/* Montage Technology TS2020 - Silicon Tuner driver Copyright (C) 2009-2012 Konstantin Dimitrov <kosio.dimitrov@gmail.com> Copyright (C) 2009-2012 TurboSight.com This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "dvb_frontend.h" #include "ts2020.h" #define TS2020_XTAL_FREQ 27000 /* in kHz */ #define FREQ_OFFSET_LOW_SYM_RATE 3000 struct ts2020_priv { /* i2c details */ int i2c_address; struct i2c_adapter *i2c; u8 clk_out_div; u32 frequency; }; static int ts2020_release(struct dvb_frontend *fe) { kfree(fe->tuner_priv); fe->tuner_priv = NULL; return 0; } static int ts2020_writereg(struct dvb_frontend *fe, int reg, int data) { struct ts2020_priv *priv = fe->tuner_priv; u8 buf[] = { reg, data }; struct i2c_msg msg[] = { { .addr = priv->i2c_address, .flags = 0, .buf = buf, .len = 2 } }; int err; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); err = i2c_transfer(priv->i2c, msg, 1); if (err != 1) { printk(KERN_ERR "%s: writereg error(err == %i, reg == 0x%02x, value == 0x%02x)\n", __func__, err, reg, data); return -EREMOTEIO; } if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); return 0; } static int ts2020_readreg(struct dvb_frontend *fe, u8 reg) { struct ts2020_priv *priv = fe->tuner_priv; int ret; u8 b0[] = { reg }; u8 b1[] = { 0 }; struct i2c_msg msg[] = { { .addr = priv->i2c_address, .flags = 0, .buf = b0, .len = 1 }, { .addr = priv->i2c_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } }; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); ret = i2c_transfer(priv->i2c, msg, 2); if (ret != 2) { printk(KERN_ERR "%s: reg=0x%x(error=%d)\n", __func__, reg, ret); return ret; } if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); return b1[0]; } static int ts2020_sleep(struct dvb_frontend *fe) { struct ts2020_priv *priv = fe->tuner_priv; int ret; u8 buf[] = { 10, 0 }; struct i2c_msg msg = { .addr = priv->i2c_address, .flags = 0, .buf = buf, .len = 2 }; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); ret = i2c_transfer(priv->i2c, &msg, 1); if (ret != 1) printk(KERN_ERR "%s: i2c error\n", __func__); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); return (ret == 1) ? 0 : ret; } static int ts2020_init(struct dvb_frontend *fe) { struct ts2020_priv *priv = fe->tuner_priv; ts2020_writereg(fe, 0x42, 0x73); ts2020_writereg(fe, 0x05, priv->clk_out_div); ts2020_writereg(fe, 0x20, 0x27); ts2020_writereg(fe, 0x07, 0x02); ts2020_writereg(fe, 0x11, 0xff); ts2020_writereg(fe, 0x60, 0xf9); ts2020_writereg(fe, 0x08, 0x01); ts2020_writereg(fe, 0x00, 0x41); return 0; } static int ts2020_tuner_gate_ctrl(struct dvb_frontend *fe, u8 offset) { int ret; ret = ts2020_writereg(fe, 0x51, 0x1f - offset); ret |= ts2020_writereg(fe, 0x51, 0x1f); ret |= ts2020_writereg(fe, 0x50, offset); ret |= ts2020_writereg(fe, 0x50, 0x00); msleep(20); return ret; } static int ts2020_set_tuner_rf(struct dvb_frontend *fe) { int reg; reg = ts2020_readreg(fe, 0x3d); reg &= 0x7f; if (reg < 0x16) reg = 0xa1; else if (reg == 0x16) reg = 0x99; else reg = 0xf9; ts2020_writereg(fe, 0x60, reg); reg = ts2020_tuner_gate_ctrl(fe, 0x08); return reg; } static int ts2020_set_params(struct dvb_frontend *fe) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; struct ts2020_priv *priv = fe->tuner_priv; int ret; u32 frequency = c->frequency; s32 offset_khz; u32 symbol_rate = (c->symbol_rate / 1000); u32 f3db, gdiv28; u16 value, ndiv, lpf_coeff; u8 lpf_mxdiv, mlpf_max, mlpf_min, nlpf; u8 lo = 0x01, div4 = 0x0; /* Calculate frequency divider */ if (frequency < 1060000) { lo |= 0x10; div4 = 0x1; ndiv = (frequency * 14 * 4) / TS2020_XTAL_FREQ; } else ndiv = (frequency * 14 * 2) / TS2020_XTAL_FREQ; ndiv = ndiv + ndiv % 2; ndiv = ndiv - 1024; ret = ts2020_writereg(fe, 0x10, 0x80 | lo); /* Set frequency divider */ ret |= ts2020_writereg(fe, 0x01, (ndiv >> 8) & 0xf); ret |= ts2020_writereg(fe, 0x02, ndiv & 0xff); ret |= ts2020_writereg(fe, 0x03, 0x06); ret |= ts2020_tuner_gate_ctrl(fe, 0x10); if (ret < 0) return -ENODEV; /* Tuner Frequency Range */ ret = ts2020_writereg(fe, 0x10, lo); ret |= ts2020_tuner_gate_ctrl(fe, 0x08); /* Tuner RF */ ret |= ts2020_set_tuner_rf(fe); gdiv28 = (TS2020_XTAL_FREQ / 1000 * 1694 + 500) / 1000; ret |= ts2020_writereg(fe, 0x04, gdiv28 & 0xff); ret |= ts2020_tuner_gate_ctrl(fe, 0x04); if (ret < 0) return -ENODEV; value = ts2020_readreg(fe, 0x26); f3db = (symbol_rate * 135) / 200 + 2000; f3db += FREQ_OFFSET_LOW_SYM_RATE; if (f3db < 7000) f3db = 7000; if (f3db > 40000) f3db = 40000; gdiv28 = gdiv28 * 207 / (value * 2 + 151); mlpf_max = gdiv28 * 135 / 100; mlpf_min = gdiv28 * 78 / 100; if (mlpf_max > 63) mlpf_max = 63; lpf_coeff = 2766; nlpf = (f3db * gdiv28 * 2 / lpf_coeff / (TS2020_XTAL_FREQ / 1000) + 1) / 2; if (nlpf > 23) nlpf = 23; if (nlpf < 1) nlpf = 1; lpf_mxdiv = (nlpf * (TS2020_XTAL_FREQ / 1000) * lpf_coeff * 2 / f3db + 1) / 2; if (lpf_mxdiv < mlpf_min) { nlpf++; lpf_mxdiv = (nlpf * (TS2020_XTAL_FREQ / 1000) * lpf_coeff * 2 / f3db + 1) / 2; } if (lpf_mxdiv > mlpf_max) lpf_mxdiv = mlpf_max; ret = ts2020_writereg(fe, 0x04, lpf_mxdiv); ret |= ts2020_writereg(fe, 0x06, nlpf); ret |= ts2020_tuner_gate_ctrl(fe, 0x04); ret |= ts2020_tuner_gate_ctrl(fe, 0x01); msleep(80); /* calculate offset assuming 96000kHz*/ offset_khz = (ndiv - ndiv % 2 + 1024) * TS2020_XTAL_FREQ / (6 + 8) / (div4 + 1) / 2; priv->frequency = offset_khz; return (ret < 0) ? -EINVAL : 0; } static int ts2020_get_frequency(struct dvb_frontend *fe, u32 *frequency) { struct ts2020_priv *priv = fe->tuner_priv; *frequency = priv->frequency; return 0; } /* read TS2020 signal strength */ static int ts2020_read_signal_strength(struct dvb_frontend *fe, u16 *signal_strength) { u16 sig_reading, sig_strength; u8 rfgain, bbgain; rfgain = ts2020_readreg(fe, 0x3d) & 0x1f; bbgain = ts2020_readreg(fe, 0x21) & 0x1f; if (rfgain > 15) rfgain = 15; if (bbgain > 13) bbgain = 13; sig_reading = rfgain * 2 + bbgain * 3; sig_strength = 40 + (64 - sig_reading) * 50 / 64 ; /* cook the value to be suitable for szap-s2 human readable output */ *signal_strength = sig_strength * 1000; return 0; } static struct dvb_tuner_ops ts2020_tuner_ops = { .info = { .name = "TS2020", .frequency_min = 950000, .frequency_max = 2150000 }, .init = ts2020_init, .release = ts2020_release, .sleep = ts2020_sleep, .set_params = ts2020_set_params, .get_frequency = ts2020_get_frequency, .get_rf_strength = ts2020_read_signal_strength, }; struct dvb_frontend *ts2020_attach(struct dvb_frontend *fe, const struct ts2020_config *config, struct i2c_adapter *i2c) { struct ts2020_priv *priv = NULL; u8 buf; priv = kzalloc(sizeof(struct ts2020_priv), GFP_KERNEL); if (priv == NULL) return NULL; priv->i2c_address = config->tuner_address; priv->i2c = i2c; priv->clk_out_div = config->clk_out_div; fe->tuner_priv = priv; /* Wake Up the tuner */ if ((0x03 & ts2020_readreg(fe, 0x00)) == 0x00) { ts2020_writereg(fe, 0x00, 0x01); msleep(2); } ts2020_writereg(fe, 0x00, 0x03); msleep(2); /* Check the tuner version */ buf = ts2020_readreg(fe, 0x00); if ((buf == 0x01) || (buf == 0x41) || (buf == 0x81)) printk(KERN_INFO "%s: Find tuner TS2020!\n", __func__); else { printk(KERN_ERR "%s: Read tuner reg[0] = %d\n", __func__, buf); kfree(priv); return NULL; } memcpy(&fe->ops.tuner_ops, &ts2020_tuner_ops, sizeof(struct dvb_tuner_ops)); return fe; } EXPORT_SYMBOL(ts2020_attach); MODULE_AUTHOR("Konstantin Dimitrov <kosio.dimitrov@gmail.com>"); MODULE_DESCRIPTION("Montage Technology TS2020 - Silicon tuner driver module"); MODULE_LICENSE("GPL");