/* * Driver for mt2063 Micronas tuner * * Copyright (c) 2011 Mauro Carvalho Chehab <mchehab@redhat.com> * * This driver came from a driver originally written by: * Henry Wang <Henry.wang@AzureWave.com> * Made publicly available by Terratec, at: * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz * The original driver's license is GPL, as declared with MODULE_LICENSE() * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation under version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/string.h> #include <linux/videodev2.h> #include "mt2063.h" static unsigned int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Set Verbosity level"); #define dprintk(level, fmt, arg...) do { \ if (debug >= level) \ printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg); \ } while (0) /* positive error codes used internally */ /* Info: Unavoidable LO-related spur may be present in the output */ #define MT2063_SPUR_PRESENT_ERR (0x00800000) /* Info: Mask of bits used for # of LO-related spurs that were avoided during tuning */ #define MT2063_SPUR_CNT_MASK (0x001f0000) #define MT2063_SPUR_SHIFT (16) /* Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */ #define MT2063_UPC_RANGE (0x04000000) /* Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */ #define MT2063_DNC_RANGE (0x08000000) /* * Constant defining the version of the following structure * and therefore the API for this code. * * When compiling the tuner driver, the preprocessor will * check against this version number to make sure that * it matches the version that the tuner driver knows about. */ /* DECT Frequency Avoidance */ #define MT2063_DECT_AVOID_US_FREQS 0x00000001 #define MT2063_DECT_AVOID_EURO_FREQS 0x00000002 #define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0) #define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0) enum MT2063_DECT_Avoid_Type { MT2063_NO_DECT_AVOIDANCE = 0, /* Do not create DECT exclusion zones. */ MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS, /* Avoid US DECT frequencies. */ MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS, /* Avoid European DECT frequencies. */ MT2063_AVOID_BOTH /* Avoid both regions. Not typically used. */ }; #define MT2063_MAX_ZONES 48 struct MT2063_ExclZone_t { u32 min_; u32 max_; struct MT2063_ExclZone_t *next_; }; /* * Structure of data needed for Spur Avoidance */ struct MT2063_AvoidSpursData_t { u32 f_ref; u32 f_in; u32 f_LO1; u32 f_if1_Center; u32 f_if1_Request; u32 f_if1_bw; u32 f_LO2; u32 f_out; u32 f_out_bw; u32 f_LO1_Step; u32 f_LO2_Step; u32 f_LO1_FracN_Avoid; u32 f_LO2_FracN_Avoid; u32 f_zif_bw; u32 f_min_LO_Separation; u32 maxH1; u32 maxH2; enum MT2063_DECT_Avoid_Type avoidDECT; u32 bSpurPresent; u32 bSpurAvoided; u32 nSpursFound; u32 nZones; struct MT2063_ExclZone_t *freeZones; struct MT2063_ExclZone_t *usedZones; struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES]; }; /* * Parameter for function MT2063_SetPowerMask that specifies the power down * of various sections of the MT2063. */ enum MT2063_Mask_Bits { MT2063_REG_SD = 0x0040, /* Shutdown regulator */ MT2063_SRO_SD = 0x0020, /* Shutdown SRO */ MT2063_AFC_SD = 0x0010, /* Shutdown AFC A/D */ MT2063_PD_SD = 0x0002, /* Enable power detector shutdown */ MT2063_PDADC_SD = 0x0001, /* Enable power detector A/D shutdown */ MT2063_VCO_SD = 0x8000, /* Enable VCO shutdown */ MT2063_LTX_SD = 0x4000, /* Enable LTX shutdown */ MT2063_LT1_SD = 0x2000, /* Enable LT1 shutdown */ MT2063_LNA_SD = 0x1000, /* Enable LNA shutdown */ MT2063_UPC_SD = 0x0800, /* Enable upconverter shutdown */ MT2063_DNC_SD = 0x0400, /* Enable downconverter shutdown */ MT2063_VGA_SD = 0x0200, /* Enable VGA shutdown */ MT2063_AMP_SD = 0x0100, /* Enable AMP shutdown */ MT2063_ALL_SD = 0xFF73, /* All shutdown bits for this tuner */ MT2063_NONE_SD = 0x0000 /* No shutdown bits */ }; /* * Possible values for MT2063_DNC_OUTPUT */ enum MT2063_DNC_Output_Enable { MT2063_DNC_NONE = 0, MT2063_DNC_1, MT2063_DNC_2, MT2063_DNC_BOTH }; /* * Two-wire serial bus subaddresses of the tuner registers. * Also known as the tuner's register addresses. */ enum MT2063_Register_Offsets { MT2063_REG_PART_REV = 0, /* 0x00: Part/Rev Code */ MT2063_REG_LO1CQ_1, /* 0x01: LO1C Queued Byte 1 */ MT2063_REG_LO1CQ_2, /* 0x02: LO1C Queued Byte 2 */ MT2063_REG_LO2CQ_1, /* 0x03: LO2C Queued Byte 1 */ MT2063_REG_LO2CQ_2, /* 0x04: LO2C Queued Byte 2 */ MT2063_REG_LO2CQ_3, /* 0x05: LO2C Queued Byte 3 */ MT2063_REG_RSVD_06, /* 0x06: Reserved */ MT2063_REG_LO_STATUS, /* 0x07: LO Status */ MT2063_REG_FIFFC, /* 0x08: FIFF Center */ MT2063_REG_CLEARTUNE, /* 0x09: ClearTune Filter */ MT2063_REG_ADC_OUT, /* 0x0A: ADC_OUT */ MT2063_REG_LO1C_1, /* 0x0B: LO1C Byte 1 */ MT2063_REG_LO1C_2, /* 0x0C: LO1C Byte 2 */ MT2063_REG_LO2C_1, /* 0x0D: LO2C Byte 1 */ MT2063_REG_LO2C_2, /* 0x0E: LO2C Byte 2 */ MT2063_REG_LO2C_3, /* 0x0F: LO2C Byte 3 */ MT2063_REG_RSVD_10, /* 0x10: Reserved */ MT2063_REG_PWR_1, /* 0x11: PWR Byte 1 */ MT2063_REG_PWR_2, /* 0x12: PWR Byte 2 */ MT2063_REG_TEMP_STATUS, /* 0x13: Temp Status */ MT2063_REG_XO_STATUS, /* 0x14: Crystal Status */ MT2063_REG_RF_STATUS, /* 0x15: RF Attn Status */ MT2063_REG_FIF_STATUS, /* 0x16: FIF Attn Status */ MT2063_REG_LNA_OV, /* 0x17: LNA Attn Override */ MT2063_REG_RF_OV, /* 0x18: RF Attn Override */ MT2063_REG_FIF_OV, /* 0x19: FIF Attn Override */ MT2063_REG_LNA_TGT, /* 0x1A: Reserved */ MT2063_REG_PD1_TGT, /* 0x1B: Pwr Det 1 Target */ MT2063_REG_PD2_TGT, /* 0x1C: Pwr Det 2 Target */ MT2063_REG_RSVD_1D, /* 0x1D: Reserved */ MT2063_REG_RSVD_1E, /* 0x1E: Reserved */ MT2063_REG_RSVD_1F, /* 0x1F: Reserved */ MT2063_REG_RSVD_20, /* 0x20: Reserved */ MT2063_REG_BYP_CTRL, /* 0x21: Bypass Control */ MT2063_REG_RSVD_22, /* 0x22: Reserved */ MT2063_REG_RSVD_23, /* 0x23: Reserved */ MT2063_REG_RSVD_24, /* 0x24: Reserved */ MT2063_REG_RSVD_25, /* 0x25: Reserved */ MT2063_REG_RSVD_26, /* 0x26: Reserved */ MT2063_REG_RSVD_27, /* 0x27: Reserved */ MT2063_REG_FIFF_CTRL, /* 0x28: FIFF Control */ MT2063_REG_FIFF_OFFSET, /* 0x29: FIFF Offset */ MT2063_REG_CTUNE_CTRL, /* 0x2A: Reserved */ MT2063_REG_CTUNE_OV, /* 0x2B: Reserved */ MT2063_REG_CTRL_2C, /* 0x2C: Reserved */ MT2063_REG_FIFF_CTRL2, /* 0x2D: Fiff Control */ MT2063_REG_RSVD_2E, /* 0x2E: Reserved */ MT2063_REG_DNC_GAIN, /* 0x2F: DNC Control */ MT2063_REG_VGA_GAIN, /* 0x30: VGA Gain Ctrl */ MT2063_REG_RSVD_31, /* 0x31: Reserved */ MT2063_REG_TEMP_SEL, /* 0x32: Temperature Selection */ MT2063_REG_RSVD_33, /* 0x33: Reserved */ MT2063_REG_RSVD_34, /* 0x34: Reserved */ MT2063_REG_RSVD_35, /* 0x35: Reserved */ MT2063_REG_RSVD_36, /* 0x36: Reserved */ MT2063_REG_RSVD_37, /* 0x37: Reserved */ MT2063_REG_RSVD_38, /* 0x38: Reserved */ MT2063_REG_RSVD_39, /* 0x39: Reserved */ MT2063_REG_RSVD_3A, /* 0x3A: Reserved */ MT2063_REG_RSVD_3B, /* 0x3B: Reserved */ MT2063_REG_RSVD_3C, /* 0x3C: Reserved */ MT2063_REG_END_REGS }; struct mt2063_state { struct i2c_adapter *i2c; bool init; const struct mt2063_config *config; struct dvb_tuner_ops ops; struct dvb_frontend *frontend; struct tuner_state status; u32 frequency; u32 srate; u32 bandwidth; u32 reference; u32 tuner_id; struct MT2063_AvoidSpursData_t AS_Data; u32 f_IF1_actual; u32 rcvr_mode; u32 ctfilt_sw; u32 CTFiltMax[31]; u32 num_regs; u8 reg[MT2063_REG_END_REGS]; }; /* * mt2063_write - Write data into the I2C bus */ static int mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len) { struct dvb_frontend *fe = state->frontend; int ret; u8 buf[60]; struct i2c_msg msg = { .addr = state->config->tuner_address, .flags = 0, .buf = buf, .len = len + 1 }; dprintk(2, "\n"); msg.buf[0] = reg; memcpy(msg.buf + 1, data, len); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); ret = i2c_transfer(state->i2c, &msg, 1); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); if (ret < 0) printk(KERN_ERR "%s error ret=%d\n", __func__, ret); return ret; } /* * mt2063_write - Write register data into the I2C bus, caching the value */ static int mt2063_setreg(struct mt2063_state *state, u8 reg, u8 val) { int status; dprintk(2, "\n"); if (reg >= MT2063_REG_END_REGS) return -ERANGE; status = mt2063_write(state, reg, &val, 1); if (status < 0) return status; state->reg[reg] = val; return 0; } /* * mt2063_read - Read data from the I2C bus */ static int mt2063_read(struct mt2063_state *state, u8 subAddress, u8 *pData, u32 cnt) { int status = 0; /* Status to be returned */ struct dvb_frontend *fe = state->frontend; u32 i = 0; dprintk(2, "addr 0x%02x, cnt %d\n", subAddress, cnt); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); for (i = 0; i < cnt; i++) { u8 b0[] = { subAddress + i }; struct i2c_msg msg[] = { { .addr = state->config->tuner_address, .flags = 0, .buf = b0, .len = 1 }, { .addr = state->config->tuner_address, .flags = I2C_M_RD, .buf = pData + i, .len = 1 } }; status = i2c_transfer(state->i2c, msg, 2); dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n", subAddress + i, status, *(pData + i)); if (status < 0) break; } if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); if (status < 0) printk(KERN_ERR "Can't read from address 0x%02x,\n", subAddress + i); return status; } /* * FIXME: Is this really needed? */ static int MT2063_Sleep(struct dvb_frontend *fe) { /* * ToDo: Add code here to implement a OS blocking */ msleep(100); return 0; } /* * Microtune spur avoidance */ /* Implement ceiling, floor functions. */ #define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0)) #define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d)) struct MT2063_FIFZone_t { s32 min_; s32 max_; }; static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t *pAS_Info, struct MT2063_ExclZone_t *pPrevNode) { struct MT2063_ExclZone_t *pNode; dprintk(2, "\n"); /* Check for a node in the free list */ if (pAS_Info->freeZones != NULL) { /* Use one from the free list */ pNode = pAS_Info->freeZones; pAS_Info->freeZones = pNode->next_; } else { /* Grab a node from the array */ pNode = &pAS_Info->MT2063_ExclZones[pAS_Info->nZones]; } if (pPrevNode != NULL) { pNode->next_ = pPrevNode->next_; pPrevNode->next_ = pNode; } else { /* insert at the beginning of the list */ pNode->next_ = pAS_Info->usedZones; pAS_Info->usedZones = pNode; } pAS_Info->nZones++; return pNode; } static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t *pAS_Info, struct MT2063_ExclZone_t *pPrevNode, struct MT2063_ExclZone_t *pNodeToRemove) { struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_; dprintk(2, "\n"); /* Make previous node point to the subsequent node */ if (pPrevNode != NULL) pPrevNode->next_ = pNext; /* Add pNodeToRemove to the beginning of the freeZones */ pNodeToRemove->next_ = pAS_Info->freeZones; pAS_Info->freeZones = pNodeToRemove; /* Decrement node count */ pAS_Info->nZones--; return pNext; } /* * MT_AddExclZone() * * Add (and merge) an exclusion zone into the list. * If the range (f_min, f_max) is totally outside the * 1st IF BW, ignore the entry. * If the range (f_min, f_max) is negative, ignore the entry. */ static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info, u32 f_min, u32 f_max) { struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones; struct MT2063_ExclZone_t *pPrev = NULL; struct MT2063_ExclZone_t *pNext = NULL; dprintk(2, "\n"); /* Check to see if this overlaps the 1st IF filter */ if ((f_max > (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2))) && (f_min < (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2))) && (f_min < f_max)) { /* * 1 2 3 4 5 6 * * New entry: |---| |--| |--| |-| |---| |--| * or or or or or * Existing: |--| |--| |--| |---| |-| |--| */ /* Check for our place in the list */ while ((pNode != NULL) && (pNode->max_ < f_min)) { pPrev = pNode; pNode = pNode->next_; } if ((pNode != NULL) && (pNode->min_ < f_max)) { /* Combine me with pNode */ if (f_min < pNode->min_) pNode->min_ = f_min; if (f_max > pNode->max_) pNode->max_ = f_max; } else { pNode = InsertNode(pAS_Info, pPrev); pNode->min_ = f_min; pNode->max_ = f_max; } /* Look for merging possibilities */ pNext = pNode->next_; while ((pNext != NULL) && (pNext->min_ < pNode->max_)) { if (pNext->max_ > pNode->max_) pNode->max_ = pNext->max_; /* Remove pNext, return ptr to pNext->next */ pNext = RemoveNode(pAS_Info, pNode, pNext); } } } /* * Reset all exclusion zones. * Add zones to protect the PLL FracN regions near zero */ static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info) { u32 center; dprintk(2, "\n"); pAS_Info->nZones = 0; /* this clears the used list */ pAS_Info->usedZones = NULL; /* reset ptr */ pAS_Info->freeZones = NULL; /* reset ptr */ center = pAS_Info->f_ref * ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 + pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in; while (center < pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 + pAS_Info->f_LO1_FracN_Avoid) { /* Exclude LO1 FracN */ MT2063_AddExclZone(pAS_Info, center - pAS_Info->f_LO1_FracN_Avoid, center - 1); MT2063_AddExclZone(pAS_Info, center + 1, center + pAS_Info->f_LO1_FracN_Avoid); center += pAS_Info->f_ref; } center = pAS_Info->f_ref * ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 - pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out; while (center < pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 + pAS_Info->f_LO2_FracN_Avoid) { /* Exclude LO2 FracN */ MT2063_AddExclZone(pAS_Info, center - pAS_Info->f_LO2_FracN_Avoid, center - 1); MT2063_AddExclZone(pAS_Info, center + 1, center + pAS_Info->f_LO2_FracN_Avoid); center += pAS_Info->f_ref; } if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) { /* Exclude LO1 values that conflict with DECT channels */ MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in); /* Ctr = 1921.536 */ MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in); /* Ctr = 1923.264 */ MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in); /* Ctr = 1924.992 */ MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in); /* Ctr = 1926.720 */ MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in); /* Ctr = 1928.448 */ } if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) { MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in); /* Ctr = 1897.344 */ MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in); /* Ctr = 1895.616 */ MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in); /* Ctr = 1893.888 */ MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in); /* Ctr = 1892.16 */ MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in); /* Ctr = 1890.432 */ MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in); /* Ctr = 1888.704 */ MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in); /* Ctr = 1886.976 */ MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in); /* Ctr = 1885.248 */ MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in); /* Ctr = 1883.52 */ MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in); /* Ctr = 1881.792 */ } } /* * MT_ChooseFirstIF - Choose the best available 1st IF * If f_Desired is not excluded, choose that first. * Otherwise, return the value closest to f_Center that is * not excluded */ static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info) { /* * Update "f_Desired" to be the nearest "combinational-multiple" of * "f_LO1_Step". * The resulting number, F_LO1 must be a multiple of f_LO1_Step. * And F_LO1 is the arithmetic sum of f_in + f_Center. * Neither f_in, nor f_Center must be a multiple of f_LO1_Step. * However, the sum must be. */ const u32 f_Desired = pAS_Info->f_LO1_Step * ((pAS_Info->f_if1_Request + pAS_Info->f_in + pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) - pAS_Info->f_in; const u32 f_Step = (pAS_Info->f_LO1_Step > pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info-> f_LO2_Step; u32 f_Center; s32 i; s32 j = 0; u32 bDesiredExcluded = 0; u32 bZeroExcluded = 0; s32 tmpMin, tmpMax; s32 bestDiff; struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones; struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES]; dprintk(2, "\n"); if (pAS_Info->nZones == 0) return f_Desired; /* * f_Center needs to be an integer multiple of f_Step away * from f_Desired */ if (pAS_Info->f_if1_Center > f_Desired) f_Center = f_Desired + f_Step * ((pAS_Info->f_if1_Center - f_Desired + f_Step / 2) / f_Step); else f_Center = f_Desired - f_Step * ((f_Desired - pAS_Info->f_if1_Center + f_Step / 2) / f_Step); /* * Take MT_ExclZones, center around f_Center and change the * resolution to f_Step */ while (pNode != NULL) { /* floor function */ tmpMin = floor((s32) (pNode->min_ - f_Center), (s32) f_Step); /* ceil function */ tmpMax = ceil((s32) (pNode->max_ - f_Center), (s32) f_Step); if ((pNode->min_ < f_Desired) && (pNode->max_ > f_Desired)) bDesiredExcluded = 1; if ((tmpMin < 0) && (tmpMax > 0)) bZeroExcluded = 1; /* See if this zone overlaps the previous */ if ((j > 0) && (tmpMin < zones[j - 1].max_)) zones[j - 1].max_ = tmpMax; else { /* Add new zone */ zones[j].min_ = tmpMin; zones[j].max_ = tmpMax; j++; } pNode = pNode->next_; } /* * If the desired is okay, return with it */ if (bDesiredExcluded == 0) return f_Desired; /* * If the desired is excluded and the center is okay, return with it */ if (bZeroExcluded == 0) return f_Center; /* Find the value closest to 0 (f_Center) */ bestDiff = zones[0].min_; for (i = 0; i < j; i++) { if (abs(zones[i].min_) < abs(bestDiff)) bestDiff = zones[i].min_; if (abs(zones[i].max_) < abs(bestDiff)) bestDiff = zones[i].max_; } if (bestDiff < 0) return f_Center - ((u32) (-bestDiff) * f_Step); return f_Center + (bestDiff * f_Step); } /** * gcd() - Uses Euclid's algorithm * * @u, @v: Unsigned values whose GCD is desired. * * Returns THE greatest common divisor of u and v, if either value is 0, * the other value is returned as the result. */ static u32 MT2063_gcd(u32 u, u32 v) { u32 r; while (v != 0) { r = u % v; u = v; v = r; } return u; } /** * IsSpurInBand() - Checks to see if a spur will be present within the IF's * bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW) * * ma mb mc md * <--+-+-+-------------------+-------------------+-+-+--> * | ^ 0 ^ | * ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^ * a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2 * * Note that some equations are doubled to prevent round-off * problems when calculating fIFBW/2 * * @pAS_Info: Avoid Spurs information block * @fm: If spur, amount f_IF1 has to move negative * @fp: If spur, amount f_IF1 has to move positive * * Returns 1 if an LO spur would be present, otherwise 0. */ static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info, u32 *fm, u32 * fp) { /* ** Calculate LO frequency settings. */ u32 n, n0; const u32 f_LO1 = pAS_Info->f_LO1; const u32 f_LO2 = pAS_Info->f_LO2; const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2; const u32 c = d - pAS_Info->f_out_bw; const u32 f = pAS_Info->f_zif_bw / 2; const u32 f_Scale = (f_LO1 / (UINT_MAX / 2 / pAS_Info->maxH1)) + 1; s32 f_nsLO1, f_nsLO2; s32 f_Spur; u32 ma, mb, mc, md, me, mf; u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs; dprintk(2, "\n"); *fm = 0; /* ** For each edge (d, c & f), calculate a scale, based on the gcd ** of f_LO1, f_LO2 and the edge value. Use the larger of this ** gcd-based scale factor or f_Scale. */ lo_gcd = MT2063_gcd(f_LO1, f_LO2); gd_Scale = max((u32) MT2063_gcd(lo_gcd, d), f_Scale); hgds = gd_Scale / 2; gc_Scale = max((u32) MT2063_gcd(lo_gcd, c), f_Scale); hgcs = gc_Scale / 2; gf_Scale = max((u32) MT2063_gcd(lo_gcd, f), f_Scale); hgfs = gf_Scale / 2; n0 = DIV_ROUND_UP(f_LO2 - d, f_LO1 - f_LO2); /* Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic */ for (n = n0; n <= pAS_Info->maxH1; ++n) { md = (n * ((f_LO1 + hgds) / gd_Scale) - ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale); /* If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present */ if (md >= pAS_Info->maxH1) break; ma = (n * ((f_LO1 + hgds) / gd_Scale) + ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale); /* If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic */ if (md == ma) continue; mc = (n * ((f_LO1 + hgcs) / gc_Scale) - ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale); if (mc != md) { f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale)); f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale)); f_Spur = (gc_Scale * (f_nsLO1 - f_nsLO2)) + n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale); *fp = ((f_Spur - (s32) c) / (mc - n)) + 1; *fm = (((s32) d - f_Spur) / (mc - n)) + 1; return 1; } /* Location of Zero-IF-spur to be checked */ me = (n * ((f_LO1 + hgfs) / gf_Scale) + ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale); mf = (n * ((f_LO1 + hgfs) / gf_Scale) - ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale); if (me != mf) { f_nsLO1 = n * (f_LO1 / gf_Scale); f_nsLO2 = me * (f_LO2 / gf_Scale); f_Spur = (gf_Scale * (f_nsLO1 - f_nsLO2)) + n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale); *fp = ((f_Spur + (s32) f) / (me - n)) + 1; *fm = (((s32) f - f_Spur) / (me - n)) + 1; return 1; } mb = (n * ((f_LO1 + hgcs) / gc_Scale) + ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale); if (ma != mb) { f_nsLO1 = n * (f_LO1 / gc_Scale); f_nsLO2 = ma * (f_LO2 / gc_Scale); f_Spur = (gc_Scale * (f_nsLO1 - f_nsLO2)) + n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale); *fp = (((s32) d + f_Spur) / (ma - n)) + 1; *fm = (-(f_Spur + (s32) c) / (ma - n)) + 1; return 1; } } /* No spurs found */ return 0; } /* * MT_AvoidSpurs() - Main entry point to avoid spurs. * Checks for existing spurs in present LO1, LO2 freqs * and if present, chooses spur-free LO1, LO2 combination * that tunes the same input/output frequencies. */ static u32 MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t *pAS_Info) { int status = 0; u32 fm, fp; /* restricted range on LO's */ pAS_Info->bSpurAvoided = 0; pAS_Info->nSpursFound = 0; dprintk(2, "\n"); if (pAS_Info->maxH1 == 0) return 0; /* * Avoid LO Generated Spurs * * Make sure that have no LO-related spurs within the IF output * bandwidth. * * If there is an LO spur in this band, start at the current IF1 frequency * and work out until we find a spur-free frequency or run up against the * 1st IF SAW band edge. Use temporary copies of fLO1 and fLO2 so that they * will be unchanged if a spur-free setting is not found. */ pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp); if (pAS_Info->bSpurPresent) { u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in; /* current attempt at a 1st IF */ u32 zfLO1 = pAS_Info->f_LO1; /* current attempt at an LO1 freq */ u32 zfLO2 = pAS_Info->f_LO2; /* current attempt at an LO2 freq */ u32 delta_IF1; u32 new_IF1; /* ** Spur was found, attempt to find a spur-free 1st IF */ do { pAS_Info->nSpursFound++; /* Raise f_IF1_upper, if needed */ MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp); /* Choose next IF1 that is closest to f_IF1_CENTER */ new_IF1 = MT2063_ChooseFirstIF(pAS_Info); if (new_IF1 > zfIF1) { pAS_Info->f_LO1 += (new_IF1 - zfIF1); pAS_Info->f_LO2 += (new_IF1 - zfIF1); } else { pAS_Info->f_LO1 -= (zfIF1 - new_IF1); pAS_Info->f_LO2 -= (zfIF1 - new_IF1); } zfIF1 = new_IF1; if (zfIF1 > pAS_Info->f_if1_Center) delta_IF1 = zfIF1 - pAS_Info->f_if1_Center; else delta_IF1 = pAS_Info->f_if1_Center - zfIF1; pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp); /* * Continue while the new 1st IF is still within the 1st IF bandwidth * and there is a spur in the band (again) */ } while ((2 * delta_IF1 + pAS_Info->f_out_bw <= pAS_Info->f_if1_bw) && pAS_Info->bSpurPresent); /* * Use the LO-spur free values found. If the search went all * the way to the 1st IF band edge and always found spurs, just * leave the original choice. It's as "good" as any other. */ if (pAS_Info->bSpurPresent == 1) { status |= MT2063_SPUR_PRESENT_ERR; pAS_Info->f_LO1 = zfLO1; pAS_Info->f_LO2 = zfLO2; } else pAS_Info->bSpurAvoided = 1; } status |= ((pAS_Info-> nSpursFound << MT2063_SPUR_SHIFT) & MT2063_SPUR_CNT_MASK); return status; } /* * Constants used by the tuning algorithm */ #define MT2063_REF_FREQ (16000000UL) /* Reference oscillator Frequency (in Hz) */ #define MT2063_IF1_BW (22000000UL) /* The IF1 filter bandwidth (in Hz) */ #define MT2063_TUNE_STEP_SIZE (50000UL) /* Tune in steps of 50 kHz */ #define MT2063_SPUR_STEP_HZ (250000UL) /* Step size (in Hz) to move IF1 when avoiding spurs */ #define MT2063_ZIF_BW (2000000UL) /* Zero-IF spur-free bandwidth (in Hz) */ #define MT2063_MAX_HARMONICS_1 (15UL) /* Highest intra-tuner LO Spur Harmonic to be avoided */ #define MT2063_MAX_HARMONICS_2 (5UL) /* Highest inter-tuner LO Spur Harmonic to be avoided */ #define MT2063_MIN_LO_SEP (1000000UL) /* Minimum inter-tuner LO frequency separation */ #define MT2063_LO1_FRACN_AVOID (0UL) /* LO1 FracN numerator avoid region (in Hz) */ #define MT2063_LO2_FRACN_AVOID (199999UL) /* LO2 FracN numerator avoid region (in Hz) */ #define MT2063_MIN_FIN_FREQ (44000000UL) /* Minimum input frequency (in Hz) */ #define MT2063_MAX_FIN_FREQ (1100000000UL) /* Maximum input frequency (in Hz) */ #define MT2063_MIN_FOUT_FREQ (36000000UL) /* Minimum output frequency (in Hz) */ #define MT2063_MAX_FOUT_FREQ (57000000UL) /* Maximum output frequency (in Hz) */ #define MT2063_MIN_DNC_FREQ (1293000000UL) /* Minimum LO2 frequency (in Hz) */ #define MT2063_MAX_DNC_FREQ (1614000000UL) /* Maximum LO2 frequency (in Hz) */ #define MT2063_MIN_UPC_FREQ (1396000000UL) /* Minimum LO1 frequency (in Hz) */ #define MT2063_MAX_UPC_FREQ (2750000000UL) /* Maximum LO1 frequency (in Hz) */ /* * Define the supported Part/Rev codes for the MT2063 */ #define MT2063_B0 (0x9B) #define MT2063_B1 (0x9C) #define MT2063_B2 (0x9D) #define MT2063_B3 (0x9E) /** * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked * * @state: struct mt2063_state pointer * * This function returns 0, if no lock, 1 if locked and a value < 1 if error */ static int mt2063_lockStatus(struct mt2063_state *state) { const u32 nMaxWait = 100; /* wait a maximum of 100 msec */ const u32 nPollRate = 2; /* poll status bits every 2 ms */ const u32 nMaxLoops = nMaxWait / nPollRate; const u8 LO1LK = 0x80; u8 LO2LK = 0x08; int status; u32 nDelays = 0; dprintk(2, "\n"); /* LO2 Lock bit was in a different place for B0 version */ if (state->tuner_id == MT2063_B0) LO2LK = 0x40; do { status = mt2063_read(state, MT2063_REG_LO_STATUS, &state->reg[MT2063_REG_LO_STATUS], 1); if (status < 0) return status; if ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) == (LO1LK | LO2LK)) { return TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO; } msleep(nPollRate); /* Wait between retries */ } while (++nDelays < nMaxLoops); /* * Got no lock or partial lock */ return 0; } /* * Constants for setting receiver modes. * (6 modes defined at this time, enumerated by mt2063_delivery_sys) * (DNC1GC & DNC2GC are the values, which are used, when the specific * DNC Output is selected, the other is always off) * * enum mt2063_delivery_sys * -------------+---------------------------------------------- * Mode 0 : | MT2063_CABLE_QAM * Mode 1 : | MT2063_CABLE_ANALOG * Mode 2 : | MT2063_OFFAIR_COFDM * Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS * Mode 4 : | MT2063_OFFAIR_ANALOG * Mode 5 : | MT2063_OFFAIR_8VSB * --------------+---------------------------------------------- * * |<---------- Mode -------------->| * Reg Field | 0 | 1 | 2 | 3 | 4 | 5 | * ------------+-----+-----+-----+-----+-----+-----+ * RFAGCen | OFF | OFF | OFF | OFF | OFF | OFF * LNARin | 0 | 0 | 3 | 3 | 3 | 3 * FIFFQen | 1 | 1 | 1 | 1 | 1 | 1 * FIFFq | 0 | 0 | 0 | 0 | 0 | 0 * DNC1gc | 0 | 0 | 0 | 0 | 0 | 0 * DNC2gc | 0 | 0 | 0 | 0 | 0 | 0 * GCU Auto | 1 | 1 | 1 | 1 | 1 | 1 * LNA max Atn | 31 | 31 | 31 | 31 | 31 | 31 * LNA Target | 44 | 43 | 43 | 43 | 43 | 43 * ign RF Ovl | 0 | 0 | 0 | 0 | 0 | 0 * RF max Atn | 31 | 31 | 31 | 31 | 31 | 31 * PD1 Target | 36 | 36 | 38 | 38 | 36 | 38 * ign FIF Ovl | 0 | 0 | 0 | 0 | 0 | 0 * FIF max Atn | 5 | 5 | 5 | 5 | 5 | 5 * PD2 Target | 40 | 33 | 42 | 42 | 33 | 42 */ enum mt2063_delivery_sys { MT2063_CABLE_QAM = 0, MT2063_CABLE_ANALOG, MT2063_OFFAIR_COFDM, MT2063_OFFAIR_COFDM_SAWLESS, MT2063_OFFAIR_ANALOG, MT2063_OFFAIR_8VSB, MT2063_NUM_RCVR_MODES }; static const char *mt2063_mode_name[] = { [MT2063_CABLE_QAM] = "digital cable", [MT2063_CABLE_ANALOG] = "analog cable", [MT2063_OFFAIR_COFDM] = "digital offair", [MT2063_OFFAIR_COFDM_SAWLESS] = "digital offair without SAW", [MT2063_OFFAIR_ANALOG] = "analog offair", [MT2063_OFFAIR_8VSB] = "analog offair 8vsb", }; static const u8 RFAGCEN[] = { 0, 0, 0, 0, 0, 0 }; static const u8 LNARIN[] = { 0, 0, 3, 3, 3, 3 }; static const u8 FIFFQEN[] = { 1, 1, 1, 1, 1, 1 }; static const u8 FIFFQ[] = { 0, 0, 0, 0, 0, 0 }; static const u8 DNC1GC[] = { 0, 0, 0, 0, 0, 0 }; static const u8 DNC2GC[] = { 0, 0, 0, 0, 0, 0 }; static const u8 ACLNAMAX[] = { 31, 31, 31, 31, 31, 31 }; static const u8 LNATGT[] = { 44, 43, 43, 43, 43, 43 }; static const u8 RFOVDIS[] = { 0, 0, 0, 0, 0, 0 }; static const u8 ACRFMAX[] = { 31, 31, 31, 31, 31, 31 }; static const u8 PD1TGT[] = { 36, 36, 38, 38, 36, 38 }; static const u8 FIFOVDIS[] = { 0, 0, 0, 0, 0, 0 }; static const u8 ACFIFMAX[] = { 29, 29, 29, 29, 29, 29 }; static const u8 PD2TGT[] = { 40, 33, 38, 42, 30, 38 }; /* * mt2063_set_dnc_output_enable() */ static u32 mt2063_get_dnc_output_enable(struct mt2063_state *state, enum MT2063_DNC_Output_Enable *pValue) { dprintk(2, "\n"); if ((state->reg[MT2063_REG_DNC_GAIN] & 0x03) == 0x03) { /* if DNC1 is off */ if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */ *pValue = MT2063_DNC_NONE; else *pValue = MT2063_DNC_2; } else { /* DNC1 is on */ if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */ *pValue = MT2063_DNC_1; else *pValue = MT2063_DNC_BOTH; } return 0; } /* * mt2063_set_dnc_output_enable() */ static u32 mt2063_set_dnc_output_enable(struct mt2063_state *state, enum MT2063_DNC_Output_Enable nValue) { int status = 0; /* Status to be returned */ u8 val = 0; dprintk(2, "\n"); /* selects, which DNC output is used */ switch (nValue) { case MT2063_DNC_NONE: val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */ if (state->reg[MT2063_REG_DNC_GAIN] != val) status |= mt2063_setreg(state, MT2063_REG_DNC_GAIN, val); val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */ if (state->reg[MT2063_REG_VGA_GAIN] != val) status |= mt2063_setreg(state, MT2063_REG_VGA_GAIN, val); val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */ if (state->reg[MT2063_REG_RSVD_20] != val) status |= mt2063_setreg(state, MT2063_REG_RSVD_20, val); break; case MT2063_DNC_1: val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */ if (state->reg[MT2063_REG_DNC_GAIN] != val) status |= mt2063_setreg(state, MT2063_REG_DNC_GAIN, val); val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */ if (state->reg[MT2063_REG_VGA_GAIN] != val) status |= mt2063_setreg(state, MT2063_REG_VGA_GAIN, val); val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */ if (state->reg[MT2063_REG_RSVD_20] != val) status |= mt2063_setreg(state, MT2063_REG_RSVD_20, val); break; case MT2063_DNC_2: val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */ if (state->reg[MT2063_REG_DNC_GAIN] != val) status |= mt2063_setreg(state, MT2063_REG_DNC_GAIN, val); val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */ if (state->reg[MT2063_REG_VGA_GAIN] != val) status |= mt2063_setreg(state, MT2063_REG_VGA_GAIN, val); val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */ if (state->reg[MT2063_REG_RSVD_20] != val) status |= mt2063_setreg(state, MT2063_REG_RSVD_20, val); break; case MT2063_DNC_BOTH: val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */ if (state->reg[MT2063_REG_DNC_GAIN] != val) status |= mt2063_setreg(state, MT2063_REG_DNC_GAIN, val); val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */ if (state->reg[MT2063_REG_VGA_GAIN] != val) status |= mt2063_setreg(state, MT2063_REG_VGA_GAIN, val); val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */ if (state->reg[MT2063_REG_RSVD_20] != val) status |= mt2063_setreg(state, MT2063_REG_RSVD_20, val); break; default: break; } return status; } /* * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with * the selected enum mt2063_delivery_sys type. * * (DNC1GC & DNC2GC are the values, which are used, when the specific * DNC Output is selected, the other is always off) * * @state: ptr to mt2063_state structure * @Mode: desired reciever delivery system * * Note: Register cache must be valid for it to work */ static u32 MT2063_SetReceiverMode(struct mt2063_state *state, enum mt2063_delivery_sys Mode) { int status = 0; /* Status to be returned */ u8 val; u32 longval; dprintk(2, "\n"); if (Mode >= MT2063_NUM_RCVR_MODES) status = -ERANGE; /* RFAGCen */ if (status >= 0) { val = (state-> reg[MT2063_REG_PD1_TGT] & (u8) ~0x40) | (RFAGCEN[Mode] ? 0x40 : 0x00); if (state->reg[MT2063_REG_PD1_TGT] != val) status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val); } /* LNARin */ if (status >= 0) { u8 val = (state->reg[MT2063_REG_CTRL_2C] & (u8) ~0x03) | (LNARIN[Mode] & 0x03); if (state->reg[MT2063_REG_CTRL_2C] != val) status |= mt2063_setreg(state, MT2063_REG_CTRL_2C, val); } /* FIFFQEN and FIFFQ */ if (status >= 0) { val = (state-> reg[MT2063_REG_FIFF_CTRL2] & (u8) ~0xF0) | (FIFFQEN[Mode] << 7) | (FIFFQ[Mode] << 4); if (state->reg[MT2063_REG_FIFF_CTRL2] != val) { status |= mt2063_setreg(state, MT2063_REG_FIFF_CTRL2, val); /* trigger FIFF calibration, needed after changing FIFFQ */ val = (state->reg[MT2063_REG_FIFF_CTRL] | (u8) 0x01); status |= mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val); val = (state-> reg[MT2063_REG_FIFF_CTRL] & (u8) ~0x01); status |= mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val); } } /* DNC1GC & DNC2GC */ status |= mt2063_get_dnc_output_enable(state, &longval); status |= mt2063_set_dnc_output_enable(state, longval); /* acLNAmax */ if (status >= 0) { u8 val = (state->reg[MT2063_REG_LNA_OV] & (u8) ~0x1F) | (ACLNAMAX[Mode] & 0x1F); if (state->reg[MT2063_REG_LNA_OV] != val) status |= mt2063_setreg(state, MT2063_REG_LNA_OV, val); } /* LNATGT */ if (status >= 0) { u8 val = (state->reg[MT2063_REG_LNA_TGT] & (u8) ~0x3F) | (LNATGT[Mode] & 0x3F); if (state->reg[MT2063_REG_LNA_TGT] != val) status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val); } /* ACRF */ if (status >= 0) { u8 val = (state->reg[MT2063_REG_RF_OV] & (u8) ~0x1F) | (ACRFMAX[Mode] & 0x1F); if (state->reg[MT2063_REG_RF_OV] != val) status |= mt2063_setreg(state, MT2063_REG_RF_OV, val); } /* PD1TGT */ if (status >= 0) { u8 val = (state->reg[MT2063_REG_PD1_TGT] & (u8) ~0x3F) | (PD1TGT[Mode] & 0x3F); if (state->reg[MT2063_REG_PD1_TGT] != val) status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val); } /* FIFATN */ if (status >= 0) { u8 val = ACFIFMAX[Mode]; if (state->reg[MT2063_REG_PART_REV] != MT2063_B3 && val > 5) val = 5; val = (state->reg[MT2063_REG_FIF_OV] & (u8) ~0x1F) | (val & 0x1F); if (state->reg[MT2063_REG_FIF_OV] != val) status |= mt2063_setreg(state, MT2063_REG_FIF_OV, val); } /* PD2TGT */ if (status >= 0) { u8 val = (state->reg[MT2063_REG_PD2_TGT] & (u8) ~0x3F) | (PD2TGT[Mode] & 0x3F); if (state->reg[MT2063_REG_PD2_TGT] != val) status |= mt2063_setreg(state, MT2063_REG_PD2_TGT, val); } /* Ignore ATN Overload */ if (status >= 0) { val = (state->reg[MT2063_REG_LNA_TGT] & (u8) ~0x80) | (RFOVDIS[Mode] ? 0x80 : 0x00); if (state->reg[MT2063_REG_LNA_TGT] != val) status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val); } /* Ignore FIF Overload */ if (status >= 0) { val = (state->reg[MT2063_REG_PD1_TGT] & (u8) ~0x80) | (FIFOVDIS[Mode] ? 0x80 : 0x00); if (state->reg[MT2063_REG_PD1_TGT] != val) status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val); } if (status >= 0) { state->rcvr_mode = Mode; dprintk(1, "mt2063 mode changed to %s\n", mt2063_mode_name[state->rcvr_mode]); } return status; } /* * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various * sections of the MT2063 * * @Bits: Mask bits to be cleared. * * See definition of MT2063_Mask_Bits type for description * of each of the power bits. */ static u32 MT2063_ClearPowerMaskBits(struct mt2063_state *state, enum MT2063_Mask_Bits Bits) { int status = 0; dprintk(2, "\n"); Bits = (enum MT2063_Mask_Bits)(Bits & MT2063_ALL_SD); /* Only valid bits for this tuner */ if ((Bits & 0xFF00) != 0) { state->reg[MT2063_REG_PWR_2] &= ~(u8) (Bits >> 8); status |= mt2063_write(state, MT2063_REG_PWR_2, &state->reg[MT2063_REG_PWR_2], 1); } if ((Bits & 0xFF) != 0) { state->reg[MT2063_REG_PWR_1] &= ~(u8) (Bits & 0xFF); status |= mt2063_write(state, MT2063_REG_PWR_1, &state->reg[MT2063_REG_PWR_1], 1); } return status; } /* * MT2063_SoftwareShutdown() - Enables or disables software shutdown function. * When Shutdown is 1, any section whose power * mask is set will be shutdown. */ static u32 MT2063_SoftwareShutdown(struct mt2063_state *state, u8 Shutdown) { int status; dprintk(2, "\n"); if (Shutdown == 1) state->reg[MT2063_REG_PWR_1] |= 0x04; else state->reg[MT2063_REG_PWR_1] &= ~0x04; status = mt2063_write(state, MT2063_REG_PWR_1, &state->reg[MT2063_REG_PWR_1], 1); if (Shutdown != 1) { state->reg[MT2063_REG_BYP_CTRL] = (state->reg[MT2063_REG_BYP_CTRL] & 0x9F) | 0x40; status |= mt2063_write(state, MT2063_REG_BYP_CTRL, &state->reg[MT2063_REG_BYP_CTRL], 1); state->reg[MT2063_REG_BYP_CTRL] = (state->reg[MT2063_REG_BYP_CTRL] & 0x9F); status |= mt2063_write(state, MT2063_REG_BYP_CTRL, &state->reg[MT2063_REG_BYP_CTRL], 1); } return status; } static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref) { return f_ref * (f_LO / f_ref) + f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step); } /** * fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom. * This function preserves maximum precision without * risk of overflow. It accurately calculates * f_ref * num / denom to within 1 HZ with fixed math. * * @num : Fractional portion of the multiplier * @denom: denominator portion of the ratio * @f_Ref: SRO frequency. * * This calculation handles f_ref as two separate 14-bit fields. * Therefore, a maximum value of 2^28-1 may safely be used for f_ref. * This is the genesis of the magic number "14" and the magic mask value of * 0x03FFF. * * This routine successfully handles denom values up to and including 2^18. * Returns: f_ref * num / denom */ static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom) { u32 t1 = (f_ref >> 14) * num; u32 term1 = t1 / denom; u32 loss = t1 % denom; u32 term2 = (((f_ref & 0x00003FFF) * num + (loss << 14)) + (denom / 2)) / denom; return (term1 << 14) + term2; } /* * CalcLO1Mult()- Calculates Integer divider value and the numerator * value for a FracN PLL. * * This function assumes that the f_LO and f_Ref are * evenly divisible by f_LO_Step. * * @Div: OUTPUT: Whole number portion of the multiplier * @FracN: OUTPUT: Fractional portion of the multiplier * @f_LO: desired LO frequency. * @f_LO_Step: Minimum step size for the LO (in Hz). * @f_Ref: SRO frequency. * @f_Avoid: Range of PLL frequencies to avoid near integer multiples * of f_Ref (in Hz). * * Returns: Recalculated LO frequency. */ static u32 MT2063_CalcLO1Mult(u32 *Div, u32 *FracN, u32 f_LO, u32 f_LO_Step, u32 f_Ref) { /* Calculate the whole number portion of the divider */ *Div = f_LO / f_Ref; /* Calculate the numerator value (round to nearest f_LO_Step) */ *FracN = (64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) + (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step); return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64); } /** * CalcLO2Mult() - Calculates Integer divider value and the numerator * value for a FracN PLL. * * This function assumes that the f_LO and f_Ref are * evenly divisible by f_LO_Step. * * @Div: OUTPUT: Whole number portion of the multiplier * @FracN: OUTPUT: Fractional portion of the multiplier * @f_LO: desired LO frequency. * @f_LO_Step: Minimum step size for the LO (in Hz). * @f_Ref: SRO frequency. * @f_Avoid: Range of PLL frequencies to avoid near * integer multiples of f_Ref (in Hz). * * Returns: Recalculated LO frequency. */ static u32 MT2063_CalcLO2Mult(u32 *Div, u32 *FracN, u32 f_LO, u32 f_LO_Step, u32 f_Ref) { /* Calculate the whole number portion of the divider */ *Div = f_LO / f_Ref; /* Calculate the numerator value (round to nearest f_LO_Step) */ *FracN = (8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) + (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step); return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 8191); } /* * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be * used for a given input frequency. * * @state: ptr to tuner data structure * @f_in: RF input center frequency (in Hz). * * Returns: ClearTune filter number (0-31) */ static u32 FindClearTuneFilter(struct mt2063_state *state, u32 f_in) { u32 RFBand; u32 idx; /* index loop */ /* ** Find RF Band setting */ RFBand = 31; /* def when f_in > all */ for (idx = 0; idx < 31; ++idx) { if (state->CTFiltMax[idx] >= f_in) { RFBand = idx; break; } } return RFBand; } /* * MT2063_Tune() - Change the tuner's tuned frequency to RFin. */ static u32 MT2063_Tune(struct mt2063_state *state, u32 f_in) { /* RF input center frequency */ int status = 0; u32 LO1; /* 1st LO register value */ u32 Num1; /* Numerator for LO1 reg. value */ u32 f_IF1; /* 1st IF requested */ u32 LO2; /* 2nd LO register value */ u32 Num2; /* Numerator for LO2 reg. value */ u32 ofLO1, ofLO2; /* last time's LO frequencies */ u8 fiffc = 0x80; /* FIFF center freq from tuner */ u32 fiffof; /* Offset from FIFF center freq */ const u8 LO1LK = 0x80; /* Mask for LO1 Lock bit */ u8 LO2LK = 0x08; /* Mask for LO2 Lock bit */ u8 val; u32 RFBand; dprintk(2, "\n"); /* Check the input and output frequency ranges */ if ((f_in < MT2063_MIN_FIN_FREQ) || (f_in > MT2063_MAX_FIN_FREQ)) return -EINVAL; if ((state->AS_Data.f_out < MT2063_MIN_FOUT_FREQ) || (state->AS_Data.f_out > MT2063_MAX_FOUT_FREQ)) return -EINVAL; /* * Save original LO1 and LO2 register values */ ofLO1 = state->AS_Data.f_LO1; ofLO2 = state->AS_Data.f_LO2; /* * Find and set RF Band setting */ if (state->ctfilt_sw == 1) { val = (state->reg[MT2063_REG_CTUNE_CTRL] | 0x08); if (state->reg[MT2063_REG_CTUNE_CTRL] != val) { status |= mt2063_setreg(state, MT2063_REG_CTUNE_CTRL, val); } val = state->reg[MT2063_REG_CTUNE_OV]; RFBand = FindClearTuneFilter(state, f_in); state->reg[MT2063_REG_CTUNE_OV] = (u8) ((state->reg[MT2063_REG_CTUNE_OV] & ~0x1F) | RFBand); if (state->reg[MT2063_REG_CTUNE_OV] != val) { status |= mt2063_setreg(state, MT2063_REG_CTUNE_OV, val); } } /* * Read the FIFF Center Frequency from the tuner */ if (status >= 0) { status |= mt2063_read(state, MT2063_REG_FIFFC, &state->reg[MT2063_REG_FIFFC], 1); fiffc = state->reg[MT2063_REG_FIFFC]; } /* * Assign in the requested values */ state->AS_Data.f_in = f_in; /* Request a 1st IF such that LO1 is on a step size */ state->AS_Data.f_if1_Request = MT2063_Round_fLO(state->AS_Data.f_if1_Request + f_in, state->AS_Data.f_LO1_Step, state->AS_Data.f_ref) - f_in; /* * Calculate frequency settings. f_IF1_FREQ + f_in is the * desired LO1 frequency */ MT2063_ResetExclZones(&state->AS_Data); f_IF1 = MT2063_ChooseFirstIF(&state->AS_Data); state->AS_Data.f_LO1 = MT2063_Round_fLO(f_IF1 + f_in, state->AS_Data.f_LO1_Step, state->AS_Data.f_ref); state->AS_Data.f_LO2 = MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in, state->AS_Data.f_LO2_Step, state->AS_Data.f_ref); /* * Check for any LO spurs in the output bandwidth and adjust * the LO settings to avoid them if needed */ status |= MT2063_AvoidSpurs(&state->AS_Data); /* * MT_AvoidSpurs spurs may have changed the LO1 & LO2 values. * Recalculate the LO frequencies and the values to be placed * in the tuning registers. */ state->AS_Data.f_LO1 = MT2063_CalcLO1Mult(&LO1, &Num1, state->AS_Data.f_LO1, state->AS_Data.f_LO1_Step, state->AS_Data.f_ref); state->AS_Data.f_LO2 = MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in, state->AS_Data.f_LO2_Step, state->AS_Data.f_ref); state->AS_Data.f_LO2 = MT2063_CalcLO2Mult(&LO2, &Num2, state->AS_Data.f_LO2, state->AS_Data.f_LO2_Step, state->AS_Data.f_ref); /* * Check the upconverter and downconverter frequency ranges */ if ((state->AS_Data.f_LO1 < MT2063_MIN_UPC_FREQ) || (state->AS_Data.f_LO1 > MT2063_MAX_UPC_FREQ)) status |= MT2063_UPC_RANGE; if ((state->AS_Data.f_LO2 < MT2063_MIN_DNC_FREQ) || (state->AS_Data.f_LO2 > MT2063_MAX_DNC_FREQ)) status |= MT2063_DNC_RANGE; /* LO2 Lock bit was in a different place for B0 version */ if (state->tuner_id == MT2063_B0) LO2LK = 0x40; /* * If we have the same LO frequencies and we're already locked, * then skip re-programming the LO registers. */ if ((ofLO1 != state->AS_Data.f_LO1) || (ofLO2 != state->AS_Data.f_LO2) || ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) != (LO1LK | LO2LK))) { /* * Calculate the FIFFOF register value * * IF1_Actual * FIFFOF = ------------ - 8 * FIFFC - 4992 * f_ref/64 */ fiffof = (state->AS_Data.f_LO1 - f_in) / (state->AS_Data.f_ref / 64) - 8 * (u32) fiffc - 4992; if (fiffof > 0xFF) fiffof = 0xFF; /* * Place all of the calculated values into the local tuner * register fields. */ if (status >= 0) { state->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1 & 0xFF); /* DIV1q */ state->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1 & 0x3F); /* NUM1q */ state->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2 & 0x7F) << 1) /* DIV2q */ |(Num2 >> 12)); /* NUM2q (hi) */ state->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2 & 0x0FF0) >> 4); /* NUM2q (mid) */ state->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2 & 0x000F)); /* NUM2q (lo) */ /* * Now write out the computed register values * IMPORTANT: There is a required order for writing * (0x05 must follow all the others). */ status |= mt2063_write(state, MT2063_REG_LO1CQ_1, &state->reg[MT2063_REG_LO1CQ_1], 5); /* 0x01 - 0x05 */ if (state->tuner_id == MT2063_B0) { /* Re-write the one-shot bits to trigger the tune operation */ status |= mt2063_write(state, MT2063_REG_LO2CQ_3, &state->reg[MT2063_REG_LO2CQ_3], 1); /* 0x05 */ } /* Write out the FIFF offset only if it's changing */ if (state->reg[MT2063_REG_FIFF_OFFSET] != (u8) fiffof) { state->reg[MT2063_REG_FIFF_OFFSET] = (u8) fiffof; status |= mt2063_write(state, MT2063_REG_FIFF_OFFSET, &state-> reg[MT2063_REG_FIFF_OFFSET], 1); } } /* * Check for LO's locking */ if (status < 0) return status; status = mt2063_lockStatus(state); if (status < 0) return status; if (!status) return -EINVAL; /* Couldn't lock */ /* * If we locked OK, assign calculated data to mt2063_state structure */ state->f_IF1_actual = state->AS_Data.f_LO1 - f_in; } return status; } static const u8 MT2063B0_defaults[] = { /* Reg, Value */ 0x19, 0x05, 0x1B, 0x1D, 0x1C, 0x1F, 0x1D, 0x0F, 0x1E, 0x3F, 0x1F, 0x0F, 0x20, 0x3F, 0x22, 0x21, 0x23, 0x3F, 0x24, 0x20, 0x25, 0x3F, 0x27, 0xEE, 0x2C, 0x27, /* bit at 0x20 is cleared below */ 0x30, 0x03, 0x2C, 0x07, /* bit at 0x20 is cleared here */ 0x2D, 0x87, 0x2E, 0xAA, 0x28, 0xE1, /* Set the FIFCrst bit here */ 0x28, 0xE0, /* Clear the FIFCrst bit here */ 0x00 }; /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */ static const u8 MT2063B1_defaults[] = { /* Reg, Value */ 0x05, 0xF0, 0x11, 0x10, /* New Enable AFCsd */ 0x19, 0x05, 0x1A, 0x6C, 0x1B, 0x24, 0x1C, 0x28, 0x1D, 0x8F, 0x1E, 0x14, 0x1F, 0x8F, 0x20, 0x57, 0x22, 0x21, /* New - ver 1.03 */ 0x23, 0x3C, /* New - ver 1.10 */ 0x24, 0x20, /* New - ver 1.03 */ 0x2C, 0x24, /* bit at 0x20 is cleared below */ 0x2D, 0x87, /* FIFFQ=0 */ 0x2F, 0xF3, 0x30, 0x0C, /* New - ver 1.11 */ 0x31, 0x1B, /* New - ver 1.11 */ 0x2C, 0x04, /* bit at 0x20 is cleared here */ 0x28, 0xE1, /* Set the FIFCrst bit here */ 0x28, 0xE0, /* Clear the FIFCrst bit here */ 0x00 }; /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */ static const u8 MT2063B3_defaults[] = { /* Reg, Value */ 0x05, 0xF0, 0x19, 0x3D, 0x2C, 0x24, /* bit at 0x20 is cleared below */ 0x2C, 0x04, /* bit at 0x20 is cleared here */ 0x28, 0xE1, /* Set the FIFCrst bit here */ 0x28, 0xE0, /* Clear the FIFCrst bit here */ 0x00 }; static int mt2063_init(struct dvb_frontend *fe) { int status; struct mt2063_state *state = fe->tuner_priv; u8 all_resets = 0xF0; /* reset/load bits */ const u8 *def = NULL; char *step; u32 FCRUN; s32 maxReads; u32 fcu_osc; u32 i; dprintk(2, "\n"); state->rcvr_mode = MT2063_CABLE_QAM; /* Read the Part/Rev code from the tuner */ status = mt2063_read(state, MT2063_REG_PART_REV, &state->reg[MT2063_REG_PART_REV], 1); if (status < 0) { printk(KERN_ERR "Can't read mt2063 part ID\n"); return status; } /* Check the part/rev code */ switch (state->reg[MT2063_REG_PART_REV]) { case MT2063_B0: step = "B0"; break; case MT2063_B1: step = "B1"; break; case MT2063_B2: step = "B2"; break; case MT2063_B3: step = "B3"; break; default: printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n", state->reg[MT2063_REG_PART_REV]); return -ENODEV; /* Wrong tuner Part/Rev code */ } /* Check the 2nd byte of the Part/Rev code from the tuner */ status = mt2063_read(state, MT2063_REG_RSVD_3B, &state->reg[MT2063_REG_RSVD_3B], 1); /* b7 != 0 ==> NOT MT2063 */ if (status < 0 || ((state->reg[MT2063_REG_RSVD_3B] & 0x80) != 0x00)) { printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n", state->reg[MT2063_REG_PART_REV], state->reg[MT2063_REG_RSVD_3B]); return -ENODEV; /* Wrong tuner Part/Rev code */ } printk(KERN_INFO "mt2063: detected a mt2063 %s\n", step); /* Reset the tuner */ status = mt2063_write(state, MT2063_REG_LO2CQ_3, &all_resets, 1); if (status < 0) return status; /* change all of the default values that vary from the HW reset values */ /* def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */ switch (state->reg[MT2063_REG_PART_REV]) { case MT2063_B3: def = MT2063B3_defaults; break; case MT2063_B1: def = MT2063B1_defaults; break; case MT2063_B0: def = MT2063B0_defaults; break; default: return -ENODEV; break; } while (status >= 0 && *def) { u8 reg = *def++; u8 val = *def++; status = mt2063_write(state, reg, &val, 1); } if (status < 0) return status; /* Wait for FIFF location to complete. */ FCRUN = 1; maxReads = 10; while (status >= 0 && (FCRUN != 0) && (maxReads-- > 0)) { msleep(2); status = mt2063_read(state, MT2063_REG_XO_STATUS, &state-> reg[MT2063_REG_XO_STATUS], 1); FCRUN = (state->reg[MT2063_REG_XO_STATUS] & 0x40) >> 6; } if (FCRUN != 0 || status < 0) return -ENODEV; status = mt2063_read(state, MT2063_REG_FIFFC, &state->reg[MT2063_REG_FIFFC], 1); if (status < 0) return status; /* Read back all the registers from the tuner */ status = mt2063_read(state, MT2063_REG_PART_REV, state->reg, MT2063_REG_END_REGS); if (status < 0) return status; /* Initialize the tuner state. */ state->tuner_id = state->reg[MT2063_REG_PART_REV]; state->AS_Data.f_ref = MT2063_REF_FREQ; state->AS_Data.f_if1_Center = (state->AS_Data.f_ref / 8) * ((u32) state->reg[MT2063_REG_FIFFC] + 640); state->AS_Data.f_if1_bw = MT2063_IF1_BW; state->AS_Data.f_out = 43750000UL; state->AS_Data.f_out_bw = 6750000UL; state->AS_Data.f_zif_bw = MT2063_ZIF_BW; state->AS_Data.f_LO1_Step = state->AS_Data.f_ref / 64; state->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE; state->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1; state->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2; state->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP; state->AS_Data.f_if1_Request = state->AS_Data.f_if1_Center; state->AS_Data.f_LO1 = 2181000000UL; state->AS_Data.f_LO2 = 1486249786UL; state->f_IF1_actual = state->AS_Data.f_if1_Center; state->AS_Data.f_in = state->AS_Data.f_LO1 - state->f_IF1_actual; state->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID; state->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID; state->num_regs = MT2063_REG_END_REGS; state->AS_Data.avoidDECT = MT2063_AVOID_BOTH; state->ctfilt_sw = 0; state->CTFiltMax[0] = 69230000; state->CTFiltMax[1] = 105770000; state->CTFiltMax[2] = 140350000; state->CTFiltMax[3] = 177110000; state->CTFiltMax[4] = 212860000; state->CTFiltMax[5] = 241130000; state->CTFiltMax[6] = 274370000; state->CTFiltMax[7] = 309820000; state->CTFiltMax[8] = 342450000; state->CTFiltMax[9] = 378870000; state->CTFiltMax[10] = 416210000; state->CTFiltMax[11] = 456500000; state->CTFiltMax[12] = 495790000; state->CTFiltMax[13] = 534530000; state->CTFiltMax[14] = 572610000; state->CTFiltMax[15] = 598970000; state->CTFiltMax[16] = 635910000; state->CTFiltMax[17] = 672130000; state->CTFiltMax[18] = 714840000; state->CTFiltMax[19] = 739660000; state->CTFiltMax[20] = 770410000; state->CTFiltMax[21] = 814660000; state->CTFiltMax[22] = 846950000; state->CTFiltMax[23] = 867820000; state->CTFiltMax[24] = 915980000; state->CTFiltMax[25] = 947450000; state->CTFiltMax[26] = 983110000; state->CTFiltMax[27] = 1021630000; state->CTFiltMax[28] = 1061870000; state->CTFiltMax[29] = 1098330000; state->CTFiltMax[30] = 1138990000; /* ** Fetch the FCU osc value and use it and the fRef value to ** scale all of the Band Max values */ state->reg[MT2063_REG_CTUNE_CTRL] = 0x0A; status = mt2063_write(state, MT2063_REG_CTUNE_CTRL, &state->reg[MT2063_REG_CTUNE_CTRL], 1); if (status < 0) return status; /* Read the ClearTune filter calibration value */ status = mt2063_read(state, MT2063_REG_FIFFC, &state->reg[MT2063_REG_FIFFC], 1); if (status < 0) return status; fcu_osc = state->reg[MT2063_REG_FIFFC]; state->reg[MT2063_REG_CTUNE_CTRL] = 0x00; status = mt2063_write(state, MT2063_REG_CTUNE_CTRL, &state->reg[MT2063_REG_CTUNE_CTRL], 1); if (status < 0) return status; /* Adjust each of the values in the ClearTune filter cross-over table */ for (i = 0; i < 31; i++) state->CTFiltMax[i] = (state->CTFiltMax[i] / 768) * (fcu_osc + 640); status = MT2063_SoftwareShutdown(state, 1); if (status < 0) return status; status = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD); if (status < 0) return status; state->init = true; return 0; } static int mt2063_get_status(struct dvb_frontend *fe, u32 *tuner_status) { struct mt2063_state *state = fe->tuner_priv; int status; dprintk(2, "\n"); if (!state->init) return -ENODEV; *tuner_status = 0; status = mt2063_lockStatus(state); if (status < 0) return status; if (status) *tuner_status = TUNER_STATUS_LOCKED; dprintk(1, "Tuner status: %d", *tuner_status); return 0; } static int mt2063_release(struct dvb_frontend *fe) { struct mt2063_state *state = fe->tuner_priv; dprintk(2, "\n"); fe->tuner_priv = NULL; kfree(state); return 0; } static int mt2063_set_analog_params(struct dvb_frontend *fe, struct analog_parameters *params) { struct mt2063_state *state = fe->tuner_priv; s32 pict_car; s32 pict2chanb_vsb; s32 ch_bw; s32 if_mid; s32 rcvr_mode; int status; dprintk(2, "\n"); if (!state->init) { status = mt2063_init(fe); if (status < 0) return status; } switch (params->mode) { case V4L2_TUNER_RADIO: pict_car = 38900000; ch_bw = 8000000; pict2chanb_vsb = -(ch_bw / 2); rcvr_mode = MT2063_OFFAIR_ANALOG; break; case V4L2_TUNER_ANALOG_TV: rcvr_mode = MT2063_CABLE_ANALOG; if (params->std & ~V4L2_STD_MN) { pict_car = 38900000; ch_bw = 6000000; pict2chanb_vsb = -1250000; } else if (params->std & V4L2_STD_PAL_G) { pict_car = 38900000; ch_bw = 7000000; pict2chanb_vsb = -1250000; } else { /* PAL/SECAM standards */ pict_car = 38900000; ch_bw = 8000000; pict2chanb_vsb = -1250000; } break; default: return -EINVAL; } if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2)); state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */ state->AS_Data.f_out = if_mid; state->AS_Data.f_out_bw = ch_bw + 750000; status = MT2063_SetReceiverMode(state, rcvr_mode); if (status < 0) return status; dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n", params->frequency, ch_bw, pict2chanb_vsb); status = MT2063_Tune(state, (params->frequency + (pict2chanb_vsb + (ch_bw / 2)))); if (status < 0) return status; state->frequency = params->frequency; return 0; } /* * As defined on EN 300 429, the DVB-C roll-off factor is 0.15. * So, the amount of the needed bandwith is given by: * Bw = Symbol_rate * (1 + 0.15) * As such, the maximum symbol rate supported by 6 MHz is given by: * max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds */ #define MAX_SYMBOL_RATE_6MHz 5217391 static int mt2063_set_params(struct dvb_frontend *fe) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; struct mt2063_state *state = fe->tuner_priv; int status; s32 pict_car; s32 pict2chanb_vsb; s32 ch_bw; s32 if_mid; s32 rcvr_mode; if (!state->init) { status = mt2063_init(fe); if (status < 0) return status; } dprintk(2, "\n"); if (c->bandwidth_hz == 0) return -EINVAL; if (c->bandwidth_hz <= 6000000) ch_bw = 6000000; else if (c->bandwidth_hz <= 7000000) ch_bw = 7000000; else ch_bw = 8000000; switch (c->delivery_system) { case SYS_DVBT: rcvr_mode = MT2063_OFFAIR_COFDM; pict_car = 36125000; pict2chanb_vsb = -(ch_bw / 2); break; case SYS_DVBC_ANNEX_A: case SYS_DVBC_ANNEX_C: rcvr_mode = MT2063_CABLE_QAM; pict_car = 36125000; pict2chanb_vsb = -(ch_bw / 2); break; default: return -EINVAL; } if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2)); state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */ state->AS_Data.f_out = if_mid; state->AS_Data.f_out_bw = ch_bw + 750000; status = MT2063_SetReceiverMode(state, rcvr_mode); if (status < 0) return status; dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n", c->frequency, ch_bw, pict2chanb_vsb); status = MT2063_Tune(state, (c->frequency + (pict2chanb_vsb + (ch_bw / 2)))); if (status < 0) return status; state->frequency = c->frequency; return 0; } static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *freq) { struct mt2063_state *state = fe->tuner_priv; dprintk(2, "\n"); if (!state->init) return -ENODEV; *freq = state->AS_Data.f_out; dprintk(1, "IF frequency: %d\n", *freq); return 0; } static int mt2063_get_bandwidth(struct dvb_frontend *fe, u32 *bw) { struct mt2063_state *state = fe->tuner_priv; dprintk(2, "\n"); if (!state->init) return -ENODEV; *bw = state->AS_Data.f_out_bw - 750000; dprintk(1, "bandwidth: %d\n", *bw); return 0; } static struct dvb_tuner_ops mt2063_ops = { .info = { .name = "MT2063 Silicon Tuner", .frequency_min = 45000000, .frequency_max = 865000000, .frequency_step = 0, }, .init = mt2063_init, .sleep = MT2063_Sleep, .get_status = mt2063_get_status, .set_analog_params = mt2063_set_analog_params, .set_params = mt2063_set_params, .get_if_frequency = mt2063_get_if_frequency, .get_bandwidth = mt2063_get_bandwidth, .release = mt2063_release, }; struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe, struct mt2063_config *config, struct i2c_adapter *i2c) { struct mt2063_state *state = NULL; dprintk(2, "\n"); state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL); if (!state) return NULL; state->config = config; state->i2c = i2c; state->frontend = fe; state->reference = config->refclock / 1000; /* kHz */ fe->tuner_priv = state; fe->ops.tuner_ops = mt2063_ops; printk(KERN_INFO "%s: Attaching MT2063\n", __func__); return fe; } EXPORT_SYMBOL_GPL(mt2063_attach); #if 0 /* * Ancillary routines visible outside mt2063 * FIXME: Remove them in favor of using standard tuner callbacks */ static int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe) { struct mt2063_state *state = fe->tuner_priv; int err = 0; dprintk(2, "\n"); err = MT2063_SoftwareShutdown(state, 1); if (err < 0) printk(KERN_ERR "%s: Couldn't shutdown\n", __func__); return err; } static int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe) { struct mt2063_state *state = fe->tuner_priv; int err = 0; dprintk(2, "\n"); err = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD); if (err < 0) printk(KERN_ERR "%s: Invalid parameter\n", __func__); return err; } #endif MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>"); MODULE_DESCRIPTION("MT2063 Silicon tuner"); MODULE_LICENSE("GPL");