pstate_pstate_decrease(cpu, steps); } static void intel_pstate_timer_func(unsigned long __data) { struct cpudata *cpu = (struct cpudata *) __data; intel_pstate_sample(cpu); intel_pstate_adjust_busy_pstate(cpu); if (cpu->pstate.current_pstate == cpu->pstate.min_pstate) { cpu->min_pstate_count++; if (!(cpu->min_pstate_count % 5)) { intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate); } } else cpu->min_pstate_count = 0; intel_pstate_set_sample_time(cpu); } #define ICPU(model, policy) \ { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)&policy } static const struct x86_cpu_id intel_pstate_cpu_ids[] = { ICPU(0x2a, default_policy), ICPU(0x2d, default_policy), ICPU(0x3a, default_policy), {} }; MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); static int intel_pstate_init_cpu(unsigned int cpunum) { const struct x86_cpu_id *id; struct cpudata *cpu; id = x86_match_cpu(intel_pstate_cpu_ids); if (!id) return -ENODEV; all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL); if (!all_cpu_data[cpunum]) return -ENOMEM; cpu = all_cpu_data[cpunum]; intel_pstate_get_cpu_pstates(cpu); cpu->cpu = cpunum; cpu->pstate_policy = (struct pstate_adjust_policy *)id->driver_data; init_timer_deferrable(&cpu->timer); cpu->timer.function = intel_pstate_timer_func; cpu->timer.data = (unsigned long)cpu; cpu->timer.expires = jiffies + HZ/100; intel_pstate_busy_pid_reset(cpu); intel_pstate_sample(cpu); intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate); add_timer_on(&cpu->timer, cpunum); pr_info("Intel pstate controlling: cpu %d\n", cpunum); return 0; } static unsigned int intel_pstate_get(unsigned int cpu_num) { struct sample *sample; struct cpudata *cpu; cpu = all_cpu_data[cpu_num]; if (!cpu) return 0; sample = &cpu->samples[cpu->sample_ptr]; return sample->freq; } static int intel_pstate_set_policy(struct cpufreq_policy *policy) { struct cpudata *cpu; cpu = all_cpu_data[policy->cpu]; if (!policy->cpuinfo.max_freq) return -ENODEV; if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) { limits.min_perf_pct = 100; limits.min_perf = int_tofp(1); limits.max_perf_pct = 100; limits.max_perf = int_tofp(1); limits.no_turbo = 0; return 0; } limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq; limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100); limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100)); limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq; limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100); limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct); limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100)); return 0; } static int intel_pstate_verify_policy(struct cpufreq_policy *policy) { cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, policy->cpuinfo.max_freq); if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) && (policy->policy != CPUFREQ_POLICY_PERFORMANCE)) return -EINVAL; return 0; } static int __cpuinit intel_pstate_cpu_exit(struct cpufreq_policy *policy) { int cpu = policy->cpu; del_timer(&all_cpu_data[cpu]->timer); kfree(all_cpu_data[cpu]); all_cpu_data[cpu] = NULL; return 0; } static int __cpuinit intel_pstate_cpu_init(struct cpufreq_policy *policy) { int rc, min_pstate, max_pstate; struct cpudata *cpu; rc = intel_pstate_init_cpu(policy->cpu); if (rc) return rc; cpu = all_cpu_data[policy->cpu]; if (!limits.no_turbo && limits.min_perf_pct == 100 && limits.max_perf_pct == 100) policy->policy = CPUFREQ_POLICY_PERFORMANCE; else policy->policy = CPUFREQ_POLICY_POWERSAVE; intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate); policy->min = min_pstate * 100000; policy->max = max_pstate * 100000; /* cpuinfo and default policy values */ policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000; policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000; policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; cpumask_set_cpu(policy->cpu, policy->cpus); return 0; } static struct cpufreq_driver intel_pstate_driver = { .flags = CPUFREQ_CONST_LOOPS, .verify = intel_pstate_verify_policy, .setpolicy = intel_pstate_set_policy, .get = intel_pstate_get, .init = intel_pstate_cpu_init, .exit = intel_pstate_cpu_exit, .name = "intel_pstate", .owner = THIS_MODULE, }; static int __initdata no_load; static int intel_pstate_msrs_not_valid(void) { /* Check that all the msr's we are using are valid. */ u64 aperf, mperf, tmp; rdmsrl(MSR_IA32_APERF, aperf); rdmsrl(MSR_IA32_MPERF, mperf); if (!intel_pstate_min_pstate() || !intel_pstate_max_pstate() || !intel_pstate_turbo_pstate()) return -ENODEV; rdmsrl(MSR_IA32_APERF, tmp); if (!(tmp - aperf)) return -ENODEV; rdmsrl(MSR_IA32_MPERF, tmp); if (!(tmp - mperf)) return -ENODEV; return 0; } static int __init intel_pstate_init(void) { int cpu, rc = 0; const struct x86_cpu_id *id; if (no_load) return -ENODEV; id = x86_match_cpu(intel_pstate_cpu_ids); if (!id) return -ENODEV; if (intel_pstate_msrs_not_valid()) return -ENODEV; pr_info("Intel P-state driver initializing.\n"); all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus()); if (!all_cpu_data) return -ENOMEM; rc = cpufreq_register_driver(&intel_pstate_driver); if (rc) goto out; intel_pstate_debug_expose_params(); intel_pstate_sysfs_expose_params(); return rc; out: get_online_cpus(); for_each_online_cpu(cpu) { if (all_cpu_data[cpu]) { del_timer_sync(&all_cpu_data[cpu]->timer); kfree(all_cpu_data[cpu]); } } put_online_cpus(); vfree(all_cpu_data); return -ENODEV; } device_initcall(intel_pstate_init); static int __init intel_pstate_setup(char *str) { if (!str) return -EINVAL; if (!strcmp(str, "disable")) no_load = 1; return 0; } early_param("intel_pstate", intel_pstate_setup); MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); MODULE_LICENSE("GPL");