/* * Samsung S3C64XX/S5PC1XX OneNAND driver * * Copyright © 2008-2010 Samsung Electronics * Kyungmin Park <kyungmin.park@samsung.com> * Marek Szyprowski <m.szyprowski@samsung.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Implementation: * S3C64XX and S5PC100: emulate the pseudo BufferRAM * S5PC110: use DMA */ #include <linux/module.h> #include <linux/platform_device.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/mtd/mtd.h> #include <linux/mtd/onenand.h> #include <linux/mtd/partitions.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/io.h> #include <asm/mach/flash.h> #include "samsung.h" enum soc_type { TYPE_S3C6400, TYPE_S3C6410, TYPE_S5PC100, TYPE_S5PC110, }; #define ONENAND_ERASE_STATUS 0x00 #define ONENAND_MULTI_ERASE_SET 0x01 #define ONENAND_ERASE_START 0x03 #define ONENAND_UNLOCK_START 0x08 #define ONENAND_UNLOCK_END 0x09 #define ONENAND_LOCK_START 0x0A #define ONENAND_LOCK_END 0x0B #define ONENAND_LOCK_TIGHT_START 0x0C #define ONENAND_LOCK_TIGHT_END 0x0D #define ONENAND_UNLOCK_ALL 0x0E #define ONENAND_OTP_ACCESS 0x12 #define ONENAND_SPARE_ACCESS_ONLY 0x13 #define ONENAND_MAIN_ACCESS_ONLY 0x14 #define ONENAND_ERASE_VERIFY 0x15 #define ONENAND_MAIN_SPARE_ACCESS 0x16 #define ONENAND_PIPELINE_READ 0x4000 #define MAP_00 (0x0) #define MAP_01 (0x1) #define MAP_10 (0x2) #define MAP_11 (0x3) #define S3C64XX_CMD_MAP_SHIFT 24 #define S5PC100_CMD_MAP_SHIFT 26 #define S3C6400_FBA_SHIFT 10 #define S3C6400_FPA_SHIFT 4 #define S3C6400_FSA_SHIFT 2 #define S3C6410_FBA_SHIFT 12 #define S3C6410_FPA_SHIFT 6 #define S3C6410_FSA_SHIFT 4 #define S5PC100_FBA_SHIFT 13 #define S5PC100_FPA_SHIFT 7 #define S5PC100_FSA_SHIFT 5 /* S5PC110 specific definitions */ #define S5PC110_DMA_SRC_ADDR 0x400 #define S5PC110_DMA_SRC_CFG 0x404 #define S5PC110_DMA_DST_ADDR 0x408 #define S5PC110_DMA_DST_CFG 0x40C #define S5PC110_DMA_TRANS_SIZE 0x414 #define S5PC110_DMA_TRANS_CMD 0x418 #define S5PC110_DMA_TRANS_STATUS 0x41C #define S5PC110_DMA_TRANS_DIR 0x420 #define S5PC110_INTC_DMA_CLR 0x1004 #define S5PC110_INTC_ONENAND_CLR 0x1008 #define S5PC110_INTC_DMA_MASK 0x1024 #define S5PC110_INTC_ONENAND_MASK 0x1028 #define S5PC110_INTC_DMA_PEND 0x1044 #define S5PC110_INTC_ONENAND_PEND 0x1048 #define S5PC110_INTC_DMA_STATUS 0x1064 #define S5PC110_INTC_ONENAND_STATUS 0x1068 #define S5PC110_INTC_DMA_TD (1 << 24) #define S5PC110_INTC_DMA_TE (1 << 16) #define S5PC110_DMA_CFG_SINGLE (0x0 << 16) #define S5PC110_DMA_CFG_4BURST (0x2 << 16) #define S5PC110_DMA_CFG_8BURST (0x3 << 16) #define S5PC110_DMA_CFG_16BURST (0x4 << 16) #define S5PC110_DMA_CFG_INC (0x0 << 8) #define S5PC110_DMA_CFG_CNT (0x1 << 8) #define S5PC110_DMA_CFG_8BIT (0x0 << 0) #define S5PC110_DMA_CFG_16BIT (0x1 << 0) #define S5PC110_DMA_CFG_32BIT (0x2 << 0) #define S5PC110_DMA_SRC_CFG_READ (S5PC110_DMA_CFG_16BURST | \ S5PC110_DMA_CFG_INC | \ S5PC110_DMA_CFG_16BIT) #define S5PC110_DMA_DST_CFG_READ (S5PC110_DMA_CFG_16BURST | \ S5PC110_DMA_CFG_INC | \ S5PC110_DMA_CFG_32BIT) #define S5PC110_DMA_SRC_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \ S5PC110_DMA_CFG_INC | \ S5PC110_DMA_CFG_32BIT) #define S5PC110_DMA_DST_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \ S5PC110_DMA_CFG_INC | \ S5PC110_DMA_CFG_16BIT) #define S5PC110_DMA_TRANS_CMD_TDC (0x1 << 18) #define S5PC110_DMA_TRANS_CMD_TEC (0x1 << 16) #define S5PC110_DMA_TRANS_CMD_TR (0x1 << 0) #define S5PC110_DMA_TRANS_STATUS_TD (0x1 << 18) #define S5PC110_DMA_TRANS_STATUS_TB (0x1 << 17) #define S5PC110_DMA_TRANS_STATUS_TE (0x1 << 16) #define S5PC110_DMA_DIR_READ 0x0 #define S5PC110_DMA_DIR_WRITE 0x1 struct s3c_onenand { struct mtd_info *mtd; struct platform_device *pdev; enum soc_type type; void __iomem *base; struct resource *base_res; void __iomem *ahb_addr; struct resource *ahb_res; int bootram_command; void __iomem *page_buf; void __iomem *oob_buf; unsigned int (*mem_addr)(int fba, int fpa, int fsa); unsigned int (*cmd_map)(unsigned int type, unsigned int val); void __iomem *dma_addr; struct resource *dma_res; unsigned long phys_base; struct completion complete; }; #define CMD_MAP_00(dev, addr) (dev->cmd_map(MAP_00, ((addr) << 1))) #define CMD_MAP_01(dev, mem_addr) (dev->cmd_map(MAP_01, (mem_addr))) #define CMD_MAP_10(dev, mem_addr) (dev->cmd_map(MAP_10, (mem_addr))) #define CMD_MAP_11(dev, addr) (dev->cmd_map(MAP_11, ((addr) << 2))) static struct s3c_onenand *onenand; static inline int s3c_read_reg(int offset) { return readl(onenand->base + offset); } static inline void s3c_write_reg(int value, int offset) { writel(value, onenand->base + offset); } static inline int s3c_read_cmd(unsigned int cmd) { return readl(onenand->ahb_addr + cmd); } static inline void s3c_write_cmd(int value, unsigned int cmd) { writel(value, onenand->ahb_addr + cmd); } #ifdef SAMSUNG_DEBUG static void s3c_dump_reg(void) { int i; for (i = 0; i < 0x400; i += 0x40) { printk(KERN_INFO "0x%08X: 0x%08x 0x%08x 0x%08x 0x%08x\n", (unsigned int) onenand->base + i, s3c_read_reg(i), s3c_read_reg(i + 0x10), s3c_read_reg(i + 0x20), s3c_read_reg(i + 0x30)); } } #endif static unsigned int s3c64xx_cmd_map(unsigned type, unsigned val) { return (type << S3C64XX_CMD_MAP_SHIFT) | val; } static unsigned int s5pc1xx_cmd_map(unsigned type, unsigned val) { return (type << S5PC100_CMD_MAP_SHIFT) | val; } static unsigned int s3c6400_mem_addr(int fba, int fpa, int fsa) { return (fba << S3C6400_FBA_SHIFT) | (fpa << S3C6400_FPA_SHIFT) | (fsa << S3C6400_FSA_SHIFT); } static unsigned int s3c6410_mem_addr(int fba, int fpa, int fsa) { return (fba << S3C6410_FBA_SHIFT) | (fpa << S3C6410_FPA_SHIFT) | (fsa << S3C6410_FSA_SHIFT); } static unsigned int s5pc100_mem_addr(int fba, int fpa, int fsa) { return (fba << S5PC100_FBA_SHIFT) | (fpa << S5PC100_FPA_SHIFT) | (fsa << S5PC100_FSA_SHIFT); } static void s3c_onenand_reset(void) { unsigned long timeout = 0x10000; int stat; s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET); while (1 && timeout--) { stat = s3c_read_reg(INT_ERR_STAT_OFFSET); if (stat & RST_CMP) break; } stat = s3c_read_reg(INT_ERR_STAT_OFFSET); s3c_write_reg(stat, INT_ERR_ACK_OFFSET); /* Clear interrupt */ s3c_write_reg(0x0, INT_ERR_ACK_OFFSET); /* Clear the ECC status */ s3c_write_reg(0x0, ECC_ERR_STAT_OFFSET); } static unsigned short s3c_onenand_readw(void __iomem *addr) { struct onenand_chip *this = onenand->mtd->priv; struct device *dev = &onenand->pdev->dev; int reg = addr - this->base; int word_addr = reg >> 1; int value; /* It's used for probing time */ switch (reg) { case ONENAND_REG_MANUFACTURER_ID: return s3c_read_reg(MANUFACT_ID_OFFSET); case ONENAND_REG_DEVICE_ID: return s3c_read_reg(DEVICE_ID_OFFSET); case ONENAND_REG_VERSION_ID: return s3c_read_reg(FLASH_VER_ID_OFFSET); case ONENAND_REG_DATA_BUFFER_SIZE: return s3c_read_reg(DATA_BUF_SIZE_OFFSET); case ONENAND_REG_TECHNOLOGY: return s3c_read_reg(TECH_OFFSET); case ONENAND_REG_SYS_CFG1: return s3c_read_reg(MEM_CFG_OFFSET); /* Used at unlock all status */ case ONENAND_REG_CTRL_STATUS: return 0; case ONENAND_REG_WP_STATUS: return ONENAND_WP_US; default: break; } /* BootRAM access control */ if ((unsigned int) addr < ONENAND_DATARAM && onenand->bootram_command) { if (word_addr == 0) return s3c_read_reg(MANUFACT_ID_OFFSET); if (word_addr == 1) return s3c_read_reg(DEVICE_ID_OFFSET); if (word_addr == 2) return s3c_read_reg(FLASH_VER_ID_OFFSET); } value = s3c_read_cmd(CMD_MAP_11(onenand, word_addr)) & 0xffff; dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__, word_addr, value); return value; } static void s3c_onenand_writew(unsigned short value, void __iomem *addr) { struct onenand_chip *this = onenand->mtd->priv; struct device *dev = &onenand->pdev->dev; unsigned int reg = addr - this->base; unsigned int word_addr = reg >> 1; /* It's used for probing time */ switch (reg) { case ONENAND_REG_SYS_CFG1: s3c_write_reg(value, MEM_CFG_OFFSET); return; case ONENAND_REG_START_ADDRESS1: case ONENAND_REG_START_ADDRESS2: return; /* Lock/lock-tight/unlock/unlock_all */ case ONENAND_REG_START_BLOCK_ADDRESS: return; default: break; } /* BootRAM access control */ if ((unsigned int)addr < ONENAND_DATARAM) { if (value == ONENAND_CMD_READID) { onenand->bootram_command = 1; return; } if (value == ONENAND_CMD_RESET) { s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET); onenand->bootram_command = 0; return; } } dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__, word_addr, value); s3c_write_cmd(value, CMD_MAP_11(onenand, word_addr)); } static int s3c_onenand_wait(struct mtd_info *mtd, int state) { struct device *dev = &onenand->pdev->dev; unsigned int flags = INT_ACT; unsigned int stat, ecc; unsigned long timeout; switch (state) { case FL_READING: flags |= BLK_RW_CMP | LOAD_CMP; break; case FL_WRITING: flags |= BLK_RW_CMP | PGM_CMP; break; case FL_ERASING: flags |= BLK_RW_CMP | ERS_CMP; break; case FL_LOCKING: flags |= BLK_RW_CMP; break; default: break; } /* The 20 msec is enough */ timeout = jiffies + msecs_to_jiffies(20); while (time_before(jiffies, timeout)) { stat = s3c_read_reg(INT_ERR_STAT_OFFSET); if (stat & flags) break; if (state != FL_READING) cond_resched(); } /* To get correct interrupt status in timeout case */ stat = s3c_read_reg(INT_ERR_STAT_OFFSET); s3c_write_reg(stat, INT_ERR_ACK_OFFSET); /* * In the Spec. it checks the controller status first * However if you get the correct information in case of * power off recovery (POR) test, it should read ECC status first */ if (stat & LOAD_CMP) { ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET); if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) { dev_info(dev, "%s: ECC error = 0x%04x\n", __func__, ecc); mtd->ecc_stats.failed++; return -EBADMSG; } } if (stat & (LOCKED_BLK | ERS_FAIL | PGM_FAIL | LD_FAIL_ECC_ERR)) { dev_info(dev, "%s: controller error = 0x%04x\n", __func__, stat); if (stat & LOCKED_BLK) dev_info(dev, "%s: it's locked error = 0x%04x\n", __func__, stat); return -EIO; } return 0; } static int s3c_onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len) { struct onenand_chip *this = mtd->priv; unsigned int *m, *s; int fba, fpa, fsa = 0; unsigned int mem_addr, cmd_map_01, cmd_map_10; int i, mcount, scount; int index; fba = (int) (addr >> this->erase_shift); fpa = (int) (addr >> this->page_shift); fpa &= this->page_mask; mem_addr = onenand->mem_addr(fba, fpa, fsa); cmd_map_01 = CMD_MAP_01(onenand, mem_addr); cmd_map_10 = CMD_MAP_10(onenand, mem_addr); switch (cmd) { case ONENAND_CMD_READ: case ONENAND_CMD_READOOB: case ONENAND_CMD_BUFFERRAM: ONENAND_SET_NEXT_BUFFERRAM(this); default: break; } index = ONENAND_CURRENT_BUFFERRAM(this); /* * Emulate Two BufferRAMs and access with 4 bytes pointer */ m = (unsigned int *) onenand->page_buf; s = (unsigned int *) onenand->oob_buf; if (index) { m += (this->writesize >> 2); s += (mtd->oobsize >> 2); } mcount = mtd->writesize >> 2; scount = mtd->oobsize >> 2; switch (cmd) { case ONENAND_CMD_READ: /* Main */ for (i = 0; i < mcount; i++) *m++ = s3c_read_cmd(cmd_map_01); return 0; case ONENAND_CMD_READOOB: s3c_write_reg(TSRF, TRANS_SPARE_OFFSET); /* Main */ for (i = 0; i < mcount; i++) *m++ = s3c_read_cmd(cmd_map_01); /* Spare */ for (i = 0; i < scount; i++) *s++ = s3c_read_cmd(cmd_map_01); s3c_write_reg(0, TRANS_SPARE_OFFSET); return 0; case ONENAND_CMD_PROG: /* Main */ for (i = 0; i < mcount; i++) s3c_write_cmd(*m++, cmd_map_01); return 0; case ONENAND_CMD_PROGOOB: s3c_write_reg(TSRF, TRANS_SPARE_OFFSET); /* Main - dummy write */ for (i = 0; i < mcount; i++) s3c_write_cmd(0xffffffff, cmd_map_01); /* Spare */ for (i = 0; i < scount; i++) s3c_write_cmd(*s++, cmd_map_01); s3c_write_reg(0, TRANS_SPARE_OFFSET); return 0; case ONENAND_CMD_UNLOCK_ALL: s3c_write_cmd(ONENAND_UNLOCK_ALL, cmd_map_10); return 0; case ONENAND_CMD_ERASE: s3c_write_cmd(ONENAND_ERASE_START, cmd_map_10); return 0; default: break; } return 0; } static unsigned char *s3c_get_bufferram(struct mtd_info *mtd, int area) { struct onenand_chip *this = mtd->priv; int index = ONENAND_CURRENT_BUFFERRAM(this); unsigned char *p; if (area == ONENAND_DATARAM) { p = (unsigned char *) onenand->page_buf; if (index == 1) p += this->writesize; } else { p = (unsigned char *) onenand->oob_buf; if (index == 1) p += mtd->oobsize; } return p; } static int onenand_read_bufferram(struct mtd_info *mtd, int area, unsigned char *buffer, int offset, size_t count) { unsigned char *p; p = s3c_get_bufferram(mtd, area); memcpy(buffer, p + offset, count); return 0; } static int onenand_write_bufferram(struct mtd_info *mtd, int area, const unsigned char *buffer, int offset, size_t count) { unsigned char *p; p = s3c_get_bufferram(mtd, area); memcpy(p + offset, buffer, count); return 0; } static int (*s5pc110_dma_ops)(void *dst, void *src, size_t count, int direction); static int s5pc110_dma_poll(void *dst, void *src, size_t count, int direction) { void __iomem *base = onenand->dma_addr; int status; unsigned long timeout; writel(src, base + S5PC110_DMA_SRC_ADDR); writel(dst, base + S5PC110_DMA_DST_ADDR); if (direction == S5PC110_DMA_DIR_READ) { writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG); writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG); } else { writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG); writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG); } writel(count, base + S5PC110_DMA_TRANS_SIZE); writel(direction, base + S5PC110_DMA_TRANS_DIR); writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD); /* * There's no exact timeout values at Spec. * In real case it takes under 1 msec. * So 20 msecs are enough. */ timeout = jiffies + msecs_to_jiffies(20); do { status = readl(base + S5PC110_DMA_TRANS_STATUS); if (status & S5PC110_DMA_TRANS_STATUS_TE) { writel(S5PC110_DMA_TRANS_CMD_TEC, base + S5PC110_DMA_TRANS_CMD); return -EIO; } } while (!(status & S5PC110_DMA_TRANS_STATUS_TD) && time_before(jiffies, timeout)); writel(S5PC110_DMA_TRANS_CMD_TDC, base + S5PC110_DMA_TRANS_CMD); return 0; } static irqreturn_t s5pc110_onenand_irq(int irq, void *data) { void __iomem *base = onenand->dma_addr; int status, cmd = 0; status = readl(base + S5PC110_INTC_DMA_STATUS); if (likely(status & S5PC110_INTC_DMA_TD)) cmd = S5PC110_DMA_TRANS_CMD_TDC; if (unlikely(status & S5PC110_INTC_DMA_TE)) cmd = S5PC110_DMA_TRANS_CMD_TEC; writel(cmd, base + S5PC110_DMA_TRANS_CMD); writel(status, base + S5PC110_INTC_DMA_CLR); if (!onenand->complete.done) complete(&onenand->complete); return IRQ_HANDLED; } static int s5pc110_dma_irq(void *dst, void *src, size_t count, int direction) { void __iomem *base = onenand->dma_addr; int status; status = readl(base + S5PC110_INTC_DMA_MASK); if (status) { status &= ~(S5PC110_INTC_DMA_TD | S5PC110_INTC_DMA_TE); writel(status, base + S5PC110_INTC_DMA_MASK); } writel(src, base + S5PC110_DMA_SRC_ADDR); writel(dst, base + S5PC110_DMA_DST_ADDR); if (direction == S5PC110_DMA_DIR_READ) { writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG); writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG); } else { writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG); writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG); } writel(count, base + S5PC110_DMA_TRANS_SIZE); writel(direction, base + S5PC110_DMA_TRANS_DIR); writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD); wait_for_completion_timeout(&onenand->complete, msecs_to_jiffies(20)); return 0; } static int s5pc110_read_bufferram(struct mtd_info *mtd, int area, unsigned char *buffer, int offset, size_t count) { struct onenand_chip *this = mtd->priv; void __iomem *p; void *buf = (void *) buffer; dma_addr_t dma_src, dma_dst; int err, ofs, page_dma = 0; struct device *dev = &onenand->pdev->dev; p = this->base + area; if (ONENAND_CURRENT_BUFFERRAM(this)) { if (area == ONENAND_DATARAM) p += this->writesize; else p += mtd->oobsize; } if (offset & 3 || (size_t) buf & 3 || !onenand->dma_addr || count != mtd->writesize) goto normal; /* Handle vmalloc address */ if (buf >= high_memory) { struct page *page; if (((size_t) buf & PAGE_MASK) != ((size_t) (buf + count - 1) & PAGE_MASK)) goto normal; page = vmalloc_to_page(buf); if (!page) goto normal; /* Page offset */ ofs = ((size_t) buf & ~PAGE_MASK); page_dma = 1; /* DMA routine */ dma_src = onenand->phys_base + (p - this->base); dma_dst = dma_map_page(dev, page, ofs, count, DMA_FROM_DEVICE); } else { /* DMA routine */ dma_src = onenand->phys_base + (p - this->base); dma_dst = dma_map_single(dev, buf, count, DMA_FROM_DEVICE); } if (dma_mapping_error(dev, dma_dst)) { dev_err(dev, "Couldn't map a %d byte buffer for DMA\n", count); goto normal; } err = s5pc110_dma_ops((void *) dma_dst, (void *) dma_src, count, S5PC110_DMA_DIR_READ); if (page_dma) dma_unmap_page(dev, dma_dst, count, DMA_FROM_DEVICE); else dma_unmap_single(dev, dma_dst, count, DMA_FROM_DEVICE); if (!err) return 0; normal: if (count != mtd->writesize) { /* Copy the bufferram to memory to prevent unaligned access */ memcpy(this->page_buf, p, mtd->writesize); p = this->page_buf + offset; } memcpy(buffer, p, count); return 0; } static int s5pc110_chip_probe(struct mtd_info *mtd) { /* Now just return 0 */ return 0; } static int s3c_onenand_bbt_wait(struct mtd_info *mtd, int state) { unsigned int flags = INT_ACT | LOAD_CMP; unsigned int stat; unsigned long timeout; /* The 20 msec is enough */ timeout = jiffies + msecs_to_jiffies(20); while (time_before(jiffies, timeout)) { stat = s3c_read_reg(INT_ERR_STAT_OFFSET); if (stat & flags) break; } /* To get correct interrupt status in timeout case */ stat = s3c_read_reg(INT_ERR_STAT_OFFSET); s3c_write_reg(stat, INT_ERR_ACK_OFFSET); if (stat & LD_FAIL_ECC_ERR) { s3c_onenand_reset(); return ONENAND_BBT_READ_ERROR; } if (stat & LOAD_CMP) { int ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET); if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) { s3c_onenand_reset(); return ONENAND_BBT_READ_ERROR; } } return 0; } static void s3c_onenand_check_lock_status(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; struct device *dev = &onenand->pdev->dev; unsigned int block, end; int tmp; end = this->chipsize >> this->erase_shift; for (block = 0; block < end; block++) { unsigned int mem_addr = onenand->mem_addr(block, 0, 0); tmp = s3c_read_cmd(CMD_MAP_01(onenand, mem_addr)); if (s3c_read_reg(INT_ERR_STAT_OFFSET) & LOCKED_BLK) { dev_err(dev, "block %d is write-protected!\n", block); s3c_write_reg(LOCKED_BLK, INT_ERR_ACK_OFFSET); } } } static void s3c_onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd) { struct onenand_chip *this = mtd->priv; int start, end, start_mem_addr, end_mem_addr; start = ofs >> this->erase_shift; start_mem_addr = onenand->mem_addr(start, 0, 0); end = start + (len >> this->erase_shift) - 1; end_mem_addr = onenand->mem_addr(end, 0, 0); if (cmd == ONENAND_CMD_LOCK) { s3c_write_cmd(ONENAND_LOCK_START, CMD_MAP_10(onenand, start_mem_addr)); s3c_write_cmd(ONENAND_LOCK_END, CMD_MAP_10(onenand, end_mem_addr)); } else { s3c_write_cmd(ONENAND_UNLOCK_START, CMD_MAP_10(onenand, start_mem_addr)); s3c_write_cmd(ONENAND_UNLOCK_END, CMD_MAP_10(onenand, end_mem_addr)); } this->wait(mtd, FL_LOCKING); } static void s3c_unlock_all(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; loff_t ofs = 0; size_t len = this->chipsize; if (this->options & ONENAND_HAS_UNLOCK_ALL) { /* Write unlock command */ this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0); /* No need to check return value */ this->wait(mtd, FL_LOCKING); /* Workaround for all block unlock in DDP */ if (!ONENAND_IS_DDP(this)) { s3c_onenand_check_lock_status(mtd); return; } /* All blocks on another chip */ ofs = this->chipsize >> 1; len = this->chipsize >> 1; } s3c_onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); s3c_onenand_check_lock_status(mtd); } static void s3c_onenand_setup(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; onenand->mtd = mtd; if (onenand->type == TYPE_S3C6400) { onenand->mem_addr = s3c6400_mem_addr; onenand->cmd_map = s3c64xx_cmd_map; } else if (onenand->type == TYPE_S3C6410) { onenand->mem_addr = s3c6410_mem_addr; onenand->cmd_map = s3c64xx_cmd_map; } else if (onenand->type == TYPE_S5PC100) { onenand->mem_addr = s5pc100_mem_addr; onenand->cmd_map = s5pc1xx_cmd_map; } else if (onenand->type == TYPE_S5PC110) { /* Use generic onenand functions */ this->read_bufferram = s5pc110_read_bufferram; this->chip_probe = s5pc110_chip_probe; return; } else { BUG(); } this->read_word = s3c_onenand_readw; this->write_word = s3c_onenand_writew; this->wait = s3c_onenand_wait; this->bbt_wait = s3c_onenand_bbt_wait; this->unlock_all = s3c_unlock_all; this->command = s3c_onenand_command; this->read_bufferram = onenand_read_bufferram; this->write_bufferram = onenand_write_bufferram; } static int s3c_onenand_probe(struct platform_device *pdev) { struct onenand_platform_data *pdata; struct onenand_chip *this; struct mtd_info *mtd; struct resource *r; int size, err; pdata = pdev->dev.platform_data; /* No need to check pdata. the platform data is optional */ size = sizeof(struct mtd_info) + sizeof(struct onenand_chip); mtd = kzalloc(size, GFP_KERNEL); if (!mtd) { dev_err(&pdev->dev, "failed to allocate memory\n"); return -ENOMEM; } onenand = kzalloc(sizeof(struct s3c_onenand), GFP_KERNEL); if (!onenand) { err = -ENOMEM; goto onenand_fail; } this = (struct onenand_chip *) &mtd[1]; mtd->priv = this; mtd->dev.parent = &pdev->dev; mtd->owner = THIS_MODULE; onenand->pdev = pdev; onenand->type = platform_get_device_id(pdev)->driver_data; s3c_onenand_setup(mtd); r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!r) { dev_err(&pdev->dev, "no memory resource defined\n"); return -ENOENT; goto ahb_resource_failed; } onenand->base_res = request_mem_region(r->start, resource_size(r), pdev->name); if (!onenand->base_res) { dev_err(&pdev->dev, "failed to request memory resource\n"); err = -EBUSY; goto resource_failed; } onenand->base = ioremap(r->start, resource_size(r)); if (!onenand->base) { dev_err(&pdev->dev, "failed to map memory resource\n"); err = -EFAULT; goto ioremap_failed; } /* Set onenand_chip also */ this->base = onenand->base; /* Use runtime badblock check */ this->options |= ONENAND_SKIP_UNLOCK_CHECK; if (onenand->type != TYPE_S5PC110) { r = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!r) { dev_err(&pdev->dev, "no buffer memory resource defined\n"); err = -ENOENT; goto ahb_resource_failed; } onenand->ahb_res = request_mem_region(r->start, resource_size(r), pdev->name); if (!onenand->ahb_res) { dev_err(&pdev->dev, "failed to request buffer memory resource\n"); err = -EBUSY; goto ahb_resource_failed; } onenand->ahb_addr = ioremap(r->start, resource_size(r)); if (!onenand->ahb_addr) { dev_err(&pdev->dev, "failed to map buffer memory resource\n"); err = -EINVAL; goto ahb_ioremap_failed; } /* Allocate 4KiB BufferRAM */ onenand->page_buf = kzalloc(SZ_4K, GFP_KERNEL); if (!onenand->page_buf) { err = -ENOMEM; goto page_buf_fail; } /* Allocate 128 SpareRAM */ onenand->oob_buf = kzalloc(128, GFP_KERNEL); if (!onenand->oob_buf) { err = -ENOMEM; goto oob_buf_fail; } /* S3C doesn't handle subpage write */ mtd->subpage_sft = 0; this->subpagesize = mtd->writesize; } else { /* S5PC110 */ r = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!r) { dev_err(&pdev->dev, "no dma memory resource defined\n"); err = -ENOENT; goto dma_resource_failed; } onenand->dma_res = request_mem_region(r->start, resource_size(r), pdev->name); if (!onenand->dma_res) { dev_err(&pdev->dev, "failed to request dma memory resource\n"); err = -EBUSY; goto dma_resource_failed; } onenand->dma_addr = ioremap(r->start, resource_size(r)); if (!onenand->dma_addr) { dev_err(&pdev->dev, "failed to map dma memory resource\n"); err = -EINVAL; goto dma_ioremap_failed; } onenand->phys_base = onenand->base_res->start; s5pc110_dma_ops = s5pc110_dma_poll; /* Interrupt support */ r = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (r) { init_completion(&onenand->complete); s5pc110_dma_ops = s5pc110_dma_irq; err = request_irq(r->start, s5pc110_onenand_irq, IRQF_SHARED, "onenand", &onenand); if (err) { dev_err(&pdev->dev, "failed to get irq\n"); goto scan_failed; } } } if (onenand_scan(mtd, 1)) { err = -EFAULT; goto scan_failed; } if (onenand->type != TYPE_S5PC110) { /* S3C doesn't handle subpage write */ mtd->subpage_sft = 0; this->subpagesize = mtd->writesize; } if (s3c_read_reg(MEM_CFG_OFFSET) & ONENAND_SYS_CFG1_SYNC_READ) dev_info(&onenand->pdev->dev, "OneNAND Sync. Burst Read enabled\n"); err = mtd_device_parse_register(mtd, NULL, NULL, pdata ? pdata->parts : NULL, pdata ? pdata->nr_parts : 0); platform_set_drvdata(pdev, mtd); return 0; scan_failed: if (onenand->dma_addr) iounmap(onenand->dma_addr); dma_ioremap_failed: if (onenand->dma_res) release_mem_region(onenand->dma_res->start, resource_size(onenand->dma_res)); kfree(onenand->oob_buf); oob_buf_fail: kfree(onenand->page_buf); page_buf_fail: if (onenand->ahb_addr) iounmap(onenand->ahb_addr); ahb_ioremap_failed: if (onenand->ahb_res) release_mem_region(onenand->ahb_res->start, resource_size(onenand->ahb_res)); dma_resource_failed: ahb_resource_failed: iounmap(onenand->base); ioremap_failed: if (onenand->base_res) release_mem_region(onenand->base_res->start, resource_size(onenand->base_res)); resource_failed: kfree(onenand); onenand_fail: kfree(mtd); return err; } static int s3c_onenand_remove(struct platform_device *pdev) { struct mtd_info *mtd = platform_get_drvdata(pdev); onenand_release(mtd); if (onenand->ahb_addr) iounmap(onenand->ahb_addr); if (onenand->ahb_res) release_mem_region(onenand->ahb_res->start, resource_size(onenand->ahb_res)); if (onenand->dma_addr) iounmap(onenand->dma_addr); if (onenand->dma_res) release_mem_region(onenand->dma_res->start, resource_size(onenand->dma_res)); iounmap(onenand->base); release_mem_region(onenand->base_res->start, resource_size(onenand->base_res)); platform_set_drvdata(pdev, NULL); kfree(onenand->oob_buf); kfree(onenand->page_buf); kfree(onenand); kfree(mtd); return 0; } static int s3c_pm_ops_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct mtd_info *mtd = platform_get_drvdata(pdev); struct onenand_chip *this = mtd->priv; this->wait(mtd, FL_PM_SUSPENDED); return 0; } static int s3c_pm_ops_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct mtd_info *mtd = platform_get_drvdata(pdev); struct onenand_chip *this = mtd->priv; this->unlock_all(mtd); return 0; } static const struct dev_pm_ops s3c_pm_ops = { .suspend = s3c_pm_ops_suspend, .resume = s3c_pm_ops_resume, }; static struct platform_device_id s3c_onenand_driver_ids[] = { { .name = "s3c6400-onenand", .driver_data = TYPE_S3C6400, }, { .name = "s3c6410-onenand", .driver_data = TYPE_S3C6410, }, { .name = "s5pc100-onenand", .driver_data = TYPE_S5PC100, }, { .name = "s5pc110-onenand", .driver_data = TYPE_S5PC110, }, { }, }; MODULE_DEVICE_TABLE(platform, s3c_onenand_driver_ids); static struct platform_driver s3c_onenand_driver = { .driver = { .name = "samsung-onenand", .pm = &s3c_pm_ops, }, .id_table = s3c_onenand_driver_ids, .probe = s3c_onenand_probe, .remove = s3c_onenand_remove, }; module_platform_driver(s3c_onenand_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>"); MODULE_DESCRIPTION("Samsung OneNAND controller support");