/** * SHA-256 routines supporting the Power 7+ Nest Accelerators driver * * Copyright (C) 2011-2012 International Business Machines Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 only. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Author: Kent Yoder <yoder1@us.ibm.com> */ #include <crypto/internal/hash.h> #include <crypto/sha.h> #include <linux/module.h> #include <asm/vio.h> #include "nx_csbcpb.h" #include "nx.h" static int nx_sha256_init(struct shash_desc *desc) { struct sha256_state *sctx = shash_desc_ctx(desc); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_sg *out_sg; nx_ctx_init(nx_ctx, HCOP_FC_SHA); memset(sctx, 0, sizeof *sctx); nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA256]; NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA256); out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state, SHA256_DIGEST_SIZE, nx_ctx->ap->sglen); nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); return 0; } static int nx_sha256_update(struct shash_desc *desc, const u8 *data, unsigned int len) { struct sha256_state *sctx = shash_desc_ctx(desc); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; struct nx_sg *in_sg; u64 to_process, leftover; int rc = 0; if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { /* we've hit the nx chip previously and we're updating again, * so copy over the partial digest */ memcpy(csbcpb->cpb.sha256.input_partial_digest, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); } /* 2 cases for total data len: * 1: <= SHA256_BLOCK_SIZE: copy into state, return 0 * 2: > SHA256_BLOCK_SIZE: process X blocks, copy in leftover */ if (len + sctx->count < SHA256_BLOCK_SIZE) { memcpy(sctx->buf + sctx->count, data, len); sctx->count += len; goto out; } /* to_process: the SHA256_BLOCK_SIZE data chunk to process in this * update */ to_process = (sctx->count + len) & ~(SHA256_BLOCK_SIZE - 1); leftover = (sctx->count + len) & (SHA256_BLOCK_SIZE - 1); if (sctx->count) { in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buf, sctx->count, nx_ctx->ap->sglen); in_sg = nx_build_sg_list(in_sg, (u8 *)data, to_process - sctx->count, nx_ctx->ap->sglen); nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); } else { in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)data, to_process, nx_ctx->ap->sglen); nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); } NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) { rc = -EINVAL; goto out; } rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP); if (rc) goto out; atomic_inc(&(nx_ctx->stats->sha256_ops)); /* copy the leftover back into the state struct */ if (leftover) memcpy(sctx->buf, data + len - leftover, leftover); sctx->count = leftover; csbcpb->cpb.sha256.message_bit_length += (u64) (csbcpb->cpb.sha256.spbc * 8); /* everything after the first update is continuation */ NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; out: return rc; } static int nx_sha256_final(struct shash_desc *desc, u8 *out) { struct sha256_state *sctx = shash_desc_ctx(desc); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; struct nx_sg *in_sg, *out_sg; int rc; if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { /* we've hit the nx chip previously, now we're finalizing, * so copy over the partial digest */ memcpy(csbcpb->cpb.sha256.input_partial_digest, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); } /* final is represented by continuing the operation and indicating that * this is not an intermediate operation */ NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; csbcpb->cpb.sha256.message_bit_length += (u64)(sctx->count * 8); in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buf, sctx->count, nx_ctx->ap->sglen); out_sg = nx_build_sg_list(nx_ctx->out_sg, out, SHA256_DIGEST_SIZE, nx_ctx->ap->sglen); nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); if (!nx_ctx->op.outlen) { rc = -EINVAL; goto out; } rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP); if (rc) goto out; atomic_inc(&(nx_ctx->stats->sha256_ops)); atomic64_add(csbcpb->cpb.sha256.message_bit_length / 8, &(nx_ctx->stats->sha256_bytes)); memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); out: return rc; } static int nx_sha256_export(struct shash_desc *desc, void *out) { struct sha256_state *sctx = shash_desc_ctx(desc); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; struct sha256_state *octx = out; octx->count = sctx->count + (csbcpb->cpb.sha256.message_bit_length / 8); memcpy(octx->buf, sctx->buf, sizeof(octx->buf)); /* if no data has been processed yet, we need to export SHA256's * initial data, in case this context gets imported into a software * context */ if (csbcpb->cpb.sha256.message_bit_length) memcpy(octx->state, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); else { octx->state[0] = SHA256_H0; octx->state[1] = SHA256_H1; octx->state[2] = SHA256_H2; octx->state[3] = SHA256_H3; octx->state[4] = SHA256_H4; octx->state[5] = SHA256_H5; octx->state[6] = SHA256_H6; octx->state[7] = SHA256_H7; } return 0; } static int nx_sha256_import(struct shash_desc *desc, const void *in) { struct sha256_state *sctx = shash_desc_ctx(desc); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; const struct sha256_state *ictx = in; memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf)); sctx->count = ictx->count & 0x3f; csbcpb->cpb.sha256.message_bit_length = (ictx->count & ~0x3f) * 8; if (csbcpb->cpb.sha256.message_bit_length) { memcpy(csbcpb->cpb.sha256.message_digest, ictx->state, SHA256_DIGEST_SIZE); NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; } return 0; } struct shash_alg nx_shash_sha256_alg = { .digestsize = SHA256_DIGEST_SIZE, .init = nx_sha256_init, .update = nx_sha256_update, .final = nx_sha256_final, .export = nx_sha256_export, .import = nx_sha256_import, .descsize = sizeof(struct sha256_state), .statesize = sizeof(struct sha256_state), .base = { .cra_name = "sha256", .cra_driver_name = "sha256-nx", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_SHASH, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct nx_crypto_ctx), .cra_init = nx_crypto_ctx_sha_init, .cra_exit = nx_crypto_ctx_exit, } };