/* * NXP LPC32XX NAND SLC driver * * Authors: * Kevin Wells <kevin.wells@nxp.com> * Roland Stigge <stigge@antcom.de> * * Copyright © 2011 NXP Semiconductors * Copyright © 2012 Roland Stigge * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/slab.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/partitions.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/mm.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/mtd/nand_ecc.h> #include <linux/gpio.h> #include <linux/of.h> #include <linux/of_mtd.h> #include <linux/of_gpio.h> #include <linux/mtd/lpc32xx_slc.h> #define LPC32XX_MODNAME "lpc32xx-nand" /********************************************************************** * SLC NAND controller register offsets **********************************************************************/ #define SLC_DATA(x) (x + 0x000) #define SLC_ADDR(x) (x + 0x004) #define SLC_CMD(x) (x + 0x008) #define SLC_STOP(x) (x + 0x00C) #define SLC_CTRL(x) (x + 0x010) #define SLC_CFG(x) (x + 0x014) #define SLC_STAT(x) (x + 0x018) #define SLC_INT_STAT(x) (x + 0x01C) #define SLC_IEN(x) (x + 0x020) #define SLC_ISR(x) (x + 0x024) #define SLC_ICR(x) (x + 0x028) #define SLC_TAC(x) (x + 0x02C) #define SLC_TC(x) (x + 0x030) #define SLC_ECC(x) (x + 0x034) #define SLC_DMA_DATA(x) (x + 0x038) /********************************************************************** * slc_ctrl register definitions **********************************************************************/ #define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */ #define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */ #define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */ /********************************************************************** * slc_cfg register definitions **********************************************************************/ #define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */ #define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */ #define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */ #define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */ #define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */ #define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */ /********************************************************************** * slc_stat register definitions **********************************************************************/ #define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */ #define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */ #define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */ /********************************************************************** * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions **********************************************************************/ #define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */ #define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */ /********************************************************************** * slc_tac register definitions **********************************************************************/ /* Clock setting for RDY write sample wait time in 2*n clocks */ #define SLCTAC_WDR(n) (((n) & 0xF) << 28) /* Write pulse width in clock cycles, 1 to 16 clocks */ #define SLCTAC_WWIDTH(n) (((n) & 0xF) << 24) /* Write hold time of control and data signals, 1 to 16 clocks */ #define SLCTAC_WHOLD(n) (((n) & 0xF) << 20) /* Write setup time of control and data signals, 1 to 16 clocks */ #define SLCTAC_WSETUP(n) (((n) & 0xF) << 16) /* Clock setting for RDY read sample wait time in 2*n clocks */ #define SLCTAC_RDR(n) (((n) & 0xF) << 12) /* Read pulse width in clock cycles, 1 to 16 clocks */ #define SLCTAC_RWIDTH(n) (((n) & 0xF) << 8) /* Read hold time of control and data signals, 1 to 16 clocks */ #define SLCTAC_RHOLD(n) (((n) & 0xF) << 4) /* Read setup time of control and data signals, 1 to 16 clocks */ #define SLCTAC_RSETUP(n) (((n) & 0xF) << 0) /********************************************************************** * slc_ecc register definitions **********************************************************************/ /* ECC line party fetch macro */ #define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF) #define SLCECC_TO_COLPAR(n) ((n) & 0x3F) /* * DMA requires storage space for the DMA local buffer and the hardware ECC * storage area. The DMA local buffer is only used if DMA mapping fails * during runtime. */ #define LPC32XX_DMA_DATA_SIZE 4096 #define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4) /* Number of bytes used for ECC stored in NAND per 256 bytes */ #define LPC32XX_SLC_DEV_ECC_BYTES 3 /* * If the NAND base clock frequency can't be fetched, this frequency will be * used instead as the base. This rate is used to setup the timing registers * used for NAND accesses. */ #define LPC32XX_DEF_BUS_RATE 133250000 /* Milliseconds for DMA FIFO timeout (unlikely anyway) */ #define LPC32XX_DMA_TIMEOUT 100 /* * NAND ECC Layout for small page NAND devices * Note: For large and huge page devices, the default layouts are used */ static struct nand_ecclayout lpc32xx_nand_oob_16 = { .eccbytes = 6, .eccpos = {10, 11, 12, 13, 14, 15}, .oobfree = { { .offset = 0, .length = 4 }, { .offset = 6, .length = 4 }, }, }; static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; /* * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6 * Note: Large page devices used the default layout */ static struct nand_bbt_descr bbt_smallpage_main_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 0, .len = 4, .veroffs = 6, .maxblocks = 4, .pattern = bbt_pattern }; static struct nand_bbt_descr bbt_smallpage_mirror_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 0, .len = 4, .veroffs = 6, .maxblocks = 4, .pattern = mirror_pattern }; /* * NAND platform configuration structure */ struct lpc32xx_nand_cfg_slc { uint32_t wdr_clks; uint32_t wwidth; uint32_t whold; uint32_t wsetup; uint32_t rdr_clks; uint32_t rwidth; uint32_t rhold; uint32_t rsetup; bool use_bbt; int wp_gpio; struct mtd_partition *parts; unsigned num_parts; }; struct lpc32xx_nand_host { struct nand_chip nand_chip; struct lpc32xx_slc_platform_data *pdata; struct clk *clk; struct mtd_info mtd; void __iomem *io_base; struct lpc32xx_nand_cfg_slc *ncfg; struct completion comp; struct dma_chan *dma_chan; uint32_t dma_buf_len; struct dma_slave_config dma_slave_config; struct scatterlist sgl; /* * DMA and CPU addresses of ECC work area and data buffer */ uint32_t *ecc_buf; uint8_t *data_buf; dma_addr_t io_base_dma; }; static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) { uint32_t clkrate, tmp; /* Reset SLC controller */ writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base)); udelay(1000); /* Basic setup */ writel(0, SLC_CFG(host->io_base)); writel(0, SLC_IEN(host->io_base)); writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN), SLC_ICR(host->io_base)); /* Get base clock for SLC block */ clkrate = clk_get_rate(host->clk); if (clkrate == 0) clkrate = LPC32XX_DEF_BUS_RATE; /* Compute clock setup values */ tmp = SLCTAC_WDR(host->ncfg->wdr_clks) | SLCTAC_WWIDTH(1 + (clkrate / host->ncfg->wwidth)) | SLCTAC_WHOLD(1 + (clkrate / host->ncfg->whold)) | SLCTAC_WSETUP(1 + (clkrate / host->ncfg->wsetup)) | SLCTAC_RDR(host->ncfg->rdr_clks) | SLCTAC_RWIDTH(1 + (clkrate / host->ncfg->rwidth)) | SLCTAC_RHOLD(1 + (clkrate / host->ncfg->rhold)) | SLCTAC_RSETUP(1 + (clkrate / host->ncfg->rsetup)); writel(tmp, SLC_TAC(host->io_base)); } /* * Hardware specific access to control lines */ static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) { uint32_t tmp; struct nand_chip *chip = mtd->priv; struct lpc32xx_nand_host *host = chip->priv; /* Does CE state need to be changed? */ tmp = readl(SLC_CFG(host->io_base)); if (ctrl & NAND_NCE) tmp |= SLCCFG_CE_LOW; else tmp &= ~SLCCFG_CE_LOW; writel(tmp, SLC_CFG(host->io_base)); if (cmd != NAND_CMD_NONE) { if (ctrl & NAND_CLE) writel(cmd, SLC_CMD(host->io_base)); else writel(cmd, SLC_ADDR(host->io_base)); } } /* * Read the Device Ready pin */ static int lpc32xx_nand_device_ready(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; struct lpc32xx_nand_host *host = chip->priv; int rdy = 0; if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0) rdy = 1; return rdy; } /* * Enable NAND write protect */ static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) { if (gpio_is_valid(host->ncfg->wp_gpio)) gpio_set_value(host->ncfg->wp_gpio, 0); } /* * Disable NAND write protect */ static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) { if (gpio_is_valid(host->ncfg->wp_gpio)) gpio_set_value(host->ncfg->wp_gpio, 1); } /* * Prepares SLC for transfers with H/W ECC enabled */ static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode) { /* Hardware ECC is enabled automatically in hardware as needed */ } /* * Calculates the ECC for the data */ static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd, const unsigned char *buf, unsigned char *code) { /* * ECC is calculated automatically in hardware during syndrome read * and write operations, so it doesn't need to be calculated here. */ return 0; } /* * Read a single byte from NAND device */ static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; struct lpc32xx_nand_host *host = chip->priv; return (uint8_t)readl(SLC_DATA(host->io_base)); } /* * Simple device read without ECC */ static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) { struct nand_chip *chip = mtd->priv; struct lpc32xx_nand_host *host = chip->priv; /* Direct device read with no ECC */ while (len-- > 0) *buf++ = (uint8_t)readl(SLC_DATA(host->io_base)); } /* * Simple device write without ECC */ static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct nand_chip *chip = mtd->priv; struct lpc32xx_nand_host *host = chip->priv; /* Direct device write with no ECC */ while (len-- > 0) writel((uint32_t)*buf++, SLC_DATA(host->io_base)); } /* * Read the OOB data from the device without ECC using FIFO method */ static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, int page) { chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); return 0; } /* * Write the OOB data to the device without ECC using FIFO method */ static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, int page) { int status; chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); /* Send command to program the OOB data */ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); status = chip->waitfunc(mtd, chip); return status & NAND_STATUS_FAIL ? -EIO : 0; } /* * Fills in the ECC fields in the OOB buffer with the hardware generated ECC */ static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count) { int i; for (i = 0; i < (count * 3); i += 3) { uint32_t ce = ecc[i / 3]; ce = ~(ce << 2) & 0xFFFFFF; spare[i + 2] = (uint8_t)(ce & 0xFF); ce >>= 8; spare[i + 1] = (uint8_t)(ce & 0xFF); ce >>= 8; spare[i] = (uint8_t)(ce & 0xFF); } } static void lpc32xx_dma_complete_func(void *completion) { complete(completion); } static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma, void *mem, int len, enum dma_transfer_direction dir) { struct nand_chip *chip = mtd->priv; struct lpc32xx_nand_host *host = chip->priv; struct dma_async_tx_descriptor *desc; int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; int res; host->dma_slave_config.direction = dir; host->dma_slave_config.src_addr = dma; host->dma_slave_config.dst_addr = dma; host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; host->dma_slave_config.src_maxburst = 4; host->dma_slave_config.dst_maxburst = 4; /* DMA controller does flow control: */ host->dma_slave_config.device_fc = false; if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); return -ENXIO; } sg_init_one(&host->sgl, mem, len); res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, DMA_BIDIRECTIONAL); if (res != 1) { dev_err(mtd->dev.parent, "Failed to map sg list\n"); return -ENXIO; } desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, flags); if (!desc) { dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); goto out1; } init_completion(&host->comp); desc->callback = lpc32xx_dma_complete_func; desc->callback_param = &host->comp; dmaengine_submit(desc); dma_async_issue_pending(host->dma_chan); wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000)); dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, DMA_BIDIRECTIONAL); return 0; out1: dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, DMA_BIDIRECTIONAL); return -ENXIO; } /* * DMA read/write transfers with ECC support */ static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages, int read) { struct nand_chip *chip = mtd->priv; struct lpc32xx_nand_host *host = chip->priv; int i, status = 0; unsigned long timeout; int res; enum dma_transfer_direction dir = read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV; uint8_t *dma_buf; bool dma_mapped; if ((void *)buf <= high_memory) { dma_buf = buf; dma_mapped = true; } else { dma_buf = host->data_buf; dma_mapped = false; if (!read) memcpy(host->data_buf, buf, mtd->writesize); } if (read) { writel(readl(SLC_CFG(host->io_base)) | SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST, SLC_CFG(host->io_base)); } else { writel((readl(SLC_CFG(host->io_base)) | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) & ~SLCCFG_DMA_DIR, SLC_CFG(host->io_base)); } /* Clear initial ECC */ writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base)); /* Transfer size is data area only */ writel(mtd->writesize, SLC_TC(host->io_base)); /* Start transfer in the NAND controller */ writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START, SLC_CTRL(host->io_base)); for (i = 0; i < chip->ecc.steps; i++) { /* Data */ res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma), dma_buf + i * chip->ecc.size, mtd->writesize / chip->ecc.steps, dir); if (res) return res; /* Always _read_ ECC */ if (i == chip->ecc.steps - 1) break; if (!read) /* ECC availability delayed on write */ udelay(10); res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma), &host->ecc_buf[i], 4, DMA_DEV_TO_MEM); if (res) return res; } /* * According to NXP, the DMA can be finished here, but the NAND * controller may still have buffered data. After porting to using the * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty) * appears to be always true, according to tests. Keeping the check for * safety reasons for now. */ if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) { dev_warn(mtd->dev.parent, "FIFO not empty!\n"); timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT); while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) && time_before(jiffies, timeout)) cpu_relax(); if (!time_before(jiffies, timeout)) { dev_err(mtd->dev.parent, "FIFO held data too long\n"); status = -EIO; } } /* Read last calculated ECC value */ if (!read) udelay(10); host->ecc_buf[chip->ecc.steps - 1] = readl(SLC_ECC(host->io_base)); /* Flush DMA */ dmaengine_terminate_all(host->dma_chan); if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO || readl(SLC_TC(host->io_base))) { /* Something is left in the FIFO, something is wrong */ dev_err(mtd->dev.parent, "DMA FIFO failure\n"); status = -EIO; } /* Stop DMA & HW ECC */ writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START, SLC_CTRL(host->io_base)); writel(readl(SLC_CFG(host->io_base)) & ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST), SLC_CFG(host->io_base)); if (!dma_mapped && read) memcpy(buf, host->data_buf, mtd->writesize); return status; } /* * Read the data and OOB data from the device, use ECC correction with the * data, disable ECC for the OOB data */ static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct lpc32xx_nand_host *host = chip->priv; int stat, i, status; uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE]; /* Issue read command */ chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); /* Read data and oob, calculate ECC */ status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1); /* Get OOB data */ chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); /* Convert to stored ECC format */ lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps); /* Pointer to ECC data retrieved from NAND spare area */ oobecc = chip->oob_poi + chip->ecc.layout->eccpos[0]; for (i = 0; i < chip->ecc.steps; i++) { stat = chip->ecc.correct(mtd, buf, oobecc, &tmpecc[i * chip->ecc.bytes]); if (stat < 0) mtd->ecc_stats.failed++; else mtd->ecc_stats.corrected += stat; buf += chip->ecc.size; oobecc += chip->ecc.bytes; } return status; } /* * Read the data and OOB data from the device, no ECC correction with the * data or OOB data */ static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { /* Issue read command */ chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); /* Raw reads can just use the FIFO interface */ chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps); chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); return 0; } /* * Write the data and OOB data to the device, use ECC with the data, * disable ECC for the OOB data */ static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { struct lpc32xx_nand_host *host = chip->priv; uint8_t *pb = chip->oob_poi + chip->ecc.layout->eccpos[0]; int error; /* Write data, calculate ECC on outbound data */ error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0); if (error) return error; /* * The calculated ECC needs some manual work done to it before * committing it to NAND. Process the calculated ECC and place * the resultant values directly into the OOB buffer. */ lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps); /* Write ECC data to device */ chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); return 0; } /* * Write the data and OOB data to the device, no ECC correction with the * data or OOB data */ static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { /* Raw writes can just use the FIFO interface */ chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps); chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); return 0; } static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host) { struct mtd_info *mtd = &host->mtd; dma_cap_mask_t mask; if (!host->pdata || !host->pdata->dma_filter) { dev_err(mtd->dev.parent, "no DMA platform data\n"); return -ENOENT; } dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter, "nand-slc"); if (!host->dma_chan) { dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); return -EBUSY; } return 0; } static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev) { struct lpc32xx_nand_cfg_slc *ncfg; struct device_node *np = dev->of_node; ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL); if (!ncfg) { dev_err(dev, "could not allocate memory for NAND config\n"); return NULL; } of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks); of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth); of_property_read_u32(np, "nxp,whold", &ncfg->whold); of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup); of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks); of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth); of_property_read_u32(np, "nxp,rhold", &ncfg->rhold); of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup); if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold || !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth || !ncfg->rhold || !ncfg->rsetup) { dev_err(dev, "chip parameters not specified correctly\n"); return NULL; } ncfg->use_bbt = of_get_nand_on_flash_bbt(np); ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0); return ncfg; } /* * Probe for NAND controller */ static int lpc32xx_nand_probe(struct platform_device *pdev) { struct lpc32xx_nand_host *host; struct mtd_info *mtd; struct nand_chip *chip; struct resource *rc; struct mtd_part_parser_data ppdata = {}; int res; rc = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (rc == NULL) { dev_err(&pdev->dev, "No memory resource found for device\n"); return -EBUSY; } /* Allocate memory for the device structure (and zero it) */ host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); if (!host) { dev_err(&pdev->dev, "failed to allocate device structure\n"); return -ENOMEM; } host->io_base_dma = rc->start; host->io_base = devm_ioremap_resource(&pdev->dev, rc); if (IS_ERR(host->io_base)) return PTR_ERR(host->io_base); if (pdev->dev.of_node) host->ncfg = lpc32xx_parse_dt(&pdev->dev); if (!host->ncfg) { dev_err(&pdev->dev, "Missing or bad NAND config from device tree\n"); return -ENOENT; } if (host->ncfg->wp_gpio == -EPROBE_DEFER) return -EPROBE_DEFER; if (gpio_is_valid(host->ncfg->wp_gpio) && gpio_request(host->ncfg->wp_gpio, "NAND WP")) { dev_err(&pdev->dev, "GPIO not available\n"); return -EBUSY; } lpc32xx_wp_disable(host); host->pdata = pdev->dev.platform_data; mtd = &host->mtd; chip = &host->nand_chip; chip->priv = host; mtd->priv = chip; mtd->owner = THIS_MODULE; mtd->dev.parent = &pdev->dev; /* Get NAND clock */ host->clk = clk_get(&pdev->dev, NULL); if (IS_ERR(host->clk)) { dev_err(&pdev->dev, "Clock failure\n"); res = -ENOENT; goto err_exit1; } clk_enable(host->clk); /* Set NAND IO addresses and command/ready functions */ chip->IO_ADDR_R = SLC_DATA(host->io_base); chip->IO_ADDR_W = SLC_DATA(host->io_base); chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl; chip->dev_ready = lpc32xx_nand_device_ready; chip->chip_delay = 20; /* 20us command delay time */ /* Init NAND controller */ lpc32xx_nand_setup(host); platform_set_drvdata(pdev, host); /* NAND callbacks for LPC32xx SLC hardware */ chip->ecc.mode = NAND_ECC_HW_SYNDROME; chip->read_byte = lpc32xx_nand_read_byte; chip->read_buf = lpc32xx_nand_read_buf; chip->write_buf = lpc32xx_nand_write_buf; chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome; chip->ecc.read_page = lpc32xx_nand_read_page_syndrome; chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome; chip->ecc.write_page = lpc32xx_nand_write_page_syndrome; chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome; chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome; chip->ecc.calculate = lpc32xx_nand_ecc_calculate; chip->ecc.correct = nand_correct_data; chip->ecc.strength = 1; chip->ecc.hwctl = lpc32xx_nand_ecc_enable; /* bitflip_threshold's default is defined as ecc_strength anyway. * Unfortunately, it is set only later at add_mtd_device(). Meanwhile * being 0, it causes bad block table scanning errors in * nand_scan_tail(), so preparing it here already. */ mtd->bitflip_threshold = chip->ecc.strength; /* * Allocate a large enough buffer for a single huge page plus * extra space for the spare area and ECC storage area */ host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE; host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len, GFP_KERNEL); if (host->data_buf == NULL) { dev_err(&pdev->dev, "Error allocating memory\n"); res = -ENOMEM; goto err_exit2; } res = lpc32xx_nand_dma_setup(host); if (res) { res = -EIO; goto err_exit2; } /* Find NAND device */ if (nand_scan_ident(mtd, 1, NULL)) { res = -ENXIO; goto err_exit3; } /* OOB and ECC CPU and DMA work areas */ host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE); /* * Small page FLASH has a unique OOB layout, but large and huge * page FLASH use the standard layout. Small page FLASH uses a * custom BBT marker layout. */ if (mtd->writesize <= 512) chip->ecc.layout = &lpc32xx_nand_oob_16; /* These sizes remain the same regardless of page size */ chip->ecc.size = 256; chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES; chip->ecc.prepad = chip->ecc.postpad = 0; /* Avoid extra scan if using BBT, setup BBT support */ if (host->ncfg->use_bbt) { chip->options |= NAND_SKIP_BBTSCAN; chip->bbt_options |= NAND_BBT_USE_FLASH; /* * Use a custom BBT marker setup for small page FLASH that * won't interfere with the ECC layout. Large and huge page * FLASH use the standard layout. */ if (mtd->writesize <= 512) { chip->bbt_td = &bbt_smallpage_main_descr; chip->bbt_md = &bbt_smallpage_mirror_descr; } } /* * Fills out all the uninitialized function pointers with the defaults */ if (nand_scan_tail(mtd)) { res = -ENXIO; goto err_exit3; } /* Standard layout in FLASH for bad block tables */ if (host->ncfg->use_bbt) { if (nand_default_bbt(mtd) < 0) dev_err(&pdev->dev, "Error initializing default bad block tables\n"); } mtd->name = "nxp_lpc3220_slc"; ppdata.of_node = pdev->dev.of_node; res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts, host->ncfg->num_parts); if (!res) return res; nand_release(mtd); err_exit3: dma_release_channel(host->dma_chan); err_exit2: clk_disable(host->clk); clk_put(host->clk); platform_set_drvdata(pdev, NULL); err_exit1: lpc32xx_wp_enable(host); gpio_free(host->ncfg->wp_gpio); return res; } /* * Remove NAND device. */ static int lpc32xx_nand_remove(struct platform_device *pdev) { uint32_t tmp; struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); struct mtd_info *mtd = &host->mtd; nand_release(mtd); dma_release_channel(host->dma_chan); /* Force CE high */ tmp = readl(SLC_CTRL(host->io_base)); tmp &= ~SLCCFG_CE_LOW; writel(tmp, SLC_CTRL(host->io_base)); clk_disable(host->clk); clk_put(host->clk); platform_set_drvdata(pdev, NULL); lpc32xx_wp_enable(host); gpio_free(host->ncfg->wp_gpio); return 0; } #ifdef CONFIG_PM static int lpc32xx_nand_resume(struct platform_device *pdev) { struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); /* Re-enable NAND clock */ clk_enable(host->clk); /* Fresh init of NAND controller */ lpc32xx_nand_setup(host); /* Disable write protect */ lpc32xx_wp_disable(host); return 0; } static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) { uint32_t tmp; struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); /* Force CE high */ tmp = readl(SLC_CTRL(host->io_base)); tmp &= ~SLCCFG_CE_LOW; writel(tmp, SLC_CTRL(host->io_base)); /* Enable write protect for safety */ lpc32xx_wp_enable(host); /* Disable clock */ clk_disable(host->clk); return 0; } #else #define lpc32xx_nand_resume NULL #define lpc32xx_nand_suspend NULL #endif static const struct of_device_id lpc32xx_nand_match[] = { { .compatible = "nxp,lpc3220-slc" }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); static struct platform_driver lpc32xx_nand_driver = { .probe = lpc32xx_nand_probe, .remove = lpc32xx_nand_remove, .resume = lpc32xx_nand_resume, .suspend = lpc32xx_nand_suspend, .driver = { .name = LPC32XX_MODNAME, .owner = THIS_MODULE, .of_match_table = of_match_ptr(lpc32xx_nand_match), }, }; module_platform_driver(lpc32xx_nand_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>"); MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>"); MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");