/* * SuperH IrDA Driver * * Copyright (C) 2009 Renesas Solutions Corp. * Kuninori Morimoto <morimoto.kuninori@renesas.com> * * Based on bfin_sir.c * Copyright 2006-2009 Analog Devices Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/io.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <net/irda/wrapper.h> #include <net/irda/irda_device.h> #include <asm/clock.h> #define DRIVER_NAME "sh_sir" #define RX_PHASE (1 << 0) #define TX_PHASE (1 << 1) #define TX_COMP_PHASE (1 << 2) /* tx complete */ #define NONE_PHASE (1 << 31) #define IRIF_RINTCLR 0x0016 /* DMA rx interrupt source clear */ #define IRIF_TINTCLR 0x0018 /* DMA tx interrupt source clear */ #define IRIF_SIR0 0x0020 /* IrDA-SIR10 control */ #define IRIF_SIR1 0x0022 /* IrDA-SIR10 baudrate error correction */ #define IRIF_SIR2 0x0024 /* IrDA-SIR10 baudrate count */ #define IRIF_SIR3 0x0026 /* IrDA-SIR10 status */ #define IRIF_SIR_FRM 0x0028 /* Hardware frame processing set */ #define IRIF_SIR_EOF 0x002A /* EOF value */ #define IRIF_SIR_FLG 0x002C /* Flag clear */ #define IRIF_UART_STS2 0x002E /* UART status 2 */ #define IRIF_UART0 0x0030 /* UART control */ #define IRIF_UART1 0x0032 /* UART status */ #define IRIF_UART2 0x0034 /* UART mode */ #define IRIF_UART3 0x0036 /* UART transmit data */ #define IRIF_UART4 0x0038 /* UART receive data */ #define IRIF_UART5 0x003A /* UART interrupt mask */ #define IRIF_UART6 0x003C /* UART baud rate error correction */ #define IRIF_UART7 0x003E /* UART baud rate count set */ #define IRIF_CRC0 0x0040 /* CRC engine control */ #define IRIF_CRC1 0x0042 /* CRC engine input data */ #define IRIF_CRC2 0x0044 /* CRC engine calculation */ #define IRIF_CRC3 0x0046 /* CRC engine output data 1 */ #define IRIF_CRC4 0x0048 /* CRC engine output data 2 */ /* IRIF_SIR0 */ #define IRTPW (1 << 1) /* transmit pulse width select */ #define IRERRC (1 << 0) /* Clear receive pulse width error */ /* IRIF_SIR3 */ #define IRERR (1 << 0) /* received pulse width Error */ /* IRIF_SIR_FRM */ #define EOFD (1 << 9) /* EOF detection flag */ #define FRER (1 << 8) /* Frame Error bit */ #define FRP (1 << 0) /* Frame processing set */ /* IRIF_UART_STS2 */ #define IRSME (1 << 6) /* Receive Sum Error flag */ #define IROVE (1 << 5) /* Receive Overrun Error flag */ #define IRFRE (1 << 4) /* Receive Framing Error flag */ #define IRPRE (1 << 3) /* Receive Parity Error flag */ /* IRIF_UART0_*/ #define TBEC (1 << 2) /* Transmit Data Clear */ #define RIE (1 << 1) /* Receive Enable */ #define TIE (1 << 0) /* Transmit Enable */ /* IRIF_UART1 */ #define URSME (1 << 6) /* Receive Sum Error Flag */ #define UROVE (1 << 5) /* Receive Overrun Error Flag */ #define URFRE (1 << 4) /* Receive Framing Error Flag */ #define URPRE (1 << 3) /* Receive Parity Error Flag */ #define RBF (1 << 2) /* Receive Buffer Full Flag */ #define TSBE (1 << 1) /* Transmit Shift Buffer Empty Flag */ #define TBE (1 << 0) /* Transmit Buffer Empty flag */ #define TBCOMP (TSBE | TBE) /* IRIF_UART5 */ #define RSEIM (1 << 6) /* Receive Sum Error Flag IRQ Mask */ #define RBFIM (1 << 2) /* Receive Buffer Full Flag IRQ Mask */ #define TSBEIM (1 << 1) /* Transmit Shift Buffer Empty Flag IRQ Mask */ #define TBEIM (1 << 0) /* Transmit Buffer Empty Flag IRQ Mask */ #define RX_MASK (RSEIM | RBFIM) /* IRIF_CRC0 */ #define CRC_RST (1 << 15) /* CRC Engine Reset */ #define CRC_CT_MASK 0x0FFF /************************************************************************ structure ************************************************************************/ struct sh_sir_self { void __iomem *membase; unsigned int irq; struct clk *clk; struct net_device *ndev; struct irlap_cb *irlap; struct qos_info qos; iobuff_t tx_buff; iobuff_t rx_buff; }; /************************************************************************ common function ************************************************************************/ static void sh_sir_write(struct sh_sir_self *self, u32 offset, u16 data) { iowrite16(data, self->membase + offset); } static u16 sh_sir_read(struct sh_sir_self *self, u32 offset) { return ioread16(self->membase + offset); } static void sh_sir_update_bits(struct sh_sir_self *self, u32 offset, u16 mask, u16 data) { u16 old, new; old = sh_sir_read(self, offset); new = (old & ~mask) | data; if (old != new) sh_sir_write(self, offset, new); } /************************************************************************ CRC function ************************************************************************/ static void sh_sir_crc_reset(struct sh_sir_self *self) { sh_sir_write(self, IRIF_CRC0, CRC_RST); } static void sh_sir_crc_add(struct sh_sir_self *self, u8 data) { sh_sir_write(self, IRIF_CRC1, (u16)data); } static u16 sh_sir_crc_cnt(struct sh_sir_self *self) { return CRC_CT_MASK & sh_sir_read(self, IRIF_CRC0); } static u16 sh_sir_crc_out(struct sh_sir_self *self) { return sh_sir_read(self, IRIF_CRC4); } static int sh_sir_crc_init(struct sh_sir_self *self) { struct device *dev = &self->ndev->dev; int ret = -EIO; u16 val; sh_sir_crc_reset(self); sh_sir_crc_add(self, 0xCC); sh_sir_crc_add(self, 0xF5); sh_sir_crc_add(self, 0xF1); sh_sir_crc_add(self, 0xA7); val = sh_sir_crc_cnt(self); if (4 != val) { dev_err(dev, "CRC count error %x\n", val); goto crc_init_out; } val = sh_sir_crc_out(self); if (0x51DF != val) { dev_err(dev, "CRC result error%x\n", val); goto crc_init_out; } ret = 0; crc_init_out: sh_sir_crc_reset(self); return ret; } /************************************************************************ baud rate functions ************************************************************************/ #define SCLK_BASE 1843200 /* 1.8432MHz */ static u32 sh_sir_find_sclk(struct clk *irda_clk) { struct cpufreq_frequency_table *freq_table = irda_clk->freq_table; struct clk *pclk = clk_get(NULL, "peripheral_clk"); u32 limit, min = 0xffffffff, tmp; int i, index = 0; limit = clk_get_rate(pclk); clk_put(pclk); /* IrDA can not set over peripheral_clk */ for (i = 0; freq_table[i].frequency != CPUFREQ_TABLE_END; i++) { u32 freq = freq_table[i].frequency; if (freq == CPUFREQ_ENTRY_INVALID) continue; /* IrDA should not over peripheral_clk */ if (freq > limit) continue; tmp = freq % SCLK_BASE; if (tmp < min) { min = tmp; index = i; } } return freq_table[index].frequency; } #define ERR_ROUNDING(a) ((a + 5000) / 10000) static int sh_sir_set_baudrate(struct sh_sir_self *self, u32 baudrate) { struct clk *clk; struct device *dev = &self->ndev->dev; u32 rate; u16 uabca, uabc; u16 irbca, irbc; u32 min, rerr, tmp; int i; /* Baud Rate Error Correction x 10000 */ u32 rate_err_array[] = { 0, 625, 1250, 1875, 2500, 3125, 3750, 4375, 5000, 5625, 6250, 6875, 7500, 8125, 8750, 9375, }; /* * FIXME * * it support 9600 only now */ switch (baudrate) { case 9600: break; default: dev_err(dev, "un-supported baudrate %d\n", baudrate); return -EIO; } clk = clk_get(NULL, "irda_clk"); if (IS_ERR(clk)) { dev_err(dev, "can not get irda_clk\n"); return -EIO; } clk_set_rate(clk, sh_sir_find_sclk(clk)); rate = clk_get_rate(clk); clk_put(clk); dev_dbg(dev, "selected sclk = %d\n", rate); /* * CALCULATION * * 1843200 = system rate / (irbca + (irbc + 1)) */ irbc = rate / SCLK_BASE; tmp = rate - (SCLK_BASE * irbc); tmp *= 10000; rerr = tmp / SCLK_BASE; min = 0xffffffff; irbca = 0; for (i = 0; i < ARRAY_SIZE(rate_err_array); i++) { tmp = abs(rate_err_array[i] - rerr); if (min > tmp) { min = tmp; irbca = i; } } tmp = rate / (irbc + ERR_ROUNDING(rate_err_array[irbca])); if ((SCLK_BASE / 100) < abs(tmp - SCLK_BASE)) dev_warn(dev, "IrDA freq error margin over %d\n", tmp); dev_dbg(dev, "target = %d, result = %d, infrared = %d.%d\n", SCLK_BASE, tmp, irbc, rate_err_array[irbca]); irbca = (irbca & 0xF) << 4; irbc = (irbc - 1) & 0xF; if (!irbc) { dev_err(dev, "sh_sir can not set 0 in IRIF_SIR2\n"); return -EIO; } sh_sir_write(self, IRIF_SIR0, IRTPW | IRERRC); sh_sir_write(self, IRIF_SIR1, irbca); sh_sir_write(self, IRIF_SIR2, irbc); /* * CALCULATION * * BaudRate[bps] = system rate / (uabca + (uabc + 1) x 16) */ uabc = rate / baudrate; uabc = (uabc / 16) - 1; uabc = (uabc + 1) * 16; tmp = rate - (uabc * baudrate); tmp *= 10000; rerr = tmp / baudrate; min = 0xffffffff; uabca = 0; for (i = 0; i < ARRAY_SIZE(rate_err_array); i++) { tmp = abs(rate_err_array[i] - rerr); if (min > tmp) { min = tmp; uabca = i; } } tmp = rate / (uabc + ERR_ROUNDING(rate_err_array[uabca])); if ((baudrate / 100) < abs(tmp - baudrate)) dev_warn(dev, "UART freq error margin over %d\n", tmp); dev_dbg(dev, "target = %d, result = %d, uart = %d.%d\n", baudrate, tmp, uabc, rate_err_array[uabca]); uabca = (uabca & 0xF) << 4; uabc = (uabc / 16) - 1; sh_sir_write(self, IRIF_UART6, uabca); sh_sir_write(self, IRIF_UART7, uabc); return 0; } /************************************************************************ iobuf function ************************************************************************/ static int __sh_sir_init_iobuf(iobuff_t *io, int size) { io->head = kmalloc(size, GFP_KERNEL); if (!io->head) return -ENOMEM; io->truesize = size; io->in_frame = FALSE; io->state = OUTSIDE_FRAME; io->data = io->head; return 0; } static void sh_sir_remove_iobuf(struct sh_sir_self *self) { kfree(self->rx_buff.head); kfree(self->tx_buff.head); self->rx_buff.head = NULL; self->tx_buff.head = NULL; } static int sh_sir_init_iobuf(struct sh_sir_self *self, int rxsize, int txsize) { int err = -ENOMEM; if (self->rx_buff.head || self->tx_buff.head) { dev_err(&self->ndev->dev, "iobuff has already existed."); return err; } err = __sh_sir_init_iobuf(&self->rx_buff, rxsize); if (err) goto iobuf_err; err = __sh_sir_init_iobuf(&self->tx_buff, txsize); iobuf_err: if (err) sh_sir_remove_iobuf(self); return err; } /************************************************************************ status function ************************************************************************/ static void sh_sir_clear_all_err(struct sh_sir_self *self) { /* Clear error flag for receive pulse width */ sh_sir_update_bits(self, IRIF_SIR0, IRERRC, IRERRC); /* Clear frame / EOF error flag */ sh_sir_write(self, IRIF_SIR_FLG, 0xffff); /* Clear all status error */ sh_sir_write(self, IRIF_UART_STS2, 0); } static void sh_sir_set_phase(struct sh_sir_self *self, int phase) { u16 uart5 = 0; u16 uart0 = 0; switch (phase) { case TX_PHASE: uart5 = TBEIM; uart0 = TBEC | TIE; break; case TX_COMP_PHASE: uart5 = TSBEIM; uart0 = TIE; break; case RX_PHASE: uart5 = RX_MASK; uart0 = RIE; break; default: break; } sh_sir_write(self, IRIF_UART5, uart5); sh_sir_write(self, IRIF_UART0, uart0); } static int sh_sir_is_which_phase(struct sh_sir_self *self) { u16 val = sh_sir_read(self, IRIF_UART5); if (val & TBEIM) return TX_PHASE; if (val & TSBEIM) return TX_COMP_PHASE; if (val & RX_MASK) return RX_PHASE; return NONE_PHASE; } static void sh_sir_tx(struct sh_sir_self *self, int phase) { switch (phase) { case TX_PHASE: if (0 >= self->tx_buff.len) { sh_sir_set_phase(self, TX_COMP_PHASE); } else { sh_sir_write(self, IRIF_UART3, self->tx_buff.data[0]); self->tx_buff.len--; self->tx_buff.data++; } break; case TX_COMP_PHASE: sh_sir_set_phase(self, RX_PHASE); netif_wake_queue(self->ndev); break; default: dev_err(&self->ndev->dev, "should not happen\n"); break; } } static int sh_sir_read_data(struct sh_sir_self *self) { u16 val = 0; int timeout = 1024; while (timeout--) { val = sh_sir_read(self, IRIF_UART1); /* data get */ if (val & RBF) { if (val & (URSME | UROVE | URFRE | URPRE)) break; return (int)sh_sir_read(self, IRIF_UART4); } udelay(1); } dev_err(&self->ndev->dev, "UART1 %04x : STATUS %04x\n", val, sh_sir_read(self, IRIF_UART_STS2)); /* read data register for clear error */ sh_sir_read(self, IRIF_UART4); return -1; } static void sh_sir_rx(struct sh_sir_self *self) { int timeout = 1024; int data; while (timeout--) { data = sh_sir_read_data(self); if (data < 0) break; async_unwrap_char(self->ndev, &self->ndev->stats, &self->rx_buff, (u8)data); self->ndev->last_rx = jiffies; if (EOFD & sh_sir_read(self, IRIF_SIR_FRM)) continue; break; } } static irqreturn_t sh_sir_irq(int irq, void *dev_id) { struct sh_sir_self *self = dev_id; struct device *dev = &self->ndev->dev; int phase = sh_sir_is_which_phase(self); switch (phase) { case TX_COMP_PHASE: case TX_PHASE: sh_sir_tx(self, phase); break; case RX_PHASE: if (sh_sir_read(self, IRIF_SIR3)) dev_err(dev, "rcv pulse width error occurred\n"); sh_sir_rx(self); sh_sir_clear_all_err(self); break; default: dev_err(dev, "unknown interrupt\n"); } return IRQ_HANDLED; } /************************************************************************ net_device_ops function ************************************************************************/ static int sh_sir_hard_xmit(struct sk_buff *skb, struct net_device *ndev) { struct sh_sir_self *self = netdev_priv(ndev); int speed = irda_get_next_speed(skb); if ((0 < speed) && (9600 != speed)) { dev_err(&ndev->dev, "support 9600 only (%d)\n", speed); return -EIO; } netif_stop_queue(ndev); self->tx_buff.data = self->tx_buff.head; self->tx_buff.len = 0; if (skb->len) self->tx_buff.len = async_wrap_skb(skb, self->tx_buff.data, self->tx_buff.truesize); sh_sir_set_phase(self, TX_PHASE); dev_kfree_skb(skb); return 0; } static int sh_sir_ioctl(struct net_device *ndev, struct ifreq *ifreq, int cmd) { /* * FIXME * * This function is needed for irda framework. * But nothing to do now */ return 0; } static struct net_device_stats *sh_sir_stats(struct net_device *ndev) { struct sh_sir_self *self = netdev_priv(ndev); return &self->ndev->stats; } static int sh_sir_open(struct net_device *ndev) { struct sh_sir_self *self = netdev_priv(ndev); int err; clk_enable(self->clk); err = sh_sir_crc_init(self); if (err) goto open_err; sh_sir_set_baudrate(self, 9600); self->irlap = irlap_open(ndev, &self->qos, DRIVER_NAME); if (!self->irlap) { err = -ENODEV; goto open_err; } /* * Now enable the interrupt then start the queue */ sh_sir_update_bits(self, IRIF_SIR_FRM, FRP, FRP); sh_sir_read(self, IRIF_UART1); /* flag clear */ sh_sir_read(self, IRIF_UART4); /* flag clear */ sh_sir_set_phase(self, RX_PHASE); netif_start_queue(ndev); dev_info(&self->ndev->dev, "opened\n"); return 0; open_err: clk_disable(self->clk); return err; } static int sh_sir_stop(struct net_device *ndev) { struct sh_sir_self *self = netdev_priv(ndev); /* Stop IrLAP */ if (self->irlap) { irlap_close(self->irlap); self->irlap = NULL; } netif_stop_queue(ndev); dev_info(&ndev->dev, "stopped\n"); return 0; } static const struct net_device_ops sh_sir_ndo = { .ndo_open = sh_sir_open, .ndo_stop = sh_sir_stop, .ndo_start_xmit = sh_sir_hard_xmit, .ndo_do_ioctl = sh_sir_ioctl, .ndo_get_stats = sh_sir_stats, }; /************************************************************************ platform_driver function ************************************************************************/ static int sh_sir_probe(struct platform_device *pdev) { struct net_device *ndev; struct sh_sir_self *self; struct resource *res; char clk_name[8]; int irq; int err = -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); irq = platform_get_irq(pdev, 0); if (!res || irq < 0) { dev_err(&pdev->dev, "Not enough platform resources.\n"); goto exit; } ndev = alloc_irdadev(sizeof(*self)); if (!ndev) goto exit; self = netdev_priv(ndev); self->membase = ioremap_nocache(res->start, resource_size(res)); if (!self->membase) { err = -ENXIO; dev_err(&pdev->dev, "Unable to ioremap.\n"); goto err_mem_1; } err = sh_sir_init_iobuf(self, IRDA_SKB_MAX_MTU, IRDA_SIR_MAX_FRAME); if (err) goto err_mem_2; snprintf(clk_name, sizeof(clk_name), "irda%d", pdev->id); self->clk = clk_get(&pdev->dev, clk_name); if (IS_ERR(self->clk)) { dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name); err = -ENODEV; goto err_mem_3; } irda_init_max_qos_capabilies(&self->qos); ndev->netdev_ops = &sh_sir_ndo; ndev->irq = irq; self->ndev = ndev; self->qos.baud_rate.bits &= IR_9600; /* FIXME */ self->qos.min_turn_time.bits = 1; /* 10 ms or more */ irda_qos_bits_to_value(&self->qos); err = register_netdev(ndev); if (err) goto err_mem_4; platform_set_drvdata(pdev, ndev); err = request_irq(irq, sh_sir_irq, IRQF_DISABLED, "sh_sir", self); if (err) { dev_warn(&pdev->dev, "Unable to attach sh_sir interrupt\n"); goto err_mem_4; } dev_info(&pdev->dev, "SuperH IrDA probed\n"); goto exit; err_mem_4: clk_put(self->clk); err_mem_3: sh_sir_remove_iobuf(self); err_mem_2: iounmap(self->membase); err_mem_1: free_netdev(ndev); exit: return err; } static int sh_sir_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct sh_sir_self *self = netdev_priv(ndev); if (!self) return 0; unregister_netdev(ndev); clk_put(self->clk); sh_sir_remove_iobuf(self); iounmap(self->membase); free_netdev(ndev); platform_set_drvdata(pdev, NULL); return 0; } static struct platform_driver sh_sir_driver = { .probe = sh_sir_probe, .remove = sh_sir_remove, .driver = { .name = DRIVER_NAME, }, }; module_platform_driver(sh_sir_driver); MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>"); MODULE_DESCRIPTION("SuperH IrDA driver"); MODULE_LICENSE("GPL");