/* * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. * Author: Joerg Roedel <joerg.roedel@amd.com> * Leo Duran <leo.duran@amd.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/pci.h> #include <linux/acpi.h> #include <linux/list.h> #include <linux/slab.h> #include <linux/syscore_ops.h> #include <linux/interrupt.h> #include <linux/msi.h> #include <linux/amd-iommu.h> #include <linux/export.h> #include <acpi/acpi.h> #include <asm/pci-direct.h> #include <asm/iommu.h> #include <asm/gart.h> #include <asm/x86_init.h> #include <asm/iommu_table.h> #include <asm/io_apic.h> #include <asm/irq_remapping.h> #include "amd_iommu_proto.h" #include "amd_iommu_types.h" #include "irq_remapping.h" /* * definitions for the ACPI scanning code */ #define IVRS_HEADER_LENGTH 48 #define ACPI_IVHD_TYPE 0x10 #define ACPI_IVMD_TYPE_ALL 0x20 #define ACPI_IVMD_TYPE 0x21 #define ACPI_IVMD_TYPE_RANGE 0x22 #define IVHD_DEV_ALL 0x01 #define IVHD_DEV_SELECT 0x02 #define IVHD_DEV_SELECT_RANGE_START 0x03 #define IVHD_DEV_RANGE_END 0x04 #define IVHD_DEV_ALIAS 0x42 #define IVHD_DEV_ALIAS_RANGE 0x43 #define IVHD_DEV_EXT_SELECT 0x46 #define IVHD_DEV_EXT_SELECT_RANGE 0x47 #define IVHD_DEV_SPECIAL 0x48 #define IVHD_SPECIAL_IOAPIC 1 #define IVHD_SPECIAL_HPET 2 #define IVHD_FLAG_HT_TUN_EN_MASK 0x01 #define IVHD_FLAG_PASSPW_EN_MASK 0x02 #define IVHD_FLAG_RESPASSPW_EN_MASK 0x04 #define IVHD_FLAG_ISOC_EN_MASK 0x08 #define IVMD_FLAG_EXCL_RANGE 0x08 #define IVMD_FLAG_UNITY_MAP 0x01 #define ACPI_DEVFLAG_INITPASS 0x01 #define ACPI_DEVFLAG_EXTINT 0x02 #define ACPI_DEVFLAG_NMI 0x04 #define ACPI_DEVFLAG_SYSMGT1 0x10 #define ACPI_DEVFLAG_SYSMGT2 0x20 #define ACPI_DEVFLAG_LINT0 0x40 #define ACPI_DEVFLAG_LINT1 0x80 #define ACPI_DEVFLAG_ATSDIS 0x10000000 /* * ACPI table definitions * * These data structures are laid over the table to parse the important values * out of it. */ /* * structure describing one IOMMU in the ACPI table. Typically followed by one * or more ivhd_entrys. */ struct ivhd_header { u8 type; u8 flags; u16 length; u16 devid; u16 cap_ptr; u64 mmio_phys; u16 pci_seg; u16 info; u32 reserved; } __attribute__((packed)); /* * A device entry describing which devices a specific IOMMU translates and * which requestor ids they use. */ struct ivhd_entry { u8 type; u16 devid; u8 flags; u32 ext; } __attribute__((packed)); /* * An AMD IOMMU memory definition structure. It defines things like exclusion * ranges for devices and regions that should be unity mapped. */ struct ivmd_header { u8 type; u8 flags; u16 length; u16 devid; u16 aux; u64 resv; u64 range_start; u64 range_length; } __attribute__((packed)); bool amd_iommu_dump; bool amd_iommu_irq_remap __read_mostly; static bool amd_iommu_detected; static bool __initdata amd_iommu_disabled; u16 amd_iommu_last_bdf; /* largest PCI device id we have to handle */ LIST_HEAD(amd_iommu_unity_map); /* a list of required unity mappings we find in ACPI */ u32 amd_iommu_unmap_flush; /* if true, flush on every unmap */ LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the system */ /* Array to assign indices to IOMMUs*/ struct amd_iommu *amd_iommus[MAX_IOMMUS]; int amd_iommus_present; /* IOMMUs have a non-present cache? */ bool amd_iommu_np_cache __read_mostly; bool amd_iommu_iotlb_sup __read_mostly = true; u32 amd_iommu_max_pasids __read_mostly = ~0; bool amd_iommu_v2_present __read_mostly; bool amd_iommu_force_isolation __read_mostly; /* * List of protection domains - used during resume */ LIST_HEAD(amd_iommu_pd_list); spinlock_t amd_iommu_pd_lock; /* * Pointer to the device table which is shared by all AMD IOMMUs * it is indexed by the PCI device id or the HT unit id and contains * information about the domain the device belongs to as well as the * page table root pointer. */ struct dev_table_entry *amd_iommu_dev_table; /* * The alias table is a driver specific data structure which contains the * mappings of the PCI device ids to the actual requestor ids on the IOMMU. * More than one device can share the same requestor id. */ u16 *amd_iommu_alias_table; /* * The rlookup table is used to find the IOMMU which is responsible * for a specific device. It is also indexed by the PCI device id. */ struct amd_iommu **amd_iommu_rlookup_table; /* * This table is used to find the irq remapping table for a given device id * quickly. */ struct irq_remap_table **irq_lookup_table; /* * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap * to know which ones are already in use. */ unsigned long *amd_iommu_pd_alloc_bitmap; static u32 dev_table_size; /* size of the device table */ static u32 alias_table_size; /* size of the alias table */ static u32 rlookup_table_size; /* size if the rlookup table */ enum iommu_init_state { IOMMU_START_STATE, IOMMU_IVRS_DETECTED, IOMMU_ACPI_FINISHED, IOMMU_ENABLED, IOMMU_PCI_INIT, IOMMU_INTERRUPTS_EN, IOMMU_DMA_OPS, IOMMU_INITIALIZED, IOMMU_NOT_FOUND, IOMMU_INIT_ERROR, }; /* Early ioapic and hpet maps from kernel command line */ #define EARLY_MAP_SIZE 4 static struct devid_map __initdata early_ioapic_map[EARLY_MAP_SIZE]; static struct devid_map __initdata early_hpet_map[EARLY_MAP_SIZE]; static int __initdata early_ioapic_map_size; static int __initdata early_hpet_map_size; static bool __initdata cmdline_maps; static enum iommu_init_state init_state = IOMMU_START_STATE; static int amd_iommu_enable_interrupts(void); static int __init iommu_go_to_state(enum iommu_init_state state); static inline void update_last_devid(u16 devid) { if (devid > amd_iommu_last_bdf) amd_iommu_last_bdf = devid; } static inline unsigned long tbl_size(int entry_size) { unsigned shift = PAGE_SHIFT + get_order(((int)amd_iommu_last_bdf + 1) * entry_size); return 1UL << shift; } /* Access to l1 and l2 indexed register spaces */ static u32 iommu_read_l1(struct amd_iommu *iommu, u16 l1, u8 address) { u32 val; pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16)); pci_read_config_dword(iommu->dev, 0xfc, &val); return val; } static void iommu_write_l1(struct amd_iommu *iommu, u16 l1, u8 address, u32 val) { pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16 | 1 << 31)); pci_write_config_dword(iommu->dev, 0xfc, val); pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16)); } static u32 iommu_read_l2(struct amd_iommu *iommu, u8 address) { u32 val; pci_write_config_dword(iommu->dev, 0xf0, address); pci_read_config_dword(iommu->dev, 0xf4, &val); return val; } static void iommu_write_l2(struct amd_iommu *iommu, u8 address, u32 val) { pci_write_config_dword(iommu->dev, 0xf0, (address | 1 << 8)); pci_write_config_dword(iommu->dev, 0xf4, val); } /**************************************************************************** * * AMD IOMMU MMIO register space handling functions * * These functions are used to program the IOMMU device registers in * MMIO space required for that driver. * ****************************************************************************/ /* * This function set the exclusion range in the IOMMU. DMA accesses to the * exclusion range are passed through untranslated */ static void iommu_set_exclusion_range(struct amd_iommu *iommu) { u64 start = iommu->exclusion_start & PAGE_MASK; u64 limit = (start + iommu->exclusion_length) & PAGE_MASK; u64 entry; if (!iommu->exclusion_start) return; entry = start | MMIO_EXCL_ENABLE_MASK; memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET, &entry, sizeof(entry)); entry = limit; memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET, &entry, sizeof(entry)); } /* Programs the physical address of the device table into the IOMMU hardware */ static void iommu_set_device_table(struct amd_iommu *iommu) { u64 entry; BUG_ON(iommu->mmio_base == NULL); entry = virt_to_phys(amd_iommu_dev_table); entry |= (dev_table_size >> 12) - 1; memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET, &entry, sizeof(entry)); } /* Generic functions to enable/disable certain features of the IOMMU. */ static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit) { u32 ctrl; ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET); ctrl |= (1 << bit); writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET); } static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit) { u32 ctrl; ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET); ctrl &= ~(1 << bit); writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET); } static void iommu_set_inv_tlb_timeout(struct amd_iommu *iommu, int timeout) { u32 ctrl; ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET); ctrl &= ~CTRL_INV_TO_MASK; ctrl |= (timeout << CONTROL_INV_TIMEOUT) & CTRL_INV_TO_MASK; writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET); } /* Function to enable the hardware */ static void iommu_enable(struct amd_iommu *iommu) { iommu_feature_enable(iommu, CONTROL_IOMMU_EN); } static void iommu_disable(struct amd_iommu *iommu) { /* Disable command buffer */ iommu_feature_disable(iommu, CONTROL_CMDBUF_EN); /* Disable event logging and event interrupts */ iommu_feature_disable(iommu, CONTROL_EVT_INT_EN); iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN); /* Disable IOMMU hardware itself */ iommu_feature_disable(iommu, CONTROL_IOMMU_EN); } /* * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in * the system has one. */ static u8 __iomem * __init iommu_map_mmio_space(u64 address) { if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu")) { pr_err("AMD-Vi: Can not reserve memory region %llx for mmio\n", address); pr_err("AMD-Vi: This is a BIOS bug. Please contact your hardware vendor\n"); return NULL; } return (u8 __iomem *)ioremap_nocache(address, MMIO_REGION_LENGTH); } static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu) { if (iommu->mmio_base) iounmap(iommu->mmio_base); release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH); } /**************************************************************************** * * The functions below belong to the first pass of AMD IOMMU ACPI table * parsing. In this pass we try to find out the highest device id this * code has to handle. Upon this information the size of the shared data * structures is determined later. * ****************************************************************************/ /* * This function calculates the length of a given IVHD entry */ static inline int ivhd_entry_length(u8 *ivhd) { return 0x04 << (*ivhd >> 6); } /* * This function reads the last device id the IOMMU has to handle from the PCI * capability header for this IOMMU */ static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr) { u32 cap; cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET); update_last_devid(PCI_DEVID(MMIO_GET_BUS(cap), MMIO_GET_LD(cap))); return 0; } /* * After reading the highest device id from the IOMMU PCI capability header * this function looks if there is a higher device id defined in the ACPI table */ static int __init find_last_devid_from_ivhd(struct ivhd_header *h) { u8 *p = (void *)h, *end = (void *)h; struct ivhd_entry *dev; p += sizeof(*h); end += h->length; find_last_devid_on_pci(PCI_BUS_NUM(h->devid), PCI_SLOT(h->devid), PCI_FUNC(h->devid), h->cap_ptr); while (p < end) { dev = (struct ivhd_entry *)p; switch (dev->type) { case IVHD_DEV_SELECT: case IVHD_DEV_RANGE_END: case IVHD_DEV_ALIAS: case IVHD_DEV_EXT_SELECT: /* all the above subfield types refer to device ids */ update_last_devid(dev->devid); break; default: break; } p += ivhd_entry_length(p); } WARN_ON(p != end); return 0; } /* * Iterate over all IVHD entries in the ACPI table and find the highest device * id which we need to handle. This is the first of three functions which parse * the ACPI table. So we check the checksum here. */ static int __init find_last_devid_acpi(struct acpi_table_header *table) { int i; u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table; struct ivhd_header *h; /* * Validate checksum here so we don't need to do it when * we actually parse the table */ for (i = 0; i < table->length; ++i) checksum += p[i]; if (checksum != 0) /* ACPI table corrupt */ return -ENODEV; p += IVRS_HEADER_LENGTH; end += table->length; while (p < end) { h = (struct ivhd_header *)p; switch (h->type) { case ACPI_IVHD_TYPE: find_last_devid_from_ivhd(h); break; default: break; } p += h->length; } WARN_ON(p != end); return 0; } /**************************************************************************** * * The following functions belong to the code path which parses the ACPI table * the second time. In this ACPI parsing iteration we allocate IOMMU specific * data structures, initialize the device/alias/rlookup table and also * basically initialize the hardware. * ****************************************************************************/ /* * Allocates the command buffer. This buffer is per AMD IOMMU. We can * write commands to that buffer later and the IOMMU will execute them * asynchronously */ static u8 * __init alloc_command_buffer(struct amd_iommu *iommu) { u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, get_order(CMD_BUFFER_SIZE)); if (cmd_buf == NULL) return NULL; iommu->cmd_buf_size = CMD_BUFFER_SIZE | CMD_BUFFER_UNINITIALIZED; return cmd_buf; } /* * This function resets the command buffer if the IOMMU stopped fetching * commands from it. */ void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu) { iommu_feature_disable(iommu, CONTROL_CMDBUF_EN); writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET); writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); iommu_feature_enable(iommu, CONTROL_CMDBUF_EN); } /* * This function writes the command buffer address to the hardware and * enables it. */ static void iommu_enable_command_buffer(struct amd_iommu *iommu) { u64 entry; BUG_ON(iommu->cmd_buf == NULL); entry = (u64)virt_to_phys(iommu->cmd_buf); entry |= MMIO_CMD_SIZE_512; memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET, &entry, sizeof(entry)); amd_iommu_reset_cmd_buffer(iommu); iommu->cmd_buf_size &= ~(CMD_BUFFER_UNINITIALIZED); } static void __init free_command_buffer(struct amd_iommu *iommu) { free_pages((unsigned long)iommu->cmd_buf, get_order(iommu->cmd_buf_size & ~(CMD_BUFFER_UNINITIALIZED))); } /* allocates the memory where the IOMMU will log its events to */ static u8 * __init alloc_event_buffer(struct amd_iommu *iommu) { iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, get_order(EVT_BUFFER_SIZE)); if (iommu->evt_buf == NULL) return NULL; iommu->evt_buf_size = EVT_BUFFER_SIZE; return iommu->evt_buf; } static void iommu_enable_event_buffer(struct amd_iommu *iommu) { u64 entry; BUG_ON(iommu->evt_buf == NULL); entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK; memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET, &entry, sizeof(entry)); /* set head and tail to zero manually */ writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN); } static void __init free_event_buffer(struct amd_iommu *iommu) { free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE)); } /* allocates the memory where the IOMMU will log its events to */ static u8 * __init alloc_ppr_log(struct amd_iommu *iommu) { iommu->ppr_log = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, get_order(PPR_LOG_SIZE)); if (iommu->ppr_log == NULL) return NULL; return iommu->ppr_log; } static void iommu_enable_ppr_log(struct amd_iommu *iommu) { u64 entry; if (iommu->ppr_log == NULL) return; entry = (u64)virt_to_phys(iommu->ppr_log) | PPR_LOG_SIZE_512; memcpy_toio(iommu->mmio_base + MMIO_PPR_LOG_OFFSET, &entry, sizeof(entry)); /* set head and tail to zero manually */ writel(0x00, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); writel(0x00, iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); iommu_feature_enable(iommu, CONTROL_PPFLOG_EN); iommu_feature_enable(iommu, CONTROL_PPR_EN); } static void __init free_ppr_log(struct amd_iommu *iommu) { if (iommu->ppr_log == NULL) return; free_pages((unsigned long)iommu->ppr_log, get_order(PPR_LOG_SIZE)); } static void iommu_enable_gt(struct amd_iommu *iommu) { if (!iommu_feature(iommu, FEATURE_GT)) return; iommu_feature_enable(iommu, CONTROL_GT_EN); } /* sets a specific bit in the device table entry. */ static void set_dev_entry_bit(u16 devid, u8 bit) { int i = (bit >> 6) & 0x03; int _bit = bit & 0x3f; amd_iommu_dev_table[devid].data[i] |= (1UL << _bit); } static int get_dev_entry_bit(u16 devid, u8 bit) { int i = (bit >> 6) & 0x03; int _bit = bit & 0x3f; return (amd_iommu_dev_table[devid].data[i] & (1UL << _bit)) >> _bit; } void amd_iommu_apply_erratum_63(u16 devid) { int sysmgt; sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) | (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1); if (sysmgt == 0x01) set_dev_entry_bit(devid, DEV_ENTRY_IW); } /* Writes the specific IOMMU for a device into the rlookup table */ static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid) { amd_iommu_rlookup_table[devid] = iommu; } /* * This function takes the device specific flags read from the ACPI * table and sets up the device table entry with that information */ static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu, u16 devid, u32 flags, u32 ext_flags) { if (flags & ACPI_DEVFLAG_INITPASS) set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS); if (flags & ACPI_DEVFLAG_EXTINT) set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS); if (flags & ACPI_DEVFLAG_NMI) set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS); if (flags & ACPI_DEVFLAG_SYSMGT1) set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1); if (flags & ACPI_DEVFLAG_SYSMGT2) set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2); if (flags & ACPI_DEVFLAG_LINT0) set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS); if (flags & ACPI_DEVFLAG_LINT1) set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS); amd_iommu_apply_erratum_63(devid); set_iommu_for_device(iommu, devid); } static int __init add_special_device(u8 type, u8 id, u16 devid, bool cmd_line) { struct devid_map *entry; struct list_head *list; if (type == IVHD_SPECIAL_IOAPIC) list = &ioapic_map; else if (type == IVHD_SPECIAL_HPET) list = &hpet_map; else return -EINVAL; list_for_each_entry(entry, list, list) { if (!(entry->id == id && entry->cmd_line)) continue; pr_info("AMD-Vi: Command-line override present for %s id %d - ignoring\n", type == IVHD_SPECIAL_IOAPIC ? "IOAPIC" : "HPET", id); return 0; } entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (!entry) return -ENOMEM; entry->id = id; entry->devid = devid; entry->cmd_line = cmd_line; list_add_tail(&entry->list, list); return 0; } static int __init add_early_maps(void) { int i, ret; for (i = 0; i < early_ioapic_map_size; ++i) { ret = add_special_device(IVHD_SPECIAL_IOAPIC, early_ioapic_map[i].id, early_ioapic_map[i].devid, early_ioapic_map[i].cmd_line); if (ret) return ret; } for (i = 0; i < early_hpet_map_size; ++i) { ret = add_special_device(IVHD_SPECIAL_HPET, early_hpet_map[i].id, early_hpet_map[i].devid, early_hpet_map[i].cmd_line); if (ret) return ret; } return 0; } /* * Reads the device exclusion range from ACPI and initializes the IOMMU with * it */ static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m) { struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; if (!(m->flags & IVMD_FLAG_EXCL_RANGE)) return; if (iommu) { /* * We only can configure exclusion ranges per IOMMU, not * per device. But we can enable the exclusion range per * device. This is done here */ set_dev_entry_bit(m->devid, DEV_ENTRY_EX); iommu->exclusion_start = m->range_start; iommu->exclusion_length = m->range_length; } } /* * Takes a pointer to an AMD IOMMU entry in the ACPI table and * initializes the hardware and our data structures with it. */ static int __init init_iommu_from_acpi(struct amd_iommu *iommu, struct ivhd_header *h) { u8 *p = (u8 *)h; u8 *end = p, flags = 0; u16 devid = 0, devid_start = 0, devid_to = 0; u32 dev_i, ext_flags = 0; bool alias = false; struct ivhd_entry *e; int ret; ret = add_early_maps(); if (ret) return ret; /* * First save the recommended feature enable bits from ACPI */ iommu->acpi_flags = h->flags; /* * Done. Now parse the device entries */ p += sizeof(struct ivhd_header); end += h->length; while (p < end) { e = (struct ivhd_entry *)p; switch (e->type) { case IVHD_DEV_ALL: DUMP_printk(" DEV_ALL\t\t\t first devid: %02x:%02x.%x" " last device %02x:%02x.%x flags: %02x\n", PCI_BUS_NUM(iommu->first_device), PCI_SLOT(iommu->first_device), PCI_FUNC(iommu->first_device), PCI_BUS_NUM(iommu->last_device), PCI_SLOT(iommu->last_device), PCI_FUNC(iommu->last_device), e->flags); for (dev_i = iommu->first_device; dev_i <= iommu->last_device; ++dev_i) set_dev_entry_from_acpi(iommu, dev_i, e->flags, 0); break; case IVHD_DEV_SELECT: DUMP_printk(" DEV_SELECT\t\t\t devid: %02x:%02x.%x " "flags: %02x\n", PCI_BUS_NUM(e->devid), PCI_SLOT(e->devid), PCI_FUNC(e->devid), e->flags); devid = e->devid; set_dev_entry_from_acpi(iommu, devid, e->flags, 0); break; case IVHD_DEV_SELECT_RANGE_START: DUMP_printk(" DEV_SELECT_RANGE_START\t " "devid: %02x:%02x.%x flags: %02x\n", PCI_BUS_NUM(e->devid), PCI_SLOT(e->devid), PCI_FUNC(e->devid), e->flags); devid_start = e->devid; flags = e->flags; ext_flags = 0; alias = false; break; case IVHD_DEV_ALIAS: DUMP_printk(" DEV_ALIAS\t\t\t devid: %02x:%02x.%x " "flags: %02x devid_to: %02x:%02x.%x\n", PCI_BUS_NUM(e->devid), PCI_SLOT(e->devid), PCI_FUNC(e->devid), e->flags, PCI_BUS_NUM(e->ext >> 8), PCI_SLOT(e->ext >> 8), PCI_FUNC(e->ext >> 8)); devid = e->devid; devid_to = e->ext >> 8; set_dev_entry_from_acpi(iommu, devid , e->flags, 0); set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0); amd_iommu_alias_table[devid] = devid_to; break; case IVHD_DEV_ALIAS_RANGE: DUMP_printk(" DEV_ALIAS_RANGE\t\t " "devid: %02x:%02x.%x flags: %02x " "devid_to: %02x:%02x.%x\n", PCI_BUS_NUM(e->devid), PCI_SLOT(e->devid), PCI_FUNC(e->devid), e->flags, PCI_BUS_NUM(e->ext >> 8), PCI_SLOT(e->ext >> 8), PCI_FUNC(e->ext >> 8)); devid_start = e->devid; flags = e->flags; devid_to = e->ext >> 8; ext_flags = 0; alias = true; break; case IVHD_DEV_EXT_SELECT: DUMP_printk(" DEV_EXT_SELECT\t\t devid: %02x:%02x.%x " "flags: %02x ext: %08x\n", PCI_BUS_NUM(e->devid), PCI_SLOT(e->devid), PCI_FUNC(e->devid), e->flags, e->ext); devid = e->devid; set_dev_entry_from_acpi(iommu, devid, e->flags, e->ext); break; case IVHD_DEV_EXT_SELECT_RANGE: DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: " "%02x:%02x.%x flags: %02x ext: %08x\n", PCI_BUS_NUM(e->devid), PCI_SLOT(e->devid), PCI_FUNC(e->devid), e->flags, e->ext); devid_start = e->devid; flags = e->flags; ext_flags = e->ext; alias = false; break; case IVHD_DEV_RANGE_END: DUMP_printk(" DEV_RANGE_END\t\t devid: %02x:%02x.%x\n", PCI_BUS_NUM(e->devid), PCI_SLOT(e->devid), PCI_FUNC(e->devid)); devid = e->devid; for (dev_i = devid_start; dev_i <= devid; ++dev_i) { if (alias) { amd_iommu_alias_table[dev_i] = devid_to; set_dev_entry_from_acpi(iommu, devid_to, flags, ext_flags); } set_dev_entry_from_acpi(iommu, dev_i, flags, ext_flags); } break; case IVHD_DEV_SPECIAL: { u8 handle, type; const char *var; u16 devid; int ret; handle = e->ext & 0xff; devid = (e->ext >> 8) & 0xffff; type = (e->ext >> 24) & 0xff; if (type == IVHD_SPECIAL_IOAPIC) var = "IOAPIC"; else if (type == IVHD_SPECIAL_HPET) var = "HPET"; else var = "UNKNOWN"; DUMP_printk(" DEV_SPECIAL(%s[%d])\t\tdevid: %02x:%02x.%x\n", var, (int)handle, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid)); set_dev_entry_from_acpi(iommu, devid, e->flags, 0); ret = add_special_device(type, handle, devid, false); if (ret) return ret; break; } default: break; } p += ivhd_entry_length(p); } return 0; } /* Initializes the device->iommu mapping for the driver */ static int __init init_iommu_devices(struct amd_iommu *iommu) { u32 i; for (i = iommu->first_device; i <= iommu->last_device; ++i) set_iommu_for_device(iommu, i); return 0; } static void __init free_iommu_one(struct amd_iommu *iommu) { free_command_buffer(iommu); free_event_buffer(iommu); free_ppr_log(iommu); iommu_unmap_mmio_space(iommu); } static void __init free_iommu_all(void) { struct amd_iommu *iommu, *next; for_each_iommu_safe(iommu, next) { list_del(&iommu->list); free_iommu_one(iommu); kfree(iommu); } } /* * Family15h Model 10h-1fh erratum 746 (IOMMU Logging May Stall Translations) * Workaround: * BIOS should disable L2B micellaneous clock gating by setting * L2_L2B_CK_GATE_CONTROL[CKGateL2BMiscDisable](D0F2xF4_x90[2]) = 1b */ static void amd_iommu_erratum_746_workaround(struct amd_iommu *iommu) { u32 value; if ((boot_cpu_data.x86 != 0x15) || (boot_cpu_data.x86_model < 0x10) || (boot_cpu_data.x86_model > 0x1f)) return; pci_write_config_dword(iommu->dev, 0xf0, 0x90); pci_read_config_dword(iommu->dev, 0xf4, &value); if (value & BIT(2)) return; /* Select NB indirect register 0x90 and enable writing */ pci_write_config_dword(iommu->dev, 0xf0, 0x90 | (1 << 8)); pci_write_config_dword(iommu->dev, 0xf4, value | 0x4); pr_info("AMD-Vi: Applying erratum 746 workaround for IOMMU at %s\n", dev_name(&iommu->dev->dev)); /* Clear the enable writing bit */ pci_write_config_dword(iommu->dev, 0xf0, 0x90); } /* * This function clues the initialization function for one IOMMU * together and also allocates the command buffer and programs the * hardware. It does NOT enable the IOMMU. This is done afterwards. */ static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h) { int ret; spin_lock_init(&iommu->lock); /* Add IOMMU to internal data structures */ list_add_tail(&iommu->list, &amd_iommu_list); iommu->index = amd_iommus_present++; if (unlikely(iommu->index >= MAX_IOMMUS)) { WARN(1, "AMD-Vi: System has more IOMMUs than supported by this driver\n"); return -ENOSYS; } /* Index is fine - add IOMMU to the array */ amd_iommus[iommu->index] = iommu; /* * Copy data from ACPI table entry to the iommu struct */ iommu->devid = h->devid; iommu->cap_ptr = h->cap_ptr; iommu->pci_seg = h->pci_seg; iommu->mmio_phys = h->mmio_phys; iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys); if (!iommu->mmio_base) return -ENOMEM; iommu->cmd_buf = alloc_command_buffer(iommu); if (!iommu->cmd_buf) return -ENOMEM; iommu->evt_buf = alloc_event_buffer(iommu); if (!iommu->evt_buf) return -ENOMEM; iommu->int_enabled = false; ret = init_iommu_from_acpi(iommu, h); if (ret) return ret; /* * Make sure IOMMU is not considered to translate itself. The IVRS * table tells us so, but this is a lie! */ amd_iommu_rlookup_table[iommu->devid] = NULL; init_iommu_devices(iommu); return 0; } /* * Iterates over all IOMMU entries in the ACPI table, allocates the * IOMMU structure and initializes it with init_iommu_one() */ static int __init init_iommu_all(struct acpi_table_header *table) { u8 *p = (u8 *)table, *end = (u8 *)table; struct ivhd_header *h; struct amd_iommu *iommu; int ret; end += table->length; p += IVRS_HEADER_LENGTH; while (p < end) { h = (struct ivhd_header *)p; switch (*p) { case ACPI_IVHD_TYPE: DUMP_printk("device: %02x:%02x.%01x cap: %04x " "seg: %d flags: %01x info %04x\n", PCI_BUS_NUM(h->devid), PCI_SLOT(h->devid), PCI_FUNC(h->devid), h->cap_ptr, h->pci_seg, h->flags, h->info); DUMP_printk(" mmio-addr: %016llx\n", h->mmio_phys); iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL); if (iommu == NULL) return -ENOMEM; ret = init_iommu_one(iommu, h); if (ret) return ret; break; default: break; } p += h->length; } WARN_ON(p != end); return 0; } static int iommu_init_pci(struct amd_iommu *iommu) { int cap_ptr = iommu->cap_ptr; u32 range, misc, low, high; iommu->dev = pci_get_bus_and_slot(PCI_BUS_NUM(iommu->devid), iommu->devid & 0xff); if (!iommu->dev) return -ENODEV; pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET, &iommu->cap); pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET, &range); pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET, &misc); iommu->first_device = PCI_DEVID(MMIO_GET_BUS(range), MMIO_GET_FD(range)); iommu->last_device = PCI_DEVID(MMIO_GET_BUS(range), MMIO_GET_LD(range)); if (!(iommu->cap & (1 << IOMMU_CAP_IOTLB))) amd_iommu_iotlb_sup = false; /* read extended feature bits */ low = readl(iommu->mmio_base + MMIO_EXT_FEATURES); high = readl(iommu->mmio_base + MMIO_EXT_FEATURES + 4); iommu->features = ((u64)high << 32) | low; if (iommu_feature(iommu, FEATURE_GT)) { int glxval; u32 pasids; u64 shift; shift = iommu->features & FEATURE_PASID_MASK; shift >>= FEATURE_PASID_SHIFT; pasids = (1 << shift); amd_iommu_max_pasids = min(amd_iommu_max_pasids, pasids); glxval = iommu->features & FEATURE_GLXVAL_MASK; glxval >>= FEATURE_GLXVAL_SHIFT; if (amd_iommu_max_glx_val == -1) amd_iommu_max_glx_val = glxval; else amd_iommu_max_glx_val = min(amd_iommu_max_glx_val, glxval); } if (iommu_feature(iommu, FEATURE_GT) && iommu_feature(iommu, FEATURE_PPR)) { iommu->is_iommu_v2 = true; amd_iommu_v2_present = true; } if (iommu_feature(iommu, FEATURE_PPR)) { iommu->ppr_log = alloc_ppr_log(iommu); if (!iommu->ppr_log) return -ENOMEM; } if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE)) amd_iommu_np_cache = true; if (is_rd890_iommu(iommu->dev)) { int i, j; iommu->root_pdev = pci_get_bus_and_slot(iommu->dev->bus->number, PCI_DEVFN(0, 0)); /* * Some rd890 systems may not be fully reconfigured by the * BIOS, so it's necessary for us to store this information so * it can be reprogrammed on resume */ pci_read_config_dword(iommu->dev, iommu->cap_ptr + 4, &iommu->stored_addr_lo); pci_read_config_dword(iommu->dev, iommu->cap_ptr + 8, &iommu->stored_addr_hi); /* Low bit locks writes to configuration space */ iommu->stored_addr_lo &= ~1; for (i = 0; i < 6; i++) for (j = 0; j < 0x12; j++) iommu->stored_l1[i][j] = iommu_read_l1(iommu, i, j); for (i = 0; i < 0x83; i++) iommu->stored_l2[i] = iommu_read_l2(iommu, i); } amd_iommu_erratum_746_workaround(iommu); return pci_enable_device(iommu->dev); } static void print_iommu_info(void) { static const char * const feat_str[] = { "PreF", "PPR", "X2APIC", "NX", "GT", "[5]", "IA", "GA", "HE", "PC" }; struct amd_iommu *iommu; for_each_iommu(iommu) { int i; pr_info("AMD-Vi: Found IOMMU at %s cap 0x%hx\n", dev_name(&iommu->dev->dev), iommu->cap_ptr); if (iommu->cap & (1 << IOMMU_CAP_EFR)) { pr_info("AMD-Vi: Extended features: "); for (i = 0; i < ARRAY_SIZE(feat_str); ++i) { if (iommu_feature(iommu, (1ULL << i))) pr_cont(" %s", feat_str[i]); } pr_cont("\n"); } } if (irq_remapping_enabled) pr_info("AMD-Vi: Interrupt remapping enabled\n"); } static int __init amd_iommu_init_pci(void) { struct amd_iommu *iommu; int ret = 0; for_each_iommu(iommu) { ret = iommu_init_pci(iommu); if (ret) break; } ret = amd_iommu_init_devices(); print_iommu_info(); return ret; } /**************************************************************************** * * The following functions initialize the MSI interrupts for all IOMMUs * in the system. It's a bit challenging because there could be multiple * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per * pci_dev. * ****************************************************************************/ static int iommu_setup_msi(struct amd_iommu *iommu) { int r; r = pci_enable_msi(iommu->dev); if (r) return r; r = request_threaded_irq(iommu->dev->irq, amd_iommu_int_handler, amd_iommu_int_thread, 0, "AMD-Vi", iommu); if (r) { pci_disable_msi(iommu->dev); return r; } iommu->int_enabled = true; return 0; } static int iommu_init_msi(struct amd_iommu *iommu) { int ret; if (iommu->int_enabled) goto enable_faults; if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI)) ret = iommu_setup_msi(iommu); else ret = -ENODEV; if (ret) return ret; enable_faults: iommu_feature_enable(iommu, CONTROL_EVT_INT_EN); if (iommu->ppr_log != NULL) iommu_feature_enable(iommu, CONTROL_PPFINT_EN); return 0; } /**************************************************************************** * * The next functions belong to the third pass of parsing the ACPI * table. In this last pass the memory mapping requirements are * gathered (like exclusion and unity mapping ranges). * ****************************************************************************/ static void __init free_unity_maps(void) { struct unity_map_entry *entry, *next; list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) { list_del(&entry->list); kfree(entry); } } /* called when we find an exclusion range definition in ACPI */ static int __init init_exclusion_range(struct ivmd_header *m) { int i; switch (m->type) { case ACPI_IVMD_TYPE: set_device_exclusion_range(m->devid, m); break; case ACPI_IVMD_TYPE_ALL: for (i = 0; i <= amd_iommu_last_bdf; ++i) set_device_exclusion_range(i, m); break; case ACPI_IVMD_TYPE_RANGE: for (i = m->devid; i <= m->aux; ++i) set_device_exclusion_range(i, m); break; default: break; } return 0; } /* called for unity map ACPI definition */ static int __init init_unity_map_range(struct ivmd_header *m) { struct unity_map_entry *e = NULL; char *s; e = kzalloc(sizeof(*e), GFP_KERNEL); if (e == NULL) return -ENOMEM; switch (m->type) { default: kfree(e); return 0; case ACPI_IVMD_TYPE: s = "IVMD_TYPEi\t\t\t"; e->devid_start = e->devid_end = m->devid; break; case ACPI_IVMD_TYPE_ALL: s = "IVMD_TYPE_ALL\t\t"; e->devid_start = 0; e->devid_end = amd_iommu_last_bdf; break; case ACPI_IVMD_TYPE_RANGE: s = "IVMD_TYPE_RANGE\t\t"; e->devid_start = m->devid; e->devid_end = m->aux; break; } e->address_start = PAGE_ALIGN(m->range_start); e->address_end = e->address_start + PAGE_ALIGN(m->range_length); e->prot = m->flags >> 1; DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x" " range_start: %016llx range_end: %016llx flags: %x\n", s, PCI_BUS_NUM(e->devid_start), PCI_SLOT(e->devid_start), PCI_FUNC(e->devid_start), PCI_BUS_NUM(e->devid_end), PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end), e->address_start, e->address_end, m->flags); list_add_tail(&e->list, &amd_iommu_unity_map); return 0; } /* iterates over all memory definitions we find in the ACPI table */ static int __init init_memory_definitions(struct acpi_table_header *table) { u8 *p = (u8 *)table, *end = (u8 *)table; struct ivmd_header *m; end += table->length; p += IVRS_HEADER_LENGTH; while (p < end) { m = (struct ivmd_header *)p; if (m->flags & IVMD_FLAG_EXCL_RANGE) init_exclusion_range(m); else if (m->flags & IVMD_FLAG_UNITY_MAP) init_unity_map_range(m); p += m->length; } return 0; } /* * Init the device table to not allow DMA access for devices and * suppress all page faults */ static void init_device_table_dma(void) { u32 devid; for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) { set_dev_entry_bit(devid, DEV_ENTRY_VALID); set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION); } } static void __init uninit_device_table_dma(void) { u32 devid; for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) { amd_iommu_dev_table[devid].data[0] = 0ULL; amd_iommu_dev_table[devid].data[1] = 0ULL; } } static void init_device_table(void) { u32 devid; if (!amd_iommu_irq_remap) return; for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) set_dev_entry_bit(devid, DEV_ENTRY_IRQ_TBL_EN); } static void iommu_init_flags(struct amd_iommu *iommu) { iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ? iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) : iommu_feature_disable(iommu, CONTROL_HT_TUN_EN); iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ? iommu_feature_enable(iommu, CONTROL_PASSPW_EN) : iommu_feature_disable(iommu, CONTROL_PASSPW_EN); iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ? iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) : iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN); iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ? iommu_feature_enable(iommu, CONTROL_ISOC_EN) : iommu_feature_disable(iommu, CONTROL_ISOC_EN); /* * make IOMMU memory accesses cache coherent */ iommu_feature_enable(iommu, CONTROL_COHERENT_EN); /* Set IOTLB invalidation timeout to 1s */ iommu_set_inv_tlb_timeout(iommu, CTRL_INV_TO_1S); } static void iommu_apply_resume_quirks(struct amd_iommu *iommu) { int i, j; u32 ioc_feature_control; struct pci_dev *pdev = iommu->root_pdev; /* RD890 BIOSes may not have completely reconfigured the iommu */ if (!is_rd890_iommu(iommu->dev) || !pdev) return; /* * First, we need to ensure that the iommu is enabled. This is * controlled by a register in the northbridge */ /* Select Northbridge indirect register 0x75 and enable writing */ pci_write_config_dword(pdev, 0x60, 0x75 | (1 << 7)); pci_read_config_dword(pdev, 0x64, &ioc_feature_control); /* Enable the iommu */ if (!(ioc_feature_control & 0x1)) pci_write_config_dword(pdev, 0x64, ioc_feature_control | 1); /* Restore the iommu BAR */ pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4, iommu->stored_addr_lo); pci_write_config_dword(iommu->dev, iommu->cap_ptr + 8, iommu->stored_addr_hi); /* Restore the l1 indirect regs for each of the 6 l1s */ for (i = 0; i < 6; i++) for (j = 0; j < 0x12; j++) iommu_write_l1(iommu, i, j, iommu->stored_l1[i][j]); /* Restore the l2 indirect regs */ for (i = 0; i < 0x83; i++) iommu_write_l2(iommu, i, iommu->stored_l2[i]); /* Lock PCI setup registers */ pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4, iommu->stored_addr_lo | 1); } /* * This function finally enables all IOMMUs found in the system after * they have been initialized */ static void early_enable_iommus(void) { struct amd_iommu *iommu; for_each_iommu(iommu) { iommu_disable(iommu); iommu_init_flags(iommu); iommu_set_device_table(iommu); iommu_enable_command_buffer(iommu); iommu_enable_event_buffer(iommu); iommu_set_exclusion_range(iommu); iommu_enable(iommu); iommu_flush_all_caches(iommu); } } static void enable_iommus_v2(void) { struct amd_iommu *iommu; for_each_iommu(iommu) { iommu_enable_ppr_log(iommu); iommu_enable_gt(iommu); } } static void enable_iommus(void) { early_enable_iommus(); enable_iommus_v2(); } static void disable_iommus(void) { struct amd_iommu *iommu; for_each_iommu(iommu) iommu_disable(iommu); } /* * Suspend/Resume support * disable suspend until real resume implemented */ static void amd_iommu_resume(void) { struct amd_iommu *iommu; for_each_iommu(iommu) iommu_apply_resume_quirks(iommu); /* re-load the hardware */ enable_iommus(); amd_iommu_enable_interrupts(); } static int amd_iommu_suspend(void) { /* disable IOMMUs to go out of the way for BIOS */ disable_iommus(); return 0; } static struct syscore_ops amd_iommu_syscore_ops = { .suspend = amd_iommu_suspend, .resume = amd_iommu_resume, }; static void __init free_on_init_error(void) { free_pages((unsigned long)irq_lookup_table, get_order(rlookup_table_size)); if (amd_iommu_irq_cache) { kmem_cache_destroy(amd_iommu_irq_cache); amd_iommu_irq_cache = NULL; } free_pages((unsigned long)amd_iommu_rlookup_table, get_order(rlookup_table_size)); free_pages((unsigned long)amd_iommu_alias_table, get_order(alias_table_size)); free_pages((unsigned long)amd_iommu_dev_table, get_order(dev_table_size)); free_iommu_all(); #ifdef CONFIG_GART_IOMMU /* * We failed to initialize the AMD IOMMU - try fallback to GART * if possible. */ gart_iommu_init(); #endif } /* SB IOAPIC is always on this device in AMD systems */ #define IOAPIC_SB_DEVID ((0x00 << 8) | PCI_DEVFN(0x14, 0)) static bool __init check_ioapic_information(void) { const char *fw_bug = FW_BUG; bool ret, has_sb_ioapic; int idx; has_sb_ioapic = false; ret = false; /* * If we have map overrides on the kernel command line the * messages in this function might not describe firmware bugs * anymore - so be careful */ if (cmdline_maps) fw_bug = ""; for (idx = 0; idx < nr_ioapics; idx++) { int devid, id = mpc_ioapic_id(idx); devid = get_ioapic_devid(id); if (devid < 0) { pr_err("%sAMD-Vi: IOAPIC[%d] not in IVRS table\n", fw_bug, id); ret = false; } else if (devid == IOAPIC_SB_DEVID) { has_sb_ioapic = true; ret = true; } } if (!has_sb_ioapic) { /* * We expect the SB IOAPIC to be listed in the IVRS * table. The system timer is connected to the SB IOAPIC * and if we don't have it in the list the system will * panic at boot time. This situation usually happens * when the BIOS is buggy and provides us the wrong * device id for the IOAPIC in the system. */ pr_err("%sAMD-Vi: No southbridge IOAPIC found\n", fw_bug); } if (!ret) pr_err("AMD-Vi: Disabling interrupt remapping\n"); return ret; } static void __init free_dma_resources(void) { amd_iommu_uninit_devices(); free_pages((unsigned long)amd_iommu_pd_alloc_bitmap, get_order(MAX_DOMAIN_ID/8)); free_unity_maps(); } /* * This is the hardware init function for AMD IOMMU in the system. * This function is called either from amd_iommu_init or from the interrupt * remapping setup code. * * This function basically parses the ACPI table for AMD IOMMU (IVRS) * three times: * * 1 pass) Find the highest PCI device id the driver has to handle. * Upon this information the size of the data structures is * determined that needs to be allocated. * * 2 pass) Initialize the data structures just allocated with the * information in the ACPI table about available AMD IOMMUs * in the system. It also maps the PCI devices in the * system to specific IOMMUs * * 3 pass) After the basic data structures are allocated and * initialized we update them with information about memory * remapping requirements parsed out of the ACPI table in * this last pass. * * After everything is set up the IOMMUs are enabled and the necessary * hotplug and suspend notifiers are registered. */ static int __init early_amd_iommu_init(void) { struct acpi_table_header *ivrs_base; acpi_size ivrs_size; acpi_status status; int i, ret = 0; if (!amd_iommu_detected) return -ENODEV; status = acpi_get_table_with_size("IVRS", 0, &ivrs_base, &ivrs_size); if (status == AE_NOT_FOUND) return -ENODEV; else if (ACPI_FAILURE(status)) { const char *err = acpi_format_exception(status); pr_err("AMD-Vi: IVRS table error: %s\n", err); return -EINVAL; } /* * First parse ACPI tables to find the largest Bus/Dev/Func * we need to handle. Upon this information the shared data * structures for the IOMMUs in the system will be allocated */ ret = find_last_devid_acpi(ivrs_base); if (ret) goto out; dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE); alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE); rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE); /* Device table - directly used by all IOMMUs */ ret = -ENOMEM; amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, get_order(dev_table_size)); if (amd_iommu_dev_table == NULL) goto out; /* * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the * IOMMU see for that device */ amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL, get_order(alias_table_size)); if (amd_iommu_alias_table == NULL) goto out; /* IOMMU rlookup table - find the IOMMU for a specific device */ amd_iommu_rlookup_table = (void *)__get_free_pages( GFP_KERNEL | __GFP_ZERO, get_order(rlookup_table_size)); if (amd_iommu_rlookup_table == NULL) goto out; amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages( GFP_KERNEL | __GFP_ZERO, get_order(MAX_DOMAIN_ID/8)); if (amd_iommu_pd_alloc_bitmap == NULL) goto out; /* * let all alias entries point to itself */ for (i = 0; i <= amd_iommu_last_bdf; ++i) amd_iommu_alias_table[i] = i; /* * never allocate domain 0 because its used as the non-allocated and * error value placeholder */ amd_iommu_pd_alloc_bitmap[0] = 1; spin_lock_init(&amd_iommu_pd_lock); /* * now the data structures are allocated and basically initialized * start the real acpi table scan */ ret = init_iommu_all(ivrs_base); if (ret) goto out; if (amd_iommu_irq_remap) amd_iommu_irq_remap = check_ioapic_information(); if (amd_iommu_irq_remap) { /* * Interrupt remapping enabled, create kmem_cache for the * remapping tables. */ ret = -ENOMEM; amd_iommu_irq_cache = kmem_cache_create("irq_remap_cache", MAX_IRQS_PER_TABLE * sizeof(u32), IRQ_TABLE_ALIGNMENT, 0, NULL); if (!amd_iommu_irq_cache) goto out; irq_lookup_table = (void *)__get_free_pages( GFP_KERNEL | __GFP_ZERO, get_order(rlookup_table_size)); if (!irq_lookup_table) goto out; } ret = init_memory_definitions(ivrs_base); if (ret) goto out; /* init the device table */ init_device_table(); out: /* Don't leak any ACPI memory */ early_acpi_os_unmap_memory((char __iomem *)ivrs_base, ivrs_size); ivrs_base = NULL; return ret; } static int amd_iommu_enable_interrupts(void) { struct amd_iommu *iommu; int ret = 0; for_each_iommu(iommu) { ret = iommu_init_msi(iommu); if (ret) goto out; } out: return ret; } static bool detect_ivrs(void) { struct acpi_table_header *ivrs_base; acpi_size ivrs_size; acpi_status status; status = acpi_get_table_with_size("IVRS", 0, &ivrs_base, &ivrs_size); if (status == AE_NOT_FOUND) return false; else if (ACPI_FAILURE(status)) { const char *err = acpi_format_exception(status); pr_err("AMD-Vi: IVRS table error: %s\n", err); return false; } early_acpi_os_unmap_memory((char __iomem *)ivrs_base, ivrs_size); /* Make sure ACS will be enabled during PCI probe */ pci_request_acs(); if (!disable_irq_remap) amd_iommu_irq_remap = true; return true; } static int amd_iommu_init_dma(void) { struct amd_iommu *iommu; int ret; if (iommu_pass_through) ret = amd_iommu_init_passthrough(); else ret = amd_iommu_init_dma_ops(); if (ret) return ret; init_device_table_dma(); for_each_iommu(iommu) iommu_flush_all_caches(iommu); amd_iommu_init_api(); amd_iommu_init_notifier(); return 0; } /**************************************************************************** * * AMD IOMMU Initialization State Machine * ****************************************************************************/ static int __init state_next(void) { int ret = 0; switch (init_state) { case IOMMU_START_STATE: if (!detect_ivrs()) { init_state = IOMMU_NOT_FOUND; ret = -ENODEV; } else { init_state = IOMMU_IVRS_DETECTED; } break; case IOMMU_IVRS_DETECTED: ret = early_amd_iommu_init(); init_state = ret ? IOMMU_INIT_ERROR : IOMMU_ACPI_FINISHED; break; case IOMMU_ACPI_FINISHED: early_enable_iommus(); register_syscore_ops(&amd_iommu_syscore_ops); x86_platform.iommu_shutdown = disable_iommus; init_state = IOMMU_ENABLED; break; case IOMMU_ENABLED: ret = amd_iommu_init_pci(); init_state = ret ? IOMMU_INIT_ERROR : IOMMU_PCI_INIT; enable_iommus_v2(); break; case IOMMU_PCI_INIT: ret = amd_iommu_enable_interrupts(); init_state = ret ? IOMMU_INIT_ERROR : IOMMU_INTERRUPTS_EN; break; case IOMMU_INTERRUPTS_EN: ret = amd_iommu_init_dma(); init_state = ret ? IOMMU_INIT_ERROR : IOMMU_DMA_OPS; break; case IOMMU_DMA_OPS: init_state = IOMMU_INITIALIZED; break; case IOMMU_INITIALIZED: /* Nothing to do */ break; case IOMMU_NOT_FOUND: case IOMMU_INIT_ERROR: /* Error states => do nothing */ ret = -EINVAL; break; default: /* Unknown state */ BUG(); } return ret; } static int __init iommu_go_to_state(enum iommu_init_state state) { int ret = 0; while (init_state != state) { ret = state_next(); if (init_state == IOMMU_NOT_FOUND || init_state == IOMMU_INIT_ERROR) break; } return ret; } #ifdef CONFIG_IRQ_REMAP int __init amd_iommu_prepare(void) { return iommu_go_to_state(IOMMU_ACPI_FINISHED); } int __init amd_iommu_supported(void) { return amd_iommu_irq_remap ? 1 : 0; } int __init amd_iommu_enable(void) { int ret; ret = iommu_go_to_state(IOMMU_ENABLED); if (ret) return ret; irq_remapping_enabled = 1; return 0; } void amd_iommu_disable(void) { amd_iommu_suspend(); } int amd_iommu_reenable(int mode) { amd_iommu_resume(); return 0; } int __init amd_iommu_enable_faulting(void) { /* We enable MSI later when PCI is initialized */ return 0; } #endif /* * This is the core init function for AMD IOMMU hardware in the system. * This function is called from the generic x86 DMA layer initialization * code. */ static int __init amd_iommu_init(void) { int ret; ret = iommu_go_to_state(IOMMU_INITIALIZED); if (ret) { free_dma_resources(); if (!irq_remapping_enabled) { disable_iommus(); free_on_init_error(); } else { struct amd_iommu *iommu; uninit_device_table_dma(); for_each_iommu(iommu) iommu_flush_all_caches(iommu); } } return ret; } /**************************************************************************** * * Early detect code. This code runs at IOMMU detection time in the DMA * layer. It just looks if there is an IVRS ACPI table to detect AMD * IOMMUs * ****************************************************************************/ int __init amd_iommu_detect(void) { int ret; if (no_iommu || (iommu_detected && !gart_iommu_aperture)) return -ENODEV; if (amd_iommu_disabled) return -ENODEV; ret = iommu_go_to_state(IOMMU_IVRS_DETECTED); if (ret) return ret; amd_iommu_detected = true; iommu_detected = 1; x86_init.iommu.iommu_init = amd_iommu_init; return 0; } /**************************************************************************** * * Parsing functions for the AMD IOMMU specific kernel command line * options. * ****************************************************************************/ static int __init parse_amd_iommu_dump(char *str) { amd_iommu_dump = true; return 1; } static int __init parse_amd_iommu_options(char *str) { for (; *str; ++str) { if (strncmp(str, "fullflush", 9) == 0) amd_iommu_unmap_flush = true; if (strncmp(str, "off", 3) == 0) amd_iommu_disabled = true; if (strncmp(str, "force_isolation", 15) == 0) amd_iommu_force_isolation = true; } return 1; } static int __init parse_ivrs_ioapic(char *str) { unsigned int bus, dev, fn; int ret, id, i; u16 devid; ret = sscanf(str, "[%d]=%x:%x.%x", &id, &bus, &dev, &fn); if (ret != 4) { pr_err("AMD-Vi: Invalid command line: ivrs_ioapic%s\n", str); return 1; } if (early_ioapic_map_size == EARLY_MAP_SIZE) { pr_err("AMD-Vi: Early IOAPIC map overflow - ignoring ivrs_ioapic%s\n", str); return 1; } devid = ((bus & 0xff) << 8) | ((dev & 0x1f) << 3) | (fn & 0x7); cmdline_maps = true; i = early_ioapic_map_size++; early_ioapic_map[i].id = id; early_ioapic_map[i].devid = devid; early_ioapic_map[i].cmd_line = true; return 1; } static int __init parse_ivrs_hpet(char *str) { unsigned int bus, dev, fn; int ret, id, i; u16 devid; ret = sscanf(str, "[%d]=%x:%x.%x", &id, &bus, &dev, &fn); if (ret != 4) { pr_err("AMD-Vi: Invalid command line: ivrs_hpet%s\n", str); return 1; } if (early_hpet_map_size == EARLY_MAP_SIZE) { pr_err("AMD-Vi: Early HPET map overflow - ignoring ivrs_hpet%s\n", str); return 1; } devid = ((bus & 0xff) << 8) | ((dev & 0x1f) << 3) | (fn & 0x7); cmdline_maps = true; i = early_hpet_map_size++; early_hpet_map[i].id = id; early_hpet_map[i].devid = devid; early_hpet_map[i].cmd_line = true; return 1; } __setup("amd_iommu_dump", parse_amd_iommu_dump); __setup("amd_iommu=", parse_amd_iommu_options); __setup("ivrs_ioapic", parse_ivrs_ioapic); __setup("ivrs_hpet", parse_ivrs_hpet); IOMMU_INIT_FINISH(amd_iommu_detect, gart_iommu_hole_init, NULL, NULL); bool amd_iommu_v2_supported(void) { return amd_iommu_v2_present; } EXPORT_SYMBOL(amd_iommu_v2_supported);