/* * Author Andreas Eversberg (jolly@eversberg.eu) * Based on source code structure by * Karsten Keil (keil@isdn4linux.de) * * This file is (c) under GNU PUBLIC LICENSE * For changes and modifications please read * ../../../Documentation/isdn/mISDN.cert * * Thanks to Karsten Keil (great drivers) * Cologne Chip (great chips) * * This module does: * Real-time tone generation * DTMF detection * Real-time cross-connection and conferrence * Compensate jitter due to system load and hardware fault. * All features are done in kernel space and will be realized * using hardware, if available and supported by chip set. * Blowfish encryption/decryption */ /* STRUCTURE: * * The dsp module provides layer 2 for b-channels (64kbit). It provides * transparent audio forwarding with special digital signal processing: * * - (1) generation of tones * - (2) detection of dtmf tones * - (3) crossconnecting and conferences (clocking) * - (4) echo generation for delay test * - (5) volume control * - (6) disable receive data * - (7) pipeline * - (8) encryption/decryption * * Look: * TX RX * ------upper layer------ * | ^ * | |(6) * v | * +-----+-------------+-----+ * |(3)(4) | * | CMX | * | | * | +-------------+ * | | ^ * | | | * |+---------+| +----+----+ * ||(1) || |(2) | * || || | | * || Tones || | DTMF | * || || | | * || || | | * |+----+----+| +----+----+ * +-----+-----+ ^ * | | * v | * +----+----+ +----+----+ * |(5) | |(5) | * | | | | * |TX Volume| |RX Volume| * | | | | * | | | | * +----+----+ +----+----+ * | ^ * | | * v | * +----+-------------+----+ * |(7) | * | | * | Pipeline Processing | * | | * | | * +----+-------------+----+ * | ^ * | | * v | * +----+----+ +----+----+ * |(8) | |(8) | * | | | | * | Encrypt | | Decrypt | * | | | | * | | | | * +----+----+ +----+----+ * | ^ * | | * v | * ------card layer------ * TX RX * * Above you can see the logical data flow. If software is used to do the * process, it is actually the real data flow. If hardware is used, data * may not flow, but hardware commands to the card, to provide the data flow * as shown. * * NOTE: The channel must be activated in order to make dsp work, even if * no data flow to the upper layer is intended. Activation can be done * after and before controlling the setting using PH_CONTROL requests. * * DTMF: Will be detected by hardware if possible. It is done before CMX * processing. * * Tones: Will be generated via software if endless looped audio fifos are * not supported by hardware. Tones will override all data from CMX. * It is not required to join a conference to use tones at any time. * * CMX: Is transparent when not used. When it is used, it will do * crossconnections and conferences via software if not possible through * hardware. If hardware capability is available, hardware is used. * * Echo: Is generated by CMX and is used to check performance of hard and * software CMX. * * The CMX has special functions for conferences with one, two and more * members. It will allow different types of data flow. Receive and transmit * data to/form upper layer may be swithed on/off individually without losing * features of CMX, Tones and DTMF. * * Echo Cancellation: Sometimes we like to cancel echo from the interface. * Note that a VoIP call may not have echo caused by the IP phone. The echo * is generated by the telephone line connected to it. Because the delay * is high, it becomes an echo. RESULT: Echo Cachelation is required if * both echo AND delay is applied to an interface. * Remember that software CMX always generates a more or less delay. * * If all used features can be realized in hardware, and if transmit and/or * receive data ist disabled, the card may not send/receive any data at all. * Not receiving is useful if only announcements are played. Not sending is * useful if an answering machine records audio. Not sending and receiving is * useful during most states of the call. If supported by hardware, tones * will be played without cpu load. Small PBXs and NT-Mode applications will * not need expensive hardware when processing calls. * * * LOCKING: * * When data is received from upper or lower layer (card), the complete dsp * module is locked by a global lock. This lock MUST lock irq, because it * must lock timer events by DSP poll timer. * When data is ready to be transmitted down, the data is queued and sent * outside lock and timer event. * PH_CONTROL must not change any settings, join or split conference members * during process of data. * * HDLC: * * It works quite the same as transparent, except that HDLC data is forwarded * to all other conference members if no hardware bridging is possible. * Send data will be writte to sendq. Sendq will be sent if confirm is received. * Conference cannot join, if one member is not hdlc. * */ #include <linux/delay.h> #include <linux/gfp.h> #include <linux/mISDNif.h> #include <linux/mISDNdsp.h> #include <linux/module.h> #include <linux/vmalloc.h> #include "core.h" #include "dsp.h" static const char *mISDN_dsp_revision = "2.0"; static int debug; static int options; static int poll; static int dtmfthreshold = 100; MODULE_AUTHOR("Andreas Eversberg"); module_param(debug, uint, S_IRUGO | S_IWUSR); module_param(options, uint, S_IRUGO | S_IWUSR); module_param(poll, uint, S_IRUGO | S_IWUSR); module_param(dtmfthreshold, uint, S_IRUGO | S_IWUSR); MODULE_LICENSE("GPL"); /*int spinnest = 0;*/ spinlock_t dsp_lock; /* global dsp lock */ struct list_head dsp_ilist; struct list_head conf_ilist; int dsp_debug; int dsp_options; int dsp_poll, dsp_tics; /* check if rx may be turned off or must be turned on */ static void dsp_rx_off_member(struct dsp *dsp) { struct mISDN_ctrl_req cq; int rx_off = 1; memset(&cq, 0, sizeof(cq)); if (!dsp->features_rx_off) return; /* not disabled */ if (!dsp->rx_disabled) rx_off = 0; /* software dtmf */ else if (dsp->dtmf.software) rx_off = 0; /* echo in software */ else if (dsp->echo.software) rx_off = 0; /* bridge in software */ else if (dsp->conf && dsp->conf->software) rx_off = 0; /* data is not required by user space and not required * for echo dtmf detection, soft-echo, soft-bridging */ if (rx_off == dsp->rx_is_off) return; if (!dsp->ch.peer) { if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: no peer, no rx_off\n", __func__); return; } cq.op = MISDN_CTRL_RX_OFF; cq.p1 = rx_off; if (dsp->ch.peer->ctrl(dsp->ch.peer, CONTROL_CHANNEL, &cq)) { printk(KERN_DEBUG "%s: 2nd CONTROL_CHANNEL failed\n", __func__); return; } dsp->rx_is_off = rx_off; if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: %s set rx_off = %d\n", __func__, dsp->name, rx_off); } static void dsp_rx_off(struct dsp *dsp) { struct dsp_conf_member *member; if (dsp_options & DSP_OPT_NOHARDWARE) return; /* no conf */ if (!dsp->conf) { dsp_rx_off_member(dsp); return; } /* check all members in conf */ list_for_each_entry(member, &dsp->conf->mlist, list) { dsp_rx_off_member(member->dsp); } } /* enable "fill empty" feature */ static void dsp_fill_empty(struct dsp *dsp) { struct mISDN_ctrl_req cq; memset(&cq, 0, sizeof(cq)); if (!dsp->ch.peer) { if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: no peer, no fill_empty\n", __func__); return; } cq.op = MISDN_CTRL_FILL_EMPTY; cq.p1 = 1; cq.p2 = dsp_silence; if (dsp->ch.peer->ctrl(dsp->ch.peer, CONTROL_CHANNEL, &cq)) { printk(KERN_DEBUG "%s: CONTROL_CHANNEL failed\n", __func__); return; } if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: %s set fill_empty = 1\n", __func__, dsp->name); } static int dsp_control_req(struct dsp *dsp, struct mISDNhead *hh, struct sk_buff *skb) { struct sk_buff *nskb; int ret = 0; int cont; u8 *data; int len; if (skb->len < sizeof(int)) printk(KERN_ERR "%s: PH_CONTROL message too short\n", __func__); cont = *((int *)skb->data); len = skb->len - sizeof(int); data = skb->data + sizeof(int); switch (cont) { case DTMF_TONE_START: /* turn on DTMF */ if (dsp->hdlc) { ret = -EINVAL; break; } if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: start dtmf\n", __func__); if (len == sizeof(int)) { if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_NOTICE "changing DTMF Threshold " "to %d\n", *((int *)data)); dsp->dtmf.treshold = (*(int *)data) * 10000; } dsp->dtmf.enable = 1; /* init goertzel */ dsp_dtmf_goertzel_init(dsp); /* check dtmf hardware */ dsp_dtmf_hardware(dsp); dsp_rx_off(dsp); break; case DTMF_TONE_STOP: /* turn off DTMF */ if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: stop dtmf\n", __func__); dsp->dtmf.enable = 0; dsp->dtmf.hardware = 0; dsp->dtmf.software = 0; break; case DSP_CONF_JOIN: /* join / update conference */ if (len < sizeof(int)) { ret = -EINVAL; break; } if (*((u32 *)data) == 0) goto conf_split; if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: join conference %d\n", __func__, *((u32 *)data)); ret = dsp_cmx_conf(dsp, *((u32 *)data)); /* dsp_cmx_hardware will also be called here */ dsp_rx_off(dsp); if (dsp_debug & DEBUG_DSP_CMX) dsp_cmx_debug(dsp); break; case DSP_CONF_SPLIT: /* remove from conference */ conf_split: if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: release conference\n", __func__); ret = dsp_cmx_conf(dsp, 0); /* dsp_cmx_hardware will also be called here */ if (dsp_debug & DEBUG_DSP_CMX) dsp_cmx_debug(dsp); dsp_rx_off(dsp); break; case DSP_TONE_PATT_ON: /* play tone */ if (dsp->hdlc) { ret = -EINVAL; break; } if (len < sizeof(int)) { ret = -EINVAL; break; } if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: turn tone 0x%x on\n", __func__, *((int *)skb->data)); ret = dsp_tone(dsp, *((int *)data)); if (!ret) { dsp_cmx_hardware(dsp->conf, dsp); dsp_rx_off(dsp); } if (!dsp->tone.tone) goto tone_off; break; case DSP_TONE_PATT_OFF: /* stop tone */ if (dsp->hdlc) { ret = -EINVAL; break; } if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: turn tone off\n", __func__); dsp_tone(dsp, 0); dsp_cmx_hardware(dsp->conf, dsp); dsp_rx_off(dsp); /* reset tx buffers (user space data) */ tone_off: dsp->rx_W = 0; dsp->rx_R = 0; break; case DSP_VOL_CHANGE_TX: /* change volume */ if (dsp->hdlc) { ret = -EINVAL; break; } if (len < sizeof(int)) { ret = -EINVAL; break; } dsp->tx_volume = *((int *)data); if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: change tx vol to %d\n", __func__, dsp->tx_volume); dsp_cmx_hardware(dsp->conf, dsp); dsp_dtmf_hardware(dsp); dsp_rx_off(dsp); break; case DSP_VOL_CHANGE_RX: /* change volume */ if (dsp->hdlc) { ret = -EINVAL; break; } if (len < sizeof(int)) { ret = -EINVAL; break; } dsp->rx_volume = *((int *)data); if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: change rx vol to %d\n", __func__, dsp->tx_volume); dsp_cmx_hardware(dsp->conf, dsp); dsp_dtmf_hardware(dsp); dsp_rx_off(dsp); break; case DSP_ECHO_ON: /* enable echo */ dsp->echo.software = 1; /* soft echo */ if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: enable cmx-echo\n", __func__); dsp_cmx_hardware(dsp->conf, dsp); dsp_rx_off(dsp); if (dsp_debug & DEBUG_DSP_CMX) dsp_cmx_debug(dsp); break; case DSP_ECHO_OFF: /* disable echo */ dsp->echo.software = 0; dsp->echo.hardware = 0; if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: disable cmx-echo\n", __func__); dsp_cmx_hardware(dsp->conf, dsp); dsp_rx_off(dsp); if (dsp_debug & DEBUG_DSP_CMX) dsp_cmx_debug(dsp); break; case DSP_RECEIVE_ON: /* enable receive to user space */ if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: enable receive to user " "space\n", __func__); dsp->rx_disabled = 0; dsp_rx_off(dsp); break; case DSP_RECEIVE_OFF: /* disable receive to user space */ if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: disable receive to " "user space\n", __func__); dsp->rx_disabled = 1; dsp_rx_off(dsp); break; case DSP_MIX_ON: /* enable mixing of tx data */ if (dsp->hdlc) { ret = -EINVAL; break; } if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: enable mixing of " "tx-data with conf mebers\n", __func__); dsp->tx_mix = 1; dsp_cmx_hardware(dsp->conf, dsp); dsp_rx_off(dsp); if (dsp_debug & DEBUG_DSP_CMX) dsp_cmx_debug(dsp); break; case DSP_MIX_OFF: /* disable mixing of tx data */ if (dsp->hdlc) { ret = -EINVAL; break; } if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: disable mixing of " "tx-data with conf mebers\n", __func__); dsp->tx_mix = 0; dsp_cmx_hardware(dsp->conf, dsp); dsp_rx_off(dsp); if (dsp_debug & DEBUG_DSP_CMX) dsp_cmx_debug(dsp); break; case DSP_TXDATA_ON: /* enable txdata */ dsp->tx_data = 1; if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: enable tx-data\n", __func__); dsp_cmx_hardware(dsp->conf, dsp); dsp_rx_off(dsp); if (dsp_debug & DEBUG_DSP_CMX) dsp_cmx_debug(dsp); break; case DSP_TXDATA_OFF: /* disable txdata */ dsp->tx_data = 0; if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: disable tx-data\n", __func__); dsp_cmx_hardware(dsp->conf, dsp); dsp_rx_off(dsp); if (dsp_debug & DEBUG_DSP_CMX) dsp_cmx_debug(dsp); break; case DSP_DELAY: /* use delay algorithm instead of dynamic jitter algorithm */ if (dsp->hdlc) { ret = -EINVAL; break; } if (len < sizeof(int)) { ret = -EINVAL; break; } dsp->cmx_delay = (*((int *)data)) << 3; /* milliseconds to samples */ if (dsp->cmx_delay >= (CMX_BUFF_HALF >> 1)) /* clip to half of maximum usable buffer (half of half buffer) */ dsp->cmx_delay = (CMX_BUFF_HALF >> 1) - 1; if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: use delay algorithm to " "compensate jitter (%d samples)\n", __func__, dsp->cmx_delay); break; case DSP_JITTER: /* use dynamic jitter algorithm instead of delay algorithm */ if (dsp->hdlc) { ret = -EINVAL; break; } dsp->cmx_delay = 0; if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: use jitter algorithm to " "compensate jitter\n", __func__); break; case DSP_TX_DEJITTER: /* use dynamic jitter algorithm for tx-buffer */ if (dsp->hdlc) { ret = -EINVAL; break; } dsp->tx_dejitter = 1; if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: use dejitter on TX " "buffer\n", __func__); break; case DSP_TX_DEJ_OFF: /* use tx-buffer without dejittering*/ if (dsp->hdlc) { ret = -EINVAL; break; } dsp->tx_dejitter = 0; if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: use TX buffer without " "dejittering\n", __func__); break; case DSP_PIPELINE_CFG: if (dsp->hdlc) { ret = -EINVAL; break; } if (len > 0 && ((char *)data)[len - 1]) { printk(KERN_DEBUG "%s: pipeline config string " "is not NULL terminated!\n", __func__); ret = -EINVAL; } else { dsp->pipeline.inuse = 1; dsp_cmx_hardware(dsp->conf, dsp); ret = dsp_pipeline_build(&dsp->pipeline, len > 0 ? data : NULL); dsp_cmx_hardware(dsp->conf, dsp); dsp_rx_off(dsp); } break; case DSP_BF_ENABLE_KEY: /* turn blowfish on */ if (dsp->hdlc) { ret = -EINVAL; break; } if (len < 4 || len > 56) { ret = -EINVAL; break; } if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: turn blowfish on (key " "not shown)\n", __func__); ret = dsp_bf_init(dsp, (u8 *)data, len); /* set new cont */ if (!ret) cont = DSP_BF_ACCEPT; else cont = DSP_BF_REJECT; /* send indication if it worked to set it */ nskb = _alloc_mISDN_skb(PH_CONTROL_IND, MISDN_ID_ANY, sizeof(int), &cont, GFP_ATOMIC); if (nskb) { if (dsp->up) { if (dsp->up->send(dsp->up, nskb)) dev_kfree_skb(nskb); } else dev_kfree_skb(nskb); } if (!ret) { dsp_cmx_hardware(dsp->conf, dsp); dsp_dtmf_hardware(dsp); dsp_rx_off(dsp); } break; case DSP_BF_DISABLE: /* turn blowfish off */ if (dsp->hdlc) { ret = -EINVAL; break; } if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: turn blowfish off\n", __func__); dsp_bf_cleanup(dsp); dsp_cmx_hardware(dsp->conf, dsp); dsp_dtmf_hardware(dsp); dsp_rx_off(dsp); break; default: if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: ctrl req %x unhandled\n", __func__, cont); ret = -EINVAL; } return ret; } static void get_features(struct mISDNchannel *ch) { struct dsp *dsp = container_of(ch, struct dsp, ch); struct mISDN_ctrl_req cq; if (!ch->peer) { if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: no peer, no features\n", __func__); return; } memset(&cq, 0, sizeof(cq)); cq.op = MISDN_CTRL_GETOP; if (ch->peer->ctrl(ch->peer, CONTROL_CHANNEL, &cq) < 0) { printk(KERN_DEBUG "%s: CONTROL_CHANNEL failed\n", __func__); return; } if (cq.op & MISDN_CTRL_RX_OFF) dsp->features_rx_off = 1; if (cq.op & MISDN_CTRL_FILL_EMPTY) dsp->features_fill_empty = 1; if (dsp_options & DSP_OPT_NOHARDWARE) return; if ((cq.op & MISDN_CTRL_HW_FEATURES_OP)) { cq.op = MISDN_CTRL_HW_FEATURES; *((u_long *)&cq.p1) = (u_long)&dsp->features; if (ch->peer->ctrl(ch->peer, CONTROL_CHANNEL, &cq)) { printk(KERN_DEBUG "%s: 2nd CONTROL_CHANNEL failed\n", __func__); } } else if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: features not supported for %s\n", __func__, dsp->name); } static int dsp_function(struct mISDNchannel *ch, struct sk_buff *skb) { struct dsp *dsp = container_of(ch, struct dsp, ch); struct mISDNhead *hh; int ret = 0; u8 *digits = NULL; u_long flags; hh = mISDN_HEAD_P(skb); switch (hh->prim) { /* FROM DOWN */ case (PH_DATA_CNF): dsp->data_pending = 0; /* trigger next hdlc frame, if any */ if (dsp->hdlc) { spin_lock_irqsave(&dsp_lock, flags); if (dsp->b_active) schedule_work(&dsp->workq); spin_unlock_irqrestore(&dsp_lock, flags); } break; case (PH_DATA_IND): case (DL_DATA_IND): if (skb->len < 1) { ret = -EINVAL; break; } if (dsp->rx_is_off) { if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: rx-data during rx_off" " for %s\n", __func__, dsp->name); } if (dsp->hdlc) { /* hdlc */ spin_lock_irqsave(&dsp_lock, flags); dsp_cmx_hdlc(dsp, skb); spin_unlock_irqrestore(&dsp_lock, flags); if (dsp->rx_disabled) { /* if receive is not allowed */ break; } hh->prim = DL_DATA_IND; if (dsp->up) return dsp->up->send(dsp->up, skb); break; } spin_lock_irqsave(&dsp_lock, flags); /* decrypt if enabled */ if (dsp->bf_enable) dsp_bf_decrypt(dsp, skb->data, skb->len); /* pipeline */ if (dsp->pipeline.inuse) dsp_pipeline_process_rx(&dsp->pipeline, skb->data, skb->len, hh->id); /* change volume if requested */ if (dsp->rx_volume) dsp_change_volume(skb, dsp->rx_volume); /* check if dtmf soft decoding is turned on */ if (dsp->dtmf.software) { digits = dsp_dtmf_goertzel_decode(dsp, skb->data, skb->len, (dsp_options & DSP_OPT_ULAW) ? 1 : 0); } /* we need to process receive data if software */ if (dsp->conf && dsp->conf->software) { /* process data from card at cmx */ dsp_cmx_receive(dsp, skb); } spin_unlock_irqrestore(&dsp_lock, flags); /* send dtmf result, if any */ if (digits) { while (*digits) { int k; struct sk_buff *nskb; if (dsp_debug & DEBUG_DSP_DTMF) printk(KERN_DEBUG "%s: digit" "(%c) to layer %s\n", __func__, *digits, dsp->name); k = *digits | DTMF_TONE_VAL; nskb = _alloc_mISDN_skb(PH_CONTROL_IND, MISDN_ID_ANY, sizeof(int), &k, GFP_ATOMIC); if (nskb) { if (dsp->up) { if (dsp->up->send( dsp->up, nskb)) dev_kfree_skb(nskb); } else dev_kfree_skb(nskb); } digits++; } } if (dsp->rx_disabled) { /* if receive is not allowed */ break; } hh->prim = DL_DATA_IND; if (dsp->up) return dsp->up->send(dsp->up, skb); break; case (PH_CONTROL_IND): if (dsp_debug & DEBUG_DSP_DTMFCOEFF) printk(KERN_DEBUG "%s: PH_CONTROL INDICATION " "received: %x (len %d) %s\n", __func__, hh->id, skb->len, dsp->name); switch (hh->id) { case (DTMF_HFC_COEF): /* getting coefficients */ if (!dsp->dtmf.hardware) { if (dsp_debug & DEBUG_DSP_DTMFCOEFF) printk(KERN_DEBUG "%s: ignoring DTMF " "coefficients from HFC\n", __func__); break; } digits = dsp_dtmf_goertzel_decode(dsp, skb->data, skb->len, 2); while (*digits) { int k; struct sk_buff *nskb; if (dsp_debug & DEBUG_DSP_DTMF) printk(KERN_DEBUG "%s: digit" "(%c) to layer %s\n", __func__, *digits, dsp->name); k = *digits | DTMF_TONE_VAL; nskb = _alloc_mISDN_skb(PH_CONTROL_IND, MISDN_ID_ANY, sizeof(int), &k, GFP_ATOMIC); if (nskb) { if (dsp->up) { if (dsp->up->send( dsp->up, nskb)) dev_kfree_skb(nskb); } else dev_kfree_skb(nskb); } digits++; } break; case (HFC_VOL_CHANGE_TX): /* change volume */ if (skb->len != sizeof(int)) { ret = -EINVAL; break; } spin_lock_irqsave(&dsp_lock, flags); dsp->tx_volume = *((int *)skb->data); if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: change tx volume to " "%d\n", __func__, dsp->tx_volume); dsp_cmx_hardware(dsp->conf, dsp); dsp_dtmf_hardware(dsp); dsp_rx_off(dsp); spin_unlock_irqrestore(&dsp_lock, flags); break; default: if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: ctrl ind %x unhandled " "%s\n", __func__, hh->id, dsp->name); ret = -EINVAL; } break; case (PH_ACTIVATE_IND): case (PH_ACTIVATE_CNF): if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: b_channel is now active %s\n", __func__, dsp->name); /* bchannel now active */ spin_lock_irqsave(&dsp_lock, flags); dsp->b_active = 1; dsp->data_pending = 0; dsp->rx_init = 1; /* rx_W and rx_R will be adjusted on first frame */ dsp->rx_W = 0; dsp->rx_R = 0; memset(dsp->rx_buff, 0, sizeof(dsp->rx_buff)); dsp_cmx_hardware(dsp->conf, dsp); dsp_dtmf_hardware(dsp); dsp_rx_off(dsp); spin_unlock_irqrestore(&dsp_lock, flags); if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: done with activation, sending " "confirm to user space. %s\n", __func__, dsp->name); /* send activation to upper layer */ hh->prim = DL_ESTABLISH_CNF; if (dsp->up) return dsp->up->send(dsp->up, skb); break; case (PH_DEACTIVATE_IND): case (PH_DEACTIVATE_CNF): if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: b_channel is now inactive %s\n", __func__, dsp->name); /* bchannel now inactive */ spin_lock_irqsave(&dsp_lock, flags); dsp->b_active = 0; dsp->data_pending = 0; dsp_cmx_hardware(dsp->conf, dsp); dsp_rx_off(dsp); spin_unlock_irqrestore(&dsp_lock, flags); hh->prim = DL_RELEASE_CNF; if (dsp->up) return dsp->up->send(dsp->up, skb); break; /* FROM UP */ case (DL_DATA_REQ): case (PH_DATA_REQ): if (skb->len < 1) { ret = -EINVAL; break; } if (dsp->hdlc) { /* hdlc */ if (!dsp->b_active) { ret = -EIO; break; } hh->prim = PH_DATA_REQ; spin_lock_irqsave(&dsp_lock, flags); skb_queue_tail(&dsp->sendq, skb); schedule_work(&dsp->workq); spin_unlock_irqrestore(&dsp_lock, flags); return 0; } /* send data to tx-buffer (if no tone is played) */ if (!dsp->tone.tone) { spin_lock_irqsave(&dsp_lock, flags); dsp_cmx_transmit(dsp, skb); spin_unlock_irqrestore(&dsp_lock, flags); } break; case (PH_CONTROL_REQ): spin_lock_irqsave(&dsp_lock, flags); ret = dsp_control_req(dsp, hh, skb); spin_unlock_irqrestore(&dsp_lock, flags); break; case (DL_ESTABLISH_REQ): case (PH_ACTIVATE_REQ): if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: activating b_channel %s\n", __func__, dsp->name); if (dsp->dtmf.hardware || dsp->dtmf.software) dsp_dtmf_goertzel_init(dsp); get_features(ch); /* enable fill_empty feature */ if (dsp->features_fill_empty) dsp_fill_empty(dsp); /* send ph_activate */ hh->prim = PH_ACTIVATE_REQ; if (ch->peer) return ch->recv(ch->peer, skb); break; case (DL_RELEASE_REQ): case (PH_DEACTIVATE_REQ): if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: releasing b_channel %s\n", __func__, dsp->name); spin_lock_irqsave(&dsp_lock, flags); dsp->tone.tone = 0; dsp->tone.hardware = 0; dsp->tone.software = 0; if (timer_pending(&dsp->tone.tl)) del_timer(&dsp->tone.tl); if (dsp->conf) dsp_cmx_conf(dsp, 0); /* dsp_cmx_hardware will also be called here */ skb_queue_purge(&dsp->sendq); spin_unlock_irqrestore(&dsp_lock, flags); hh->prim = PH_DEACTIVATE_REQ; if (ch->peer) return ch->recv(ch->peer, skb); break; default: if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: msg %x unhandled %s\n", __func__, hh->prim, dsp->name); ret = -EINVAL; } if (!ret) dev_kfree_skb(skb); return ret; } static int dsp_ctrl(struct mISDNchannel *ch, u_int cmd, void *arg) { struct dsp *dsp = container_of(ch, struct dsp, ch); u_long flags; int err = 0; if (debug & DEBUG_DSP_CTRL) printk(KERN_DEBUG "%s:(%x)\n", __func__, cmd); switch (cmd) { case OPEN_CHANNEL: break; case CLOSE_CHANNEL: if (dsp->ch.peer) dsp->ch.peer->ctrl(dsp->ch.peer, CLOSE_CHANNEL, NULL); /* wait until workqueue has finished, * must lock here, or we may hit send-process currently * queueing. */ spin_lock_irqsave(&dsp_lock, flags); dsp->b_active = 0; spin_unlock_irqrestore(&dsp_lock, flags); /* MUST not be locked, because it waits until queue is done. */ cancel_work_sync(&dsp->workq); spin_lock_irqsave(&dsp_lock, flags); if (timer_pending(&dsp->tone.tl)) del_timer(&dsp->tone.tl); skb_queue_purge(&dsp->sendq); if (dsp_debug & DEBUG_DSP_CTRL) printk(KERN_DEBUG "%s: releasing member %s\n", __func__, dsp->name); dsp->b_active = 0; dsp_cmx_conf(dsp, 0); /* dsp_cmx_hardware will also be called here */ dsp_pipeline_destroy(&dsp->pipeline); if (dsp_debug & DEBUG_DSP_CTRL) printk(KERN_DEBUG "%s: remove & destroy object %s\n", __func__, dsp->name); list_del(&dsp->list); spin_unlock_irqrestore(&dsp_lock, flags); if (dsp_debug & DEBUG_DSP_CTRL) printk(KERN_DEBUG "%s: dsp instance released\n", __func__); vfree(dsp); module_put(THIS_MODULE); break; } return err; } static void dsp_send_bh(struct work_struct *work) { struct dsp *dsp = container_of(work, struct dsp, workq); struct sk_buff *skb; struct mISDNhead *hh; if (dsp->hdlc && dsp->data_pending) return; /* wait until data has been acknowledged */ /* send queued data */ while ((skb = skb_dequeue(&dsp->sendq))) { /* in locked date, we must have still data in queue */ if (dsp->data_pending) { if (dsp_debug & DEBUG_DSP_CORE) printk(KERN_DEBUG "%s: fifo full %s, this is " "no bug!\n", __func__, dsp->name); /* flush transparent data, if not acked */ dev_kfree_skb(skb); continue; } hh = mISDN_HEAD_P(skb); if (hh->prim == DL_DATA_REQ) { /* send packet up */ if (dsp->up) { if (dsp->up->send(dsp->up, skb)) dev_kfree_skb(skb); } else dev_kfree_skb(skb); } else { /* send packet down */ if (dsp->ch.peer) { dsp->data_pending = 1; if (dsp->ch.recv(dsp->ch.peer, skb)) { dev_kfree_skb(skb); dsp->data_pending = 0; } } else dev_kfree_skb(skb); } } } static int dspcreate(struct channel_req *crq) { struct dsp *ndsp; u_long flags; if (crq->protocol != ISDN_P_B_L2DSP && crq->protocol != ISDN_P_B_L2DSPHDLC) return -EPROTONOSUPPORT; ndsp = vzalloc(sizeof(struct dsp)); if (!ndsp) { printk(KERN_ERR "%s: vmalloc struct dsp failed\n", __func__); return -ENOMEM; } if (dsp_debug & DEBUG_DSP_CTRL) printk(KERN_DEBUG "%s: creating new dsp instance\n", __func__); /* default enabled */ INIT_WORK(&ndsp->workq, (void *)dsp_send_bh); skb_queue_head_init(&ndsp->sendq); ndsp->ch.send = dsp_function; ndsp->ch.ctrl = dsp_ctrl; ndsp->up = crq->ch; crq->ch = &ndsp->ch; if (crq->protocol == ISDN_P_B_L2DSP) { crq->protocol = ISDN_P_B_RAW; ndsp->hdlc = 0; } else { crq->protocol = ISDN_P_B_HDLC; ndsp->hdlc = 1; } if (!try_module_get(THIS_MODULE)) printk(KERN_WARNING "%s:cannot get module\n", __func__); sprintf(ndsp->name, "DSP_C%x(0x%p)", ndsp->up->st->dev->id + 1, ndsp); /* set frame size to start */ ndsp->features.hfc_id = -1; /* current PCM id */ ndsp->features.pcm_id = -1; /* current PCM id */ ndsp->pcm_slot_rx = -1; /* current CPM slot */ ndsp->pcm_slot_tx = -1; ndsp->pcm_bank_rx = -1; ndsp->pcm_bank_tx = -1; ndsp->hfc_conf = -1; /* current conference number */ /* set tone timer */ ndsp->tone.tl.function = (void *)dsp_tone_timeout; ndsp->tone.tl.data = (long) ndsp; init_timer(&ndsp->tone.tl); if (dtmfthreshold < 20 || dtmfthreshold > 500) dtmfthreshold = 200; ndsp->dtmf.treshold = dtmfthreshold * 10000; /* init pipeline append to list */ spin_lock_irqsave(&dsp_lock, flags); dsp_pipeline_init(&ndsp->pipeline); list_add_tail(&ndsp->list, &dsp_ilist); spin_unlock_irqrestore(&dsp_lock, flags); return 0; } static struct Bprotocol DSP = { .Bprotocols = (1 << (ISDN_P_B_L2DSP & ISDN_P_B_MASK)) | (1 << (ISDN_P_B_L2DSPHDLC & ISDN_P_B_MASK)), .name = "dsp", .create = dspcreate }; static int __init dsp_init(void) { int err; int tics; printk(KERN_INFO "DSP module %s\n", mISDN_dsp_revision); dsp_options = options; dsp_debug = debug; /* set packet size */ dsp_poll = poll; if (dsp_poll) { if (dsp_poll > MAX_POLL) { printk(KERN_ERR "%s: Wrong poll value (%d), use %d " "maximum.\n", __func__, poll, MAX_POLL); err = -EINVAL; return err; } if (dsp_poll < 8) { printk(KERN_ERR "%s: Wrong poll value (%d), use 8 " "minimum.\n", __func__, dsp_poll); err = -EINVAL; return err; } dsp_tics = poll * HZ / 8000; if (dsp_tics * 8000 != poll * HZ) { printk(KERN_INFO "mISDN_dsp: Cannot clock every %d " "samples (0,125 ms). It is not a multiple of " "%d HZ.\n", poll, HZ); err = -EINVAL; return err; } } else { poll = 8; while (poll <= MAX_POLL) { tics = (poll * HZ) / 8000; if (tics * 8000 == poll * HZ) { dsp_tics = tics; dsp_poll = poll; if (poll >= 64) break; } poll++; } } if (dsp_poll == 0) { printk(KERN_INFO "mISDN_dsp: There is no multiple of kernel " "clock that equals exactly the duration of 8-256 " "samples. (Choose kernel clock speed like 100, 250, " "300, 1000)\n"); err = -EINVAL; return err; } printk(KERN_INFO "mISDN_dsp: DSP clocks every %d samples. This equals " "%d jiffies.\n", dsp_poll, dsp_tics); spin_lock_init(&dsp_lock); INIT_LIST_HEAD(&dsp_ilist); INIT_LIST_HEAD(&conf_ilist); /* init conversion tables */ dsp_audio_generate_law_tables(); dsp_silence = (dsp_options & DSP_OPT_ULAW) ? 0xff : 0x2a; dsp_audio_law_to_s32 = (dsp_options & DSP_OPT_ULAW) ? dsp_audio_ulaw_to_s32 : dsp_audio_alaw_to_s32; dsp_audio_generate_s2law_table(); dsp_audio_generate_seven(); dsp_audio_generate_mix_table(); if (dsp_options & DSP_OPT_ULAW) dsp_audio_generate_ulaw_samples(); dsp_audio_generate_volume_changes(); err = dsp_pipeline_module_init(); if (err) { printk(KERN_ERR "mISDN_dsp: Can't initialize pipeline, " "error(%d)\n", err); return err; } err = mISDN_register_Bprotocol(&DSP); if (err) { printk(KERN_ERR "Can't register %s error(%d)\n", DSP.name, err); return err; } /* set sample timer */ dsp_spl_tl.function = (void *)dsp_cmx_send; dsp_spl_tl.data = 0; init_timer(&dsp_spl_tl); dsp_spl_tl.expires = jiffies + dsp_tics; dsp_spl_jiffies = dsp_spl_tl.expires; add_timer(&dsp_spl_tl); return 0; } static void __exit dsp_cleanup(void) { mISDN_unregister_Bprotocol(&DSP); del_timer_sync(&dsp_spl_tl); if (!list_empty(&dsp_ilist)) { printk(KERN_ERR "mISDN_dsp: Audio DSP object inst list not " "empty.\n"); } if (!list_empty(&conf_ilist)) { printk(KERN_ERR "mISDN_dsp: Conference list not empty. Not " "all memory freed.\n"); } dsp_pipeline_module_exit(); } module_init(dsp_init); module_exit(dsp_cleanup);