/* * TechnoTrend USB IR Receiver * * Copyright (C) 2012 Sean Young <sean@mess.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/module.h> #include <linux/usb.h> #include <linux/usb/input.h> #include <linux/slab.h> #include <linux/leds.h> #include <media/rc-core.h> #define DRIVER_NAME "ttusbir" #define DRIVER_DESC "TechnoTrend USB IR Receiver" /* * The Windows driver uses 8 URBS, the original lirc drivers has a * configurable amount (2 default, 4 max). This device generates about 125 * messages per second (!), whether IR is idle or not. */ #define NUM_URBS 4 #define NS_PER_BYTE 62500 #define NS_PER_BIT (NS_PER_BYTE/8) struct ttusbir { struct rc_dev *rc; struct device *dev; struct usb_device *udev; struct urb *urb[NUM_URBS]; struct led_classdev led; struct urb *bulk_urb; uint8_t bulk_buffer[5]; int bulk_out_endp, iso_in_endp; bool led_on, is_led_on; atomic_t led_complete; char phys[64]; }; static enum led_brightness ttusbir_brightness_get(struct led_classdev *led_dev) { struct ttusbir *tt = container_of(led_dev, struct ttusbir, led); return tt->led_on ? LED_FULL : LED_OFF; } static void ttusbir_set_led(struct ttusbir *tt) { int ret; smp_mb(); if (tt->led_on != tt->is_led_on && tt->udev && atomic_add_unless(&tt->led_complete, 1, 1)) { tt->bulk_buffer[4] = tt->is_led_on = tt->led_on; ret = usb_submit_urb(tt->bulk_urb, GFP_ATOMIC); if (ret) { dev_warn(tt->dev, "failed to submit bulk urb: %d\n", ret); atomic_dec(&tt->led_complete); } } } static void ttusbir_brightness_set(struct led_classdev *led_dev, enum led_brightness brightness) { struct ttusbir *tt = container_of(led_dev, struct ttusbir, led); tt->led_on = brightness != LED_OFF; ttusbir_set_led(tt); } /* * The urb cannot be reused until the urb completes */ static void ttusbir_bulk_complete(struct urb *urb) { struct ttusbir *tt = urb->context; atomic_dec(&tt->led_complete); switch (urb->status) { case 0: break; case -ECONNRESET: case -ENOENT: case -ESHUTDOWN: usb_unlink_urb(urb); return; case -EPIPE: default: dev_dbg(tt->dev, "Error: urb status = %d\n", urb->status); break; } ttusbir_set_led(tt); } /* * The data is one bit per sample, a set bit signifying silence and samples * being MSB first. Bit 0 can contain garbage so take it to be whatever * bit 1 is, so we don't have unexpected edges. */ static void ttusbir_process_ir_data(struct ttusbir *tt, uint8_t *buf) { struct ir_raw_event rawir; unsigned i, v, b; bool event = false; init_ir_raw_event(&rawir); for (i = 0; i < 128; i++) { v = buf[i] & 0xfe; switch (v) { case 0xfe: rawir.pulse = false; rawir.duration = NS_PER_BYTE; if (ir_raw_event_store_with_filter(tt->rc, &rawir)) event = true; break; case 0: rawir.pulse = true; rawir.duration = NS_PER_BYTE; if (ir_raw_event_store_with_filter(tt->rc, &rawir)) event = true; break; default: /* one edge per byte */ if (v & 2) { b = ffz(v | 1); rawir.pulse = true; } else { b = ffs(v) - 1; rawir.pulse = false; } rawir.duration = NS_PER_BIT * (8 - b); if (ir_raw_event_store_with_filter(tt->rc, &rawir)) event = true; rawir.pulse = !rawir.pulse; rawir.duration = NS_PER_BIT * b; if (ir_raw_event_store_with_filter(tt->rc, &rawir)) event = true; break; } } /* don't wakeup when there's nothing to do */ if (event) ir_raw_event_handle(tt->rc); } static void ttusbir_urb_complete(struct urb *urb) { struct ttusbir *tt = urb->context; int rc; switch (urb->status) { case 0: ttusbir_process_ir_data(tt, urb->transfer_buffer); break; case -ECONNRESET: case -ENOENT: case -ESHUTDOWN: usb_unlink_urb(urb); return; case -EPIPE: default: dev_dbg(tt->dev, "Error: urb status = %d\n", urb->status); break; } rc = usb_submit_urb(urb, GFP_ATOMIC); if (rc && rc != -ENODEV) dev_warn(tt->dev, "failed to resubmit urb: %d\n", rc); } static int ttusbir_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct ttusbir *tt; struct usb_interface_descriptor *idesc; struct usb_endpoint_descriptor *desc; struct rc_dev *rc; int i, j, ret; int altsetting = -1; tt = kzalloc(sizeof(*tt), GFP_KERNEL); rc = rc_allocate_device(); if (!tt || !rc) { ret = -ENOMEM; goto out; } /* find the correct alt setting */ for (i = 0; i < intf->num_altsetting && altsetting == -1; i++) { int max_packet, bulk_out_endp = -1, iso_in_endp = -1; idesc = &intf->altsetting[i].desc; for (j = 0; j < idesc->bNumEndpoints; j++) { desc = &intf->altsetting[i].endpoint[j].desc; max_packet = le16_to_cpu(desc->wMaxPacketSize); if (usb_endpoint_dir_in(desc) && usb_endpoint_xfer_isoc(desc) && max_packet == 0x10) iso_in_endp = j; else if (usb_endpoint_dir_out(desc) && usb_endpoint_xfer_bulk(desc) && max_packet == 0x20) bulk_out_endp = j; if (bulk_out_endp != -1 && iso_in_endp != -1) { tt->bulk_out_endp = bulk_out_endp; tt->iso_in_endp = iso_in_endp; altsetting = i; break; } } } if (altsetting == -1) { dev_err(&intf->dev, "cannot find expected altsetting\n"); ret = -ENODEV; goto out; } tt->dev = &intf->dev; tt->udev = interface_to_usbdev(intf); tt->rc = rc; ret = usb_set_interface(tt->udev, 0, altsetting); if (ret) goto out; for (i = 0; i < NUM_URBS; i++) { struct urb *urb = usb_alloc_urb(8, GFP_KERNEL); void *buffer; if (!urb) { ret = -ENOMEM; goto out; } urb->dev = tt->udev; urb->context = tt; urb->pipe = usb_rcvisocpipe(tt->udev, tt->iso_in_endp); urb->interval = 1; buffer = usb_alloc_coherent(tt->udev, 128, GFP_KERNEL, &urb->transfer_dma); if (!buffer) { usb_free_urb(urb); ret = -ENOMEM; goto out; } urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP | URB_ISO_ASAP; urb->transfer_buffer = buffer; urb->complete = ttusbir_urb_complete; urb->number_of_packets = 8; urb->transfer_buffer_length = 128; for (j = 0; j < 8; j++) { urb->iso_frame_desc[j].offset = j * 16; urb->iso_frame_desc[j].length = 16; } tt->urb[i] = urb; } tt->bulk_urb = usb_alloc_urb(0, GFP_KERNEL); if (!tt->bulk_urb) { ret = -ENOMEM; goto out; } tt->bulk_buffer[0] = 0xaa; tt->bulk_buffer[1] = 0x01; tt->bulk_buffer[2] = 0x05; tt->bulk_buffer[3] = 0x01; usb_fill_bulk_urb(tt->bulk_urb, tt->udev, usb_sndbulkpipe(tt->udev, tt->bulk_out_endp), tt->bulk_buffer, sizeof(tt->bulk_buffer), ttusbir_bulk_complete, tt); tt->led.name = "ttusbir:green:power"; tt->led.brightness_set = ttusbir_brightness_set; tt->led.brightness_get = ttusbir_brightness_get; tt->is_led_on = tt->led_on = true; atomic_set(&tt->led_complete, 0); ret = led_classdev_register(&intf->dev, &tt->led); if (ret) goto out; usb_make_path(tt->udev, tt->phys, sizeof(tt->phys)); rc->input_name = DRIVER_DESC; rc->input_phys = tt->phys; usb_to_input_id(tt->udev, &rc->input_id); rc->dev.parent = &intf->dev; rc->driver_type = RC_DRIVER_IR_RAW; rc->allowed_protos = RC_BIT_ALL; rc->priv = tt; rc->driver_name = DRIVER_NAME; rc->map_name = RC_MAP_TT_1500; rc->timeout = MS_TO_NS(100); /* * The precision is NS_PER_BIT, but since every 8th bit can be * overwritten with garbage the accuracy is at best 2 * NS_PER_BIT. */ rc->rx_resolution = NS_PER_BIT; ret = rc_register_device(rc); if (ret) { dev_err(&intf->dev, "failed to register rc device %d\n", ret); goto out2; } usb_set_intfdata(intf, tt); for (i = 0; i < NUM_URBS; i++) { ret = usb_submit_urb(tt->urb[i], GFP_KERNEL); if (ret) { dev_err(tt->dev, "failed to submit urb %d\n", ret); goto out3; } } return 0; out3: rc_unregister_device(rc); rc = NULL; out2: led_classdev_unregister(&tt->led); out: if (tt) { for (i = 0; i < NUM_URBS && tt->urb[i]; i++) { struct urb *urb = tt->urb[i]; usb_kill_urb(urb); usb_free_coherent(tt->udev, 128, urb->transfer_buffer, urb->transfer_dma); usb_free_urb(urb); } usb_kill_urb(tt->bulk_urb); usb_free_urb(tt->bulk_urb); kfree(tt); } rc_free_device(rc); return ret; } static void ttusbir_disconnect(struct usb_interface *intf) { struct ttusbir *tt = usb_get_intfdata(intf); struct usb_device *udev = tt->udev; int i; tt->udev = NULL; rc_unregister_device(tt->rc); led_classdev_unregister(&tt->led); for (i = 0; i < NUM_URBS; i++) { usb_kill_urb(tt->urb[i]); usb_free_coherent(udev, 128, tt->urb[i]->transfer_buffer, tt->urb[i]->transfer_dma); usb_free_urb(tt->urb[i]); } usb_kill_urb(tt->bulk_urb); usb_free_urb(tt->bulk_urb); usb_set_intfdata(intf, NULL); kfree(tt); } static int ttusbir_suspend(struct usb_interface *intf, pm_message_t message) { struct ttusbir *tt = usb_get_intfdata(intf); int i; for (i = 0; i < NUM_URBS; i++) usb_kill_urb(tt->urb[i]); led_classdev_suspend(&tt->led); usb_kill_urb(tt->bulk_urb); return 0; } static int ttusbir_resume(struct usb_interface *intf) { struct ttusbir *tt = usb_get_intfdata(intf); int i, rc; tt->is_led_on = true; led_classdev_resume(&tt->led); for (i = 0; i < NUM_URBS; i++) { rc = usb_submit_urb(tt->urb[i], GFP_KERNEL); if (rc) { dev_warn(tt->dev, "failed to submit urb: %d\n", rc); break; } } return rc; } static const struct usb_device_id ttusbir_table[] = { { USB_DEVICE(0x0b48, 0x2003) }, { } }; static struct usb_driver ttusbir_driver = { .name = DRIVER_NAME, .id_table = ttusbir_table, .probe = ttusbir_probe, .suspend = ttusbir_suspend, .resume = ttusbir_resume, .reset_resume = ttusbir_resume, .disconnect = ttusbir_disconnect, }; module_usb_driver(ttusbir_driver); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_AUTHOR("Sean Young <sean@mess.org>"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(usb, ttusbir_table);