#include <linux/i2c.h> #include <linux/mutex.h> #include <linux/module.h> #include "dibx000_common.h" static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiBX000: "); printk(args); printk("\n"); } } while (0) static int dibx000_write_word(struct dibx000_i2c_master *mst, u16 reg, u16 val) { int ret; if (mutex_lock_interruptible(&mst->i2c_buffer_lock) < 0) { dprintk("could not acquire lock"); return -EINVAL; } mst->i2c_write_buffer[0] = (reg >> 8) & 0xff; mst->i2c_write_buffer[1] = reg & 0xff; mst->i2c_write_buffer[2] = (val >> 8) & 0xff; mst->i2c_write_buffer[3] = val & 0xff; memset(mst->msg, 0, sizeof(struct i2c_msg)); mst->msg[0].addr = mst->i2c_addr; mst->msg[0].flags = 0; mst->msg[0].buf = mst->i2c_write_buffer; mst->msg[0].len = 4; ret = i2c_transfer(mst->i2c_adap, mst->msg, 1) != 1 ? -EREMOTEIO : 0; mutex_unlock(&mst->i2c_buffer_lock); return ret; } static u16 dibx000_read_word(struct dibx000_i2c_master *mst, u16 reg) { u16 ret; if (mutex_lock_interruptible(&mst->i2c_buffer_lock) < 0) { dprintk("could not acquire lock"); return 0; } mst->i2c_write_buffer[0] = reg >> 8; mst->i2c_write_buffer[1] = reg & 0xff; memset(mst->msg, 0, 2 * sizeof(struct i2c_msg)); mst->msg[0].addr = mst->i2c_addr; mst->msg[0].flags = 0; mst->msg[0].buf = mst->i2c_write_buffer; mst->msg[0].len = 2; mst->msg[1].addr = mst->i2c_addr; mst->msg[1].flags = I2C_M_RD; mst->msg[1].buf = mst->i2c_read_buffer; mst->msg[1].len = 2; if (i2c_transfer(mst->i2c_adap, mst->msg, 2) != 2) dprintk("i2c read error on %d", reg); ret = (mst->i2c_read_buffer[0] << 8) | mst->i2c_read_buffer[1]; mutex_unlock(&mst->i2c_buffer_lock); return ret; } static int dibx000_is_i2c_done(struct dibx000_i2c_master *mst) { int i = 100; u16 status; while (((status = dibx000_read_word(mst, mst->base_reg + 2)) & 0x0100) == 0 && --i > 0) ; /* i2c timed out */ if (i == 0) return -EREMOTEIO; /* no acknowledge */ if ((status & 0x0080) == 0) return -EREMOTEIO; return 0; } static int dibx000_master_i2c_write(struct dibx000_i2c_master *mst, struct i2c_msg *msg, u8 stop) { u16 data; u16 da; u16 i; u16 txlen = msg->len, len; const u8 *b = msg->buf; while (txlen) { dibx000_read_word(mst, mst->base_reg + 2); len = txlen > 8 ? 8 : txlen; for (i = 0; i < len; i += 2) { data = *b++ << 8; if (i+1 < len) data |= *b++; dibx000_write_word(mst, mst->base_reg, data); } da = (((u8) (msg->addr)) << 9) | (1 << 8) | (1 << 7) | (0 << 6) | (0 << 5) | ((len & 0x7) << 2) | (0 << 1) | (0 << 0); if (txlen == msg->len) da |= 1 << 5; /* start */ if (txlen-len == 0 && stop) da |= 1 << 6; /* stop */ dibx000_write_word(mst, mst->base_reg+1, da); if (dibx000_is_i2c_done(mst) != 0) return -EREMOTEIO; txlen -= len; } return 0; } static int dibx000_master_i2c_read(struct dibx000_i2c_master *mst, struct i2c_msg *msg) { u16 da; u8 *b = msg->buf; u16 rxlen = msg->len, len; while (rxlen) { len = rxlen > 8 ? 8 : rxlen; da = (((u8) (msg->addr)) << 9) | (1 << 8) | (1 << 7) | (0 << 6) | (0 << 5) | ((len & 0x7) << 2) | (1 << 1) | (0 << 0); if (rxlen == msg->len) da |= 1 << 5; /* start */ if (rxlen-len == 0) da |= 1 << 6; /* stop */ dibx000_write_word(mst, mst->base_reg+1, da); if (dibx000_is_i2c_done(mst) != 0) return -EREMOTEIO; rxlen -= len; while (len) { da = dibx000_read_word(mst, mst->base_reg); *b++ = (da >> 8) & 0xff; len--; if (len >= 1) { *b++ = da & 0xff; len--; } } } return 0; } int dibx000_i2c_set_speed(struct i2c_adapter *i2c_adap, u16 speed) { struct dibx000_i2c_master *mst = i2c_get_adapdata(i2c_adap); if (mst->device_rev < DIB7000MC && speed < 235) speed = 235; return dibx000_write_word(mst, mst->base_reg + 3, (u16)(60000 / speed)); } EXPORT_SYMBOL(dibx000_i2c_set_speed); static u32 dibx000_i2c_func(struct i2c_adapter *adapter) { return I2C_FUNC_I2C; } static int dibx000_i2c_select_interface(struct dibx000_i2c_master *mst, enum dibx000_i2c_interface intf) { if (mst->device_rev > DIB3000MC && mst->selected_interface != intf) { dprintk("selecting interface: %d", intf); mst->selected_interface = intf; return dibx000_write_word(mst, mst->base_reg + 4, intf); } return 0; } static int dibx000_i2c_master_xfer_gpio12(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) { struct dibx000_i2c_master *mst = i2c_get_adapdata(i2c_adap); int msg_index; int ret = 0; dibx000_i2c_select_interface(mst, DIBX000_I2C_INTERFACE_GPIO_1_2); for (msg_index = 0; msg_index < num; msg_index++) { if (msg[msg_index].flags & I2C_M_RD) { ret = dibx000_master_i2c_read(mst, &msg[msg_index]); if (ret != 0) return 0; } else { ret = dibx000_master_i2c_write(mst, &msg[msg_index], 1); if (ret != 0) return 0; } } return num; } static int dibx000_i2c_master_xfer_gpio34(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) { struct dibx000_i2c_master *mst = i2c_get_adapdata(i2c_adap); int msg_index; int ret = 0; dibx000_i2c_select_interface(mst, DIBX000_I2C_INTERFACE_GPIO_3_4); for (msg_index = 0; msg_index < num; msg_index++) { if (msg[msg_index].flags & I2C_M_RD) { ret = dibx000_master_i2c_read(mst, &msg[msg_index]); if (ret != 0) return 0; } else { ret = dibx000_master_i2c_write(mst, &msg[msg_index], 1); if (ret != 0) return 0; } } return num; } static struct i2c_algorithm dibx000_i2c_master_gpio12_xfer_algo = { .master_xfer = dibx000_i2c_master_xfer_gpio12, .functionality = dibx000_i2c_func, }; static struct i2c_algorithm dibx000_i2c_master_gpio34_xfer_algo = { .master_xfer = dibx000_i2c_master_xfer_gpio34, .functionality = dibx000_i2c_func, }; static int dibx000_i2c_gate_ctrl(struct dibx000_i2c_master *mst, u8 tx[4], u8 addr, int onoff) { u16 val; if (onoff) val = addr << 8; // bit 7 = use master or not, if 0, the gate is open else val = 1 << 7; if (mst->device_rev > DIB7000) val <<= 1; tx[0] = (((mst->base_reg + 1) >> 8) & 0xff); tx[1] = ((mst->base_reg + 1) & 0xff); tx[2] = val >> 8; tx[3] = val & 0xff; return 0; } static int dibx000_i2c_gated_gpio67_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) { struct dibx000_i2c_master *mst = i2c_get_adapdata(i2c_adap); int ret; if (num > 32) { dprintk("%s: too much I2C message to be transmitted (%i).\ Maximum is 32", __func__, num); return -ENOMEM; } dibx000_i2c_select_interface(mst, DIBX000_I2C_INTERFACE_GPIO_6_7); if (mutex_lock_interruptible(&mst->i2c_buffer_lock) < 0) { dprintk("could not acquire lock"); return -EINVAL; } memset(mst->msg, 0, sizeof(struct i2c_msg) * (2 + num)); /* open the gate */ dibx000_i2c_gate_ctrl(mst, &mst->i2c_write_buffer[0], msg[0].addr, 1); mst->msg[0].addr = mst->i2c_addr; mst->msg[0].buf = &mst->i2c_write_buffer[0]; mst->msg[0].len = 4; memcpy(&mst->msg[1], msg, sizeof(struct i2c_msg) * num); /* close the gate */ dibx000_i2c_gate_ctrl(mst, &mst->i2c_write_buffer[4], 0, 0); mst->msg[num + 1].addr = mst->i2c_addr; mst->msg[num + 1].buf = &mst->i2c_write_buffer[4]; mst->msg[num + 1].len = 4; ret = (i2c_transfer(mst->i2c_adap, mst->msg, 2 + num) == 2 + num ? num : -EIO); mutex_unlock(&mst->i2c_buffer_lock); return ret; } static struct i2c_algorithm dibx000_i2c_gated_gpio67_algo = { .master_xfer = dibx000_i2c_gated_gpio67_xfer, .functionality = dibx000_i2c_func, }; static int dibx000_i2c_gated_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) { struct dibx000_i2c_master *mst = i2c_get_adapdata(i2c_adap); int ret; if (num > 32) { dprintk("%s: too much I2C message to be transmitted (%i).\ Maximum is 32", __func__, num); return -ENOMEM; } dibx000_i2c_select_interface(mst, DIBX000_I2C_INTERFACE_TUNER); if (mutex_lock_interruptible(&mst->i2c_buffer_lock) < 0) { dprintk("could not acquire lock"); return -EINVAL; } memset(mst->msg, 0, sizeof(struct i2c_msg) * (2 + num)); /* open the gate */ dibx000_i2c_gate_ctrl(mst, &mst->i2c_write_buffer[0], msg[0].addr, 1); mst->msg[0].addr = mst->i2c_addr; mst->msg[0].buf = &mst->i2c_write_buffer[0]; mst->msg[0].len = 4; memcpy(&mst->msg[1], msg, sizeof(struct i2c_msg) * num); /* close the gate */ dibx000_i2c_gate_ctrl(mst, &mst->i2c_write_buffer[4], 0, 0); mst->msg[num + 1].addr = mst->i2c_addr; mst->msg[num + 1].buf = &mst->i2c_write_buffer[4]; mst->msg[num + 1].len = 4; ret = (i2c_transfer(mst->i2c_adap, mst->msg, 2 + num) == 2 + num ? num : -EIO); mutex_unlock(&mst->i2c_buffer_lock); return ret; } static struct i2c_algorithm dibx000_i2c_gated_tuner_algo = { .master_xfer = dibx000_i2c_gated_tuner_xfer, .functionality = dibx000_i2c_func, }; struct i2c_adapter *dibx000_get_i2c_adapter(struct dibx000_i2c_master *mst, enum dibx000_i2c_interface intf, int gating) { struct i2c_adapter *i2c = NULL; switch (intf) { case DIBX000_I2C_INTERFACE_TUNER: if (gating) i2c = &mst->gated_tuner_i2c_adap; break; case DIBX000_I2C_INTERFACE_GPIO_1_2: if (!gating) i2c = &mst->master_i2c_adap_gpio12; break; case DIBX000_I2C_INTERFACE_GPIO_3_4: if (!gating) i2c = &mst->master_i2c_adap_gpio34; break; case DIBX000_I2C_INTERFACE_GPIO_6_7: if (gating) i2c = &mst->master_i2c_adap_gpio67; break; default: printk(KERN_ERR "DiBX000: incorrect I2C interface selected\n"); break; } return i2c; } EXPORT_SYMBOL(dibx000_get_i2c_adapter); void dibx000_reset_i2c_master(struct dibx000_i2c_master *mst) { /* initialize the i2c-master by closing the gate */ u8 tx[4]; struct i2c_msg m = {.addr = mst->i2c_addr,.buf = tx,.len = 4 }; dibx000_i2c_gate_ctrl(mst, tx, 0, 0); i2c_transfer(mst->i2c_adap, &m, 1); mst->selected_interface = 0xff; // the first time force a select of the I2C dibx000_i2c_select_interface(mst, DIBX000_I2C_INTERFACE_TUNER); } EXPORT_SYMBOL(dibx000_reset_i2c_master); static int i2c_adapter_init(struct i2c_adapter *i2c_adap, struct i2c_algorithm *algo, const char *name, struct dibx000_i2c_master *mst) { strncpy(i2c_adap->name, name, sizeof(i2c_adap->name)); i2c_adap->algo = algo; i2c_adap->algo_data = NULL; i2c_set_adapdata(i2c_adap, mst); if (i2c_add_adapter(i2c_adap) < 0) return -ENODEV; return 0; } int dibx000_init_i2c_master(struct dibx000_i2c_master *mst, u16 device_rev, struct i2c_adapter *i2c_adap, u8 i2c_addr) { int ret; mutex_init(&mst->i2c_buffer_lock); if (mutex_lock_interruptible(&mst->i2c_buffer_lock) < 0) { dprintk("could not acquire lock"); return -EINVAL; } memset(mst->msg, 0, sizeof(struct i2c_msg)); mst->msg[0].addr = i2c_addr >> 1; mst->msg[0].flags = 0; mst->msg[0].buf = mst->i2c_write_buffer; mst->msg[0].len = 4; mst->device_rev = device_rev; mst->i2c_adap = i2c_adap; mst->i2c_addr = i2c_addr >> 1; if (device_rev == DIB7000P || device_rev == DIB8000) mst->base_reg = 1024; else mst->base_reg = 768; mst->gated_tuner_i2c_adap.dev.parent = mst->i2c_adap->dev.parent; if (i2c_adapter_init (&mst->gated_tuner_i2c_adap, &dibx000_i2c_gated_tuner_algo, "DiBX000 tuner I2C bus", mst) != 0) printk(KERN_ERR "DiBX000: could not initialize the tuner i2c_adapter\n"); mst->master_i2c_adap_gpio12.dev.parent = mst->i2c_adap->dev.parent; if (i2c_adapter_init (&mst->master_i2c_adap_gpio12, &dibx000_i2c_master_gpio12_xfer_algo, "DiBX000 master GPIO12 I2C bus", mst) != 0) printk(KERN_ERR "DiBX000: could not initialize the master i2c_adapter\n"); mst->master_i2c_adap_gpio34.dev.parent = mst->i2c_adap->dev.parent; if (i2c_adapter_init (&mst->master_i2c_adap_gpio34, &dibx000_i2c_master_gpio34_xfer_algo, "DiBX000 master GPIO34 I2C bus", mst) != 0) printk(KERN_ERR "DiBX000: could not initialize the master i2c_adapter\n"); mst->master_i2c_adap_gpio67.dev.parent = mst->i2c_adap->dev.parent; if (i2c_adapter_init (&mst->master_i2c_adap_gpio67, &dibx000_i2c_gated_gpio67_algo, "DiBX000 master GPIO67 I2C bus", mst) != 0) printk(KERN_ERR "DiBX000: could not initialize the master i2c_adapter\n"); /* initialize the i2c-master by closing the gate */ dibx000_i2c_gate_ctrl(mst, mst->i2c_write_buffer, 0, 0); ret = (i2c_transfer(i2c_adap, mst->msg, 1) == 1); mutex_unlock(&mst->i2c_buffer_lock); return ret; } EXPORT_SYMBOL(dibx000_init_i2c_master); void dibx000_exit_i2c_master(struct dibx000_i2c_master *mst) { i2c_del_adapter(&mst->gated_tuner_i2c_adap); i2c_del_adapter(&mst->master_i2c_adap_gpio12); i2c_del_adapter(&mst->master_i2c_adap_gpio34); i2c_del_adapter(&mst->master_i2c_adap_gpio67); } EXPORT_SYMBOL(dibx000_exit_i2c_master); u32 systime(void) { struct timespec t; t = current_kernel_time(); return (t.tv_sec * 10000) + (t.tv_nsec / 100000); } EXPORT_SYMBOL(systime); MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>"); MODULE_DESCRIPTION("Common function the DiBcom demodulator family"); MODULE_LICENSE("GPL");