/* * STMicroelectronics gyroscopes driver * * Copyright 2012-2013 STMicroelectronics Inc. * * Denis Ciocca <denis.ciocca@st.com> * * Licensed under the GPL-2. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/mutex.h> #include <linux/interrupt.h> #include <linux/i2c.h> #include <linux/gpio.h> #include <linux/irq.h> #include <linux/delay.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger.h> #include <linux/iio/buffer.h> #include <linux/iio/common/st_sensors.h> #include "st_gyro.h" /* DEFAULT VALUE FOR SENSORS */ #define ST_GYRO_DEFAULT_OUT_X_L_ADDR 0x28 #define ST_GYRO_DEFAULT_OUT_Y_L_ADDR 0x2a #define ST_GYRO_DEFAULT_OUT_Z_L_ADDR 0x2c /* FULLSCALE */ #define ST_GYRO_FS_AVL_250DPS 250 #define ST_GYRO_FS_AVL_500DPS 500 #define ST_GYRO_FS_AVL_2000DPS 2000 /* CUSTOM VALUES FOR SENSOR 1 */ #define ST_GYRO_1_WAI_EXP 0xd3 #define ST_GYRO_1_ODR_ADDR 0x20 #define ST_GYRO_1_ODR_MASK 0xc0 #define ST_GYRO_1_ODR_AVL_100HZ_VAL 0x00 #define ST_GYRO_1_ODR_AVL_200HZ_VAL 0x01 #define ST_GYRO_1_ODR_AVL_400HZ_VAL 0x02 #define ST_GYRO_1_ODR_AVL_800HZ_VAL 0x03 #define ST_GYRO_1_PW_ADDR 0x20 #define ST_GYRO_1_PW_MASK 0x08 #define ST_GYRO_1_FS_ADDR 0x23 #define ST_GYRO_1_FS_MASK 0x30 #define ST_GYRO_1_FS_AVL_250_VAL 0x00 #define ST_GYRO_1_FS_AVL_500_VAL 0x01 #define ST_GYRO_1_FS_AVL_2000_VAL 0x02 #define ST_GYRO_1_FS_AVL_250_GAIN IIO_DEGREE_TO_RAD(8750) #define ST_GYRO_1_FS_AVL_500_GAIN IIO_DEGREE_TO_RAD(17500) #define ST_GYRO_1_FS_AVL_2000_GAIN IIO_DEGREE_TO_RAD(70000) #define ST_GYRO_1_BDU_ADDR 0x23 #define ST_GYRO_1_BDU_MASK 0x80 #define ST_GYRO_1_DRDY_IRQ_ADDR 0x22 #define ST_GYRO_1_DRDY_IRQ_MASK 0x08 #define ST_GYRO_1_MULTIREAD_BIT true /* CUSTOM VALUES FOR SENSOR 2 */ #define ST_GYRO_2_WAI_EXP 0xd4 #define ST_GYRO_2_ODR_ADDR 0x20 #define ST_GYRO_2_ODR_MASK 0xc0 #define ST_GYRO_2_ODR_AVL_95HZ_VAL 0x00 #define ST_GYRO_2_ODR_AVL_190HZ_VAL 0x01 #define ST_GYRO_2_ODR_AVL_380HZ_VAL 0x02 #define ST_GYRO_2_ODR_AVL_760HZ_VAL 0x03 #define ST_GYRO_2_PW_ADDR 0x20 #define ST_GYRO_2_PW_MASK 0x08 #define ST_GYRO_2_FS_ADDR 0x23 #define ST_GYRO_2_FS_MASK 0x30 #define ST_GYRO_2_FS_AVL_250_VAL 0x00 #define ST_GYRO_2_FS_AVL_500_VAL 0x01 #define ST_GYRO_2_FS_AVL_2000_VAL 0x02 #define ST_GYRO_2_FS_AVL_250_GAIN IIO_DEGREE_TO_RAD(8750) #define ST_GYRO_2_FS_AVL_500_GAIN IIO_DEGREE_TO_RAD(17500) #define ST_GYRO_2_FS_AVL_2000_GAIN IIO_DEGREE_TO_RAD(70000) #define ST_GYRO_2_BDU_ADDR 0x23 #define ST_GYRO_2_BDU_MASK 0x80 #define ST_GYRO_2_DRDY_IRQ_ADDR 0x22 #define ST_GYRO_2_DRDY_IRQ_MASK 0x08 #define ST_GYRO_2_MULTIREAD_BIT true static const struct iio_chan_spec st_gyro_16bit_channels[] = { ST_SENSORS_LSM_CHANNELS(IIO_ANGL_VEL, ST_SENSORS_SCAN_X, IIO_MOD_X, IIO_LE, ST_SENSORS_DEFAULT_16_REALBITS, ST_GYRO_DEFAULT_OUT_X_L_ADDR), ST_SENSORS_LSM_CHANNELS(IIO_ANGL_VEL, ST_SENSORS_SCAN_Y, IIO_MOD_Y, IIO_LE, ST_SENSORS_DEFAULT_16_REALBITS, ST_GYRO_DEFAULT_OUT_Y_L_ADDR), ST_SENSORS_LSM_CHANNELS(IIO_ANGL_VEL, ST_SENSORS_SCAN_Z, IIO_MOD_Z, IIO_LE, ST_SENSORS_DEFAULT_16_REALBITS, ST_GYRO_DEFAULT_OUT_Z_L_ADDR), IIO_CHAN_SOFT_TIMESTAMP(3) }; static const struct st_sensors st_gyro_sensors[] = { { .wai = ST_GYRO_1_WAI_EXP, .sensors_supported = { [0] = L3G4200D_GYRO_DEV_NAME, [1] = LSM330DL_GYRO_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_gyro_16bit_channels, .odr = { .addr = ST_GYRO_1_ODR_ADDR, .mask = ST_GYRO_1_ODR_MASK, .odr_avl = { { 100, ST_GYRO_1_ODR_AVL_100HZ_VAL, }, { 200, ST_GYRO_1_ODR_AVL_200HZ_VAL, }, { 400, ST_GYRO_1_ODR_AVL_400HZ_VAL, }, { 800, ST_GYRO_1_ODR_AVL_800HZ_VAL, }, }, }, .pw = { .addr = ST_GYRO_1_PW_ADDR, .mask = ST_GYRO_1_PW_MASK, .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = ST_GYRO_1_FS_ADDR, .mask = ST_GYRO_1_FS_MASK, .fs_avl = { [0] = { .num = ST_GYRO_FS_AVL_250DPS, .value = ST_GYRO_1_FS_AVL_250_VAL, .gain = ST_GYRO_1_FS_AVL_250_GAIN, }, [1] = { .num = ST_GYRO_FS_AVL_500DPS, .value = ST_GYRO_1_FS_AVL_500_VAL, .gain = ST_GYRO_1_FS_AVL_500_GAIN, }, [2] = { .num = ST_GYRO_FS_AVL_2000DPS, .value = ST_GYRO_1_FS_AVL_2000_VAL, .gain = ST_GYRO_1_FS_AVL_2000_GAIN, }, }, }, .bdu = { .addr = ST_GYRO_1_BDU_ADDR, .mask = ST_GYRO_1_BDU_MASK, }, .drdy_irq = { .addr = ST_GYRO_1_DRDY_IRQ_ADDR, .mask = ST_GYRO_1_DRDY_IRQ_MASK, }, .multi_read_bit = ST_GYRO_1_MULTIREAD_BIT, .bootime = 2, }, { .wai = ST_GYRO_2_WAI_EXP, .sensors_supported = { [0] = L3GD20_GYRO_DEV_NAME, [1] = L3GD20H_GYRO_DEV_NAME, [2] = LSM330D_GYRO_DEV_NAME, [3] = LSM330DLC_GYRO_DEV_NAME, [4] = L3G4IS_GYRO_DEV_NAME, [5] = LSM330_GYRO_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_gyro_16bit_channels, .odr = { .addr = ST_GYRO_2_ODR_ADDR, .mask = ST_GYRO_2_ODR_MASK, .odr_avl = { { 95, ST_GYRO_2_ODR_AVL_95HZ_VAL, }, { 190, ST_GYRO_2_ODR_AVL_190HZ_VAL, }, { 380, ST_GYRO_2_ODR_AVL_380HZ_VAL, }, { 760, ST_GYRO_2_ODR_AVL_760HZ_VAL, }, }, }, .pw = { .addr = ST_GYRO_2_PW_ADDR, .mask = ST_GYRO_2_PW_MASK, .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = ST_GYRO_2_FS_ADDR, .mask = ST_GYRO_2_FS_MASK, .fs_avl = { [0] = { .num = ST_GYRO_FS_AVL_250DPS, .value = ST_GYRO_2_FS_AVL_250_VAL, .gain = ST_GYRO_2_FS_AVL_250_GAIN, }, [1] = { .num = ST_GYRO_FS_AVL_500DPS, .value = ST_GYRO_2_FS_AVL_500_VAL, .gain = ST_GYRO_2_FS_AVL_500_GAIN, }, [2] = { .num = ST_GYRO_FS_AVL_2000DPS, .value = ST_GYRO_2_FS_AVL_2000_VAL, .gain = ST_GYRO_2_FS_AVL_2000_GAIN, }, }, }, .bdu = { .addr = ST_GYRO_2_BDU_ADDR, .mask = ST_GYRO_2_BDU_MASK, }, .drdy_irq = { .addr = ST_GYRO_2_DRDY_IRQ_ADDR, .mask = ST_GYRO_2_DRDY_IRQ_MASK, }, .multi_read_bit = ST_GYRO_2_MULTIREAD_BIT, .bootime = 2, }, }; static int st_gyro_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *ch, int *val, int *val2, long mask) { int err; struct st_sensor_data *gdata = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: err = st_sensors_read_info_raw(indio_dev, ch, val); if (err < 0) goto read_error; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = gdata->current_fullscale->gain; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } read_error: return err; } static int st_gyro_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { int err; switch (mask) { case IIO_CHAN_INFO_SCALE: err = st_sensors_set_fullscale_by_gain(indio_dev, val2); break; default: err = -EINVAL; } return err; } static ST_SENSOR_DEV_ATTR_SAMP_FREQ(); static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL(); static ST_SENSORS_DEV_ATTR_SCALE_AVAIL(in_anglvel_scale_available); static struct attribute *st_gyro_attributes[] = { &iio_dev_attr_sampling_frequency_available.dev_attr.attr, &iio_dev_attr_in_anglvel_scale_available.dev_attr.attr, &iio_dev_attr_sampling_frequency.dev_attr.attr, NULL, }; static const struct attribute_group st_gyro_attribute_group = { .attrs = st_gyro_attributes, }; static const struct iio_info gyro_info = { .driver_module = THIS_MODULE, .attrs = &st_gyro_attribute_group, .read_raw = &st_gyro_read_raw, .write_raw = &st_gyro_write_raw, }; #ifdef CONFIG_IIO_TRIGGER static const struct iio_trigger_ops st_gyro_trigger_ops = { .owner = THIS_MODULE, .set_trigger_state = ST_GYRO_TRIGGER_SET_STATE, }; #define ST_GYRO_TRIGGER_OPS (&st_gyro_trigger_ops) #else #define ST_GYRO_TRIGGER_OPS NULL #endif int st_gyro_common_probe(struct iio_dev *indio_dev) { int err; struct st_sensor_data *gdata = iio_priv(indio_dev); indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &gyro_info; err = st_sensors_check_device_support(indio_dev, ARRAY_SIZE(st_gyro_sensors), st_gyro_sensors); if (err < 0) goto st_gyro_common_probe_error; gdata->multiread_bit = gdata->sensor->multi_read_bit; indio_dev->channels = gdata->sensor->ch; indio_dev->num_channels = ST_SENSORS_NUMBER_ALL_CHANNELS; gdata->current_fullscale = (struct st_sensor_fullscale_avl *) &gdata->sensor->fs.fs_avl[0]; gdata->odr = gdata->sensor->odr.odr_avl[0].hz; err = st_sensors_init_sensor(indio_dev); if (err < 0) goto st_gyro_common_probe_error; if (gdata->get_irq_data_ready(indio_dev) > 0) { err = st_gyro_allocate_ring(indio_dev); if (err < 0) goto st_gyro_common_probe_error; err = st_sensors_allocate_trigger(indio_dev, ST_GYRO_TRIGGER_OPS); if (err < 0) goto st_gyro_probe_trigger_error; } err = iio_device_register(indio_dev); if (err) goto st_gyro_device_register_error; return err; st_gyro_device_register_error: if (gdata->get_irq_data_ready(indio_dev) > 0) st_sensors_deallocate_trigger(indio_dev); st_gyro_probe_trigger_error: if (gdata->get_irq_data_ready(indio_dev) > 0) st_gyro_deallocate_ring(indio_dev); st_gyro_common_probe_error: return err; } EXPORT_SYMBOL(st_gyro_common_probe); void st_gyro_common_remove(struct iio_dev *indio_dev) { struct st_sensor_data *gdata = iio_priv(indio_dev); iio_device_unregister(indio_dev); if (gdata->get_irq_data_ready(indio_dev) > 0) { st_sensors_deallocate_trigger(indio_dev); st_gyro_deallocate_ring(indio_dev); } iio_device_free(indio_dev); } EXPORT_SYMBOL(st_gyro_common_remove); MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>"); MODULE_DESCRIPTION("STMicroelectronics gyroscopes driver"); MODULE_LICENSE("GPL v2");