/*************************************************************************** * * Copyright (C) 2007-2008 SMSC * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * *****************************************************************************/ #include <linux/module.h> #include <linux/kmod.h> #include <linux/init.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/mii.h> #include <linux/usb.h> #include <linux/bitrev.h> #include <linux/crc16.h> #include <linux/crc32.h> #include <linux/usb/usbnet.h> #include <linux/slab.h> #include "smsc95xx.h" #define SMSC_CHIPNAME "smsc95xx" #define SMSC_DRIVER_VERSION "1.0.4" #define HS_USB_PKT_SIZE (512) #define FS_USB_PKT_SIZE (64) #define DEFAULT_HS_BURST_CAP_SIZE (16 * 1024 + 5 * HS_USB_PKT_SIZE) #define DEFAULT_FS_BURST_CAP_SIZE (6 * 1024 + 33 * FS_USB_PKT_SIZE) #define DEFAULT_BULK_IN_DELAY (0x00002000) #define MAX_SINGLE_PACKET_SIZE (2048) #define LAN95XX_EEPROM_MAGIC (0x9500) #define EEPROM_MAC_OFFSET (0x01) #define DEFAULT_TX_CSUM_ENABLE (true) #define DEFAULT_RX_CSUM_ENABLE (true) #define SMSC95XX_INTERNAL_PHY_ID (1) #define SMSC95XX_TX_OVERHEAD (8) #define SMSC95XX_TX_OVERHEAD_CSUM (12) #define SUPPORTED_WAKE (WAKE_PHY | WAKE_UCAST | WAKE_BCAST | \ WAKE_MCAST | WAKE_ARP | WAKE_MAGIC) #define FEATURE_8_WAKEUP_FILTERS (0x01) #define FEATURE_PHY_NLP_CROSSOVER (0x02) #define FEATURE_REMOTE_WAKEUP (0x04) #define SUSPEND_SUSPEND0 (0x01) #define SUSPEND_SUSPEND1 (0x02) #define SUSPEND_SUSPEND2 (0x04) #define SUSPEND_SUSPEND3 (0x08) #define SUSPEND_ALLMODES (SUSPEND_SUSPEND0 | SUSPEND_SUSPEND1 | \ SUSPEND_SUSPEND2 | SUSPEND_SUSPEND3) struct smsc95xx_priv { u32 mac_cr; u32 hash_hi; u32 hash_lo; u32 wolopts; spinlock_t mac_cr_lock; u8 features; u8 suspend_flags; }; static bool turbo_mode = true; module_param(turbo_mode, bool, 0644); MODULE_PARM_DESC(turbo_mode, "Enable multiple frames per Rx transaction"); static int __must_check __smsc95xx_read_reg(struct usbnet *dev, u32 index, u32 *data, int in_pm) { u32 buf; int ret; int (*fn)(struct usbnet *, u8, u8, u16, u16, void *, u16); BUG_ON(!dev); if (!in_pm) fn = usbnet_read_cmd; else fn = usbnet_read_cmd_nopm; ret = fn(dev, USB_VENDOR_REQUEST_READ_REGISTER, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0, index, &buf, 4); if (unlikely(ret < 0)) netdev_warn(dev->net, "Failed to read reg index 0x%08x: %d\n", index, ret); le32_to_cpus(&buf); *data = buf; return ret; } static int __must_check __smsc95xx_write_reg(struct usbnet *dev, u32 index, u32 data, int in_pm) { u32 buf; int ret; int (*fn)(struct usbnet *, u8, u8, u16, u16, const void *, u16); BUG_ON(!dev); if (!in_pm) fn = usbnet_write_cmd; else fn = usbnet_write_cmd_nopm; buf = data; cpu_to_le32s(&buf); ret = fn(dev, USB_VENDOR_REQUEST_WRITE_REGISTER, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0, index, &buf, 4); if (unlikely(ret < 0)) netdev_warn(dev->net, "Failed to write reg index 0x%08x: %d\n", index, ret); return ret; } static int __must_check smsc95xx_read_reg_nopm(struct usbnet *dev, u32 index, u32 *data) { return __smsc95xx_read_reg(dev, index, data, 1); } static int __must_check smsc95xx_write_reg_nopm(struct usbnet *dev, u32 index, u32 data) { return __smsc95xx_write_reg(dev, index, data, 1); } static int __must_check smsc95xx_read_reg(struct usbnet *dev, u32 index, u32 *data) { return __smsc95xx_read_reg(dev, index, data, 0); } static int __must_check smsc95xx_write_reg(struct usbnet *dev, u32 index, u32 data) { return __smsc95xx_write_reg(dev, index, data, 0); } /* Loop until the read is completed with timeout * called with phy_mutex held */ static int __must_check __smsc95xx_phy_wait_not_busy(struct usbnet *dev, int in_pm) { unsigned long start_time = jiffies; u32 val; int ret; do { ret = __smsc95xx_read_reg(dev, MII_ADDR, &val, in_pm); if (ret < 0) { netdev_warn(dev->net, "Error reading MII_ACCESS\n"); return ret; } if (!(val & MII_BUSY_)) return 0; } while (!time_after(jiffies, start_time + HZ)); return -EIO; } static int __smsc95xx_mdio_read(struct net_device *netdev, int phy_id, int idx, int in_pm) { struct usbnet *dev = netdev_priv(netdev); u32 val, addr; int ret; mutex_lock(&dev->phy_mutex); /* confirm MII not busy */ ret = __smsc95xx_phy_wait_not_busy(dev, in_pm); if (ret < 0) { netdev_warn(dev->net, "MII is busy in smsc95xx_mdio_read\n"); goto done; } /* set the address, index & direction (read from PHY) */ phy_id &= dev->mii.phy_id_mask; idx &= dev->mii.reg_num_mask; addr = (phy_id << 11) | (idx << 6) | MII_READ_ | MII_BUSY_; ret = __smsc95xx_write_reg(dev, MII_ADDR, addr, in_pm); if (ret < 0) { netdev_warn(dev->net, "Error writing MII_ADDR\n"); goto done; } ret = __smsc95xx_phy_wait_not_busy(dev, in_pm); if (ret < 0) { netdev_warn(dev->net, "Timed out reading MII reg %02X\n", idx); goto done; } ret = __smsc95xx_read_reg(dev, MII_DATA, &val, in_pm); if (ret < 0) { netdev_warn(dev->net, "Error reading MII_DATA\n"); goto done; } ret = (u16)(val & 0xFFFF); done: mutex_unlock(&dev->phy_mutex); return ret; } static void __smsc95xx_mdio_write(struct net_device *netdev, int phy_id, int idx, int regval, int in_pm) { struct usbnet *dev = netdev_priv(netdev); u32 val, addr; int ret; mutex_lock(&dev->phy_mutex); /* confirm MII not busy */ ret = __smsc95xx_phy_wait_not_busy(dev, in_pm); if (ret < 0) { netdev_warn(dev->net, "MII is busy in smsc95xx_mdio_write\n"); goto done; } val = regval; ret = __smsc95xx_write_reg(dev, MII_DATA, val, in_pm); if (ret < 0) { netdev_warn(dev->net, "Error writing MII_DATA\n"); goto done; } /* set the address, index & direction (write to PHY) */ phy_id &= dev->mii.phy_id_mask; idx &= dev->mii.reg_num_mask; addr = (phy_id << 11) | (idx << 6) | MII_WRITE_ | MII_BUSY_; ret = __smsc95xx_write_reg(dev, MII_ADDR, addr, in_pm); if (ret < 0) { netdev_warn(dev->net, "Error writing MII_ADDR\n"); goto done; } ret = __smsc95xx_phy_wait_not_busy(dev, in_pm); if (ret < 0) { netdev_warn(dev->net, "Timed out writing MII reg %02X\n", idx); goto done; } done: mutex_unlock(&dev->phy_mutex); } static int smsc95xx_mdio_read_nopm(struct net_device *netdev, int phy_id, int idx) { return __smsc95xx_mdio_read(netdev, phy_id, idx, 1); } static void smsc95xx_mdio_write_nopm(struct net_device *netdev, int phy_id, int idx, int regval) { __smsc95xx_mdio_write(netdev, phy_id, idx, regval, 1); } static int smsc95xx_mdio_read(struct net_device *netdev, int phy_id, int idx) { return __smsc95xx_mdio_read(netdev, phy_id, idx, 0); } static void smsc95xx_mdio_write(struct net_device *netdev, int phy_id, int idx, int regval) { __smsc95xx_mdio_write(netdev, phy_id, idx, regval, 0); } static int __must_check smsc95xx_wait_eeprom(struct usbnet *dev) { unsigned long start_time = jiffies; u32 val; int ret; do { ret = smsc95xx_read_reg(dev, E2P_CMD, &val); if (ret < 0) { netdev_warn(dev->net, "Error reading E2P_CMD\n"); return ret; } if (!(val & E2P_CMD_BUSY_) || (val & E2P_CMD_TIMEOUT_)) break; udelay(40); } while (!time_after(jiffies, start_time + HZ)); if (val & (E2P_CMD_TIMEOUT_ | E2P_CMD_BUSY_)) { netdev_warn(dev->net, "EEPROM read operation timeout\n"); return -EIO; } return 0; } static int __must_check smsc95xx_eeprom_confirm_not_busy(struct usbnet *dev) { unsigned long start_time = jiffies; u32 val; int ret; do { ret = smsc95xx_read_reg(dev, E2P_CMD, &val); if (ret < 0) { netdev_warn(dev->net, "Error reading E2P_CMD\n"); return ret; } if (!(val & E2P_CMD_BUSY_)) return 0; udelay(40); } while (!time_after(jiffies, start_time + HZ)); netdev_warn(dev->net, "EEPROM is busy\n"); return -EIO; } static int smsc95xx_read_eeprom(struct usbnet *dev, u32 offset, u32 length, u8 *data) { u32 val; int i, ret; BUG_ON(!dev); BUG_ON(!data); ret = smsc95xx_eeprom_confirm_not_busy(dev); if (ret) return ret; for (i = 0; i < length; i++) { val = E2P_CMD_BUSY_ | E2P_CMD_READ_ | (offset & E2P_CMD_ADDR_); ret = smsc95xx_write_reg(dev, E2P_CMD, val); if (ret < 0) { netdev_warn(dev->net, "Error writing E2P_CMD\n"); return ret; } ret = smsc95xx_wait_eeprom(dev); if (ret < 0) return ret; ret = smsc95xx_read_reg(dev, E2P_DATA, &val); if (ret < 0) { netdev_warn(dev->net, "Error reading E2P_DATA\n"); return ret; } data[i] = val & 0xFF; offset++; } return 0; } static int smsc95xx_write_eeprom(struct usbnet *dev, u32 offset, u32 length, u8 *data) { u32 val; int i, ret; BUG_ON(!dev); BUG_ON(!data); ret = smsc95xx_eeprom_confirm_not_busy(dev); if (ret) return ret; /* Issue write/erase enable command */ val = E2P_CMD_BUSY_ | E2P_CMD_EWEN_; ret = smsc95xx_write_reg(dev, E2P_CMD, val); if (ret < 0) { netdev_warn(dev->net, "Error writing E2P_DATA\n"); return ret; } ret = smsc95xx_wait_eeprom(dev); if (ret < 0) return ret; for (i = 0; i < length; i++) { /* Fill data register */ val = data[i]; ret = smsc95xx_write_reg(dev, E2P_DATA, val); if (ret < 0) { netdev_warn(dev->net, "Error writing E2P_DATA\n"); return ret; } /* Send "write" command */ val = E2P_CMD_BUSY_ | E2P_CMD_WRITE_ | (offset & E2P_CMD_ADDR_); ret = smsc95xx_write_reg(dev, E2P_CMD, val); if (ret < 0) { netdev_warn(dev->net, "Error writing E2P_CMD\n"); return ret; } ret = smsc95xx_wait_eeprom(dev); if (ret < 0) return ret; offset++; } return 0; } static int __must_check smsc95xx_write_reg_async(struct usbnet *dev, u16 index, u32 data) { const u16 size = 4; u32 buf; int ret; buf = data; cpu_to_le32s(&buf); ret = usbnet_write_cmd_async(dev, USB_VENDOR_REQUEST_WRITE_REGISTER, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0, index, &buf, size); if (ret < 0) netdev_warn(dev->net, "Error write async cmd, sts=%d\n", ret); return ret; } /* returns hash bit number for given MAC address * example: * 01 00 5E 00 00 01 -> returns bit number 31 */ static unsigned int smsc95xx_hash(char addr[ETH_ALEN]) { return (ether_crc(ETH_ALEN, addr) >> 26) & 0x3f; } static void smsc95xx_set_multicast(struct net_device *netdev) { struct usbnet *dev = netdev_priv(netdev); struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); unsigned long flags; int ret; pdata->hash_hi = 0; pdata->hash_lo = 0; spin_lock_irqsave(&pdata->mac_cr_lock, flags); if (dev->net->flags & IFF_PROMISC) { netif_dbg(dev, drv, dev->net, "promiscuous mode enabled\n"); pdata->mac_cr |= MAC_CR_PRMS_; pdata->mac_cr &= ~(MAC_CR_MCPAS_ | MAC_CR_HPFILT_); } else if (dev->net->flags & IFF_ALLMULTI) { netif_dbg(dev, drv, dev->net, "receive all multicast enabled\n"); pdata->mac_cr |= MAC_CR_MCPAS_; pdata->mac_cr &= ~(MAC_CR_PRMS_ | MAC_CR_HPFILT_); } else if (!netdev_mc_empty(dev->net)) { struct netdev_hw_addr *ha; pdata->mac_cr |= MAC_CR_HPFILT_; pdata->mac_cr &= ~(MAC_CR_PRMS_ | MAC_CR_MCPAS_); netdev_for_each_mc_addr(ha, netdev) { u32 bitnum = smsc95xx_hash(ha->addr); u32 mask = 0x01 << (bitnum & 0x1F); if (bitnum & 0x20) pdata->hash_hi |= mask; else pdata->hash_lo |= mask; } netif_dbg(dev, drv, dev->net, "HASHH=0x%08X, HASHL=0x%08X\n", pdata->hash_hi, pdata->hash_lo); } else { netif_dbg(dev, drv, dev->net, "receive own packets only\n"); pdata->mac_cr &= ~(MAC_CR_PRMS_ | MAC_CR_MCPAS_ | MAC_CR_HPFILT_); } spin_unlock_irqrestore(&pdata->mac_cr_lock, flags); /* Initiate async writes, as we can't wait for completion here */ ret = smsc95xx_write_reg_async(dev, HASHH, pdata->hash_hi); if (ret < 0) netdev_warn(dev->net, "failed to initiate async write to HASHH\n"); ret = smsc95xx_write_reg_async(dev, HASHL, pdata->hash_lo); if (ret < 0) netdev_warn(dev->net, "failed to initiate async write to HASHL\n"); ret = smsc95xx_write_reg_async(dev, MAC_CR, pdata->mac_cr); if (ret < 0) netdev_warn(dev->net, "failed to initiate async write to MAC_CR\n"); } static int smsc95xx_phy_update_flowcontrol(struct usbnet *dev, u8 duplex, u16 lcladv, u16 rmtadv) { u32 flow, afc_cfg = 0; int ret = smsc95xx_read_reg(dev, AFC_CFG, &afc_cfg); if (ret < 0) return ret; if (duplex == DUPLEX_FULL) { u8 cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv); if (cap & FLOW_CTRL_RX) flow = 0xFFFF0002; else flow = 0; if (cap & FLOW_CTRL_TX) afc_cfg |= 0xF; else afc_cfg &= ~0xF; netif_dbg(dev, link, dev->net, "rx pause %s, tx pause %s\n", cap & FLOW_CTRL_RX ? "enabled" : "disabled", cap & FLOW_CTRL_TX ? "enabled" : "disabled"); } else { netif_dbg(dev, link, dev->net, "half duplex\n"); flow = 0; afc_cfg |= 0xF; } ret = smsc95xx_write_reg(dev, FLOW, flow); if (ret < 0) return ret; return smsc95xx_write_reg(dev, AFC_CFG, afc_cfg); } static int smsc95xx_link_reset(struct usbnet *dev) { struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); struct mii_if_info *mii = &dev->mii; struct ethtool_cmd ecmd = { .cmd = ETHTOOL_GSET }; unsigned long flags; u16 lcladv, rmtadv; int ret; /* clear interrupt status */ ret = smsc95xx_mdio_read(dev->net, mii->phy_id, PHY_INT_SRC); if (ret < 0) return ret; ret = smsc95xx_write_reg(dev, INT_STS, INT_STS_CLEAR_ALL_); if (ret < 0) return ret; mii_check_media(mii, 1, 1); mii_ethtool_gset(&dev->mii, &ecmd); lcladv = smsc95xx_mdio_read(dev->net, mii->phy_id, MII_ADVERTISE); rmtadv = smsc95xx_mdio_read(dev->net, mii->phy_id, MII_LPA); netif_dbg(dev, link, dev->net, "speed: %u duplex: %d lcladv: %04x rmtadv: %04x\n", ethtool_cmd_speed(&ecmd), ecmd.duplex, lcladv, rmtadv); spin_lock_irqsave(&pdata->mac_cr_lock, flags); if (ecmd.duplex != DUPLEX_FULL) { pdata->mac_cr &= ~MAC_CR_FDPX_; pdata->mac_cr |= MAC_CR_RCVOWN_; } else { pdata->mac_cr &= ~MAC_CR_RCVOWN_; pdata->mac_cr |= MAC_CR_FDPX_; } spin_unlock_irqrestore(&pdata->mac_cr_lock, flags); ret = smsc95xx_write_reg(dev, MAC_CR, pdata->mac_cr); if (ret < 0) return ret; ret = smsc95xx_phy_update_flowcontrol(dev, ecmd.duplex, lcladv, rmtadv); if (ret < 0) netdev_warn(dev->net, "Error updating PHY flow control\n"); return ret; } static void smsc95xx_status(struct usbnet *dev, struct urb *urb) { u32 intdata; if (urb->actual_length != 4) { netdev_warn(dev->net, "unexpected urb length %d\n", urb->actual_length); return; } memcpy(&intdata, urb->transfer_buffer, 4); le32_to_cpus(&intdata); netif_dbg(dev, link, dev->net, "intdata: 0x%08X\n", intdata); if (intdata & INT_ENP_PHY_INT_) usbnet_defer_kevent(dev, EVENT_LINK_RESET); else netdev_warn(dev->net, "unexpected interrupt, intdata=0x%08X\n", intdata); } /* Enable or disable Tx & Rx checksum offload engines */ static int smsc95xx_set_features(struct net_device *netdev, netdev_features_t features) { struct usbnet *dev = netdev_priv(netdev); u32 read_buf; int ret; ret = smsc95xx_read_reg(dev, COE_CR, &read_buf); if (ret < 0) return ret; if (features & NETIF_F_HW_CSUM) read_buf |= Tx_COE_EN_; else read_buf &= ~Tx_COE_EN_; if (features & NETIF_F_RXCSUM) read_buf |= Rx_COE_EN_; else read_buf &= ~Rx_COE_EN_; ret = smsc95xx_write_reg(dev, COE_CR, read_buf); if (ret < 0) return ret; netif_dbg(dev, hw, dev->net, "COE_CR = 0x%08x\n", read_buf); return 0; } static int smsc95xx_ethtool_get_eeprom_len(struct net_device *net) { return MAX_EEPROM_SIZE; } static int smsc95xx_ethtool_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *ee, u8 *data) { struct usbnet *dev = netdev_priv(netdev); ee->magic = LAN95XX_EEPROM_MAGIC; return smsc95xx_read_eeprom(dev, ee->offset, ee->len, data); } static int smsc95xx_ethtool_set_eeprom(struct net_device *netdev, struct ethtool_eeprom *ee, u8 *data) { struct usbnet *dev = netdev_priv(netdev); if (ee->magic != LAN95XX_EEPROM_MAGIC) { netdev_warn(dev->net, "EEPROM: magic value mismatch, magic = 0x%x\n", ee->magic); return -EINVAL; } return smsc95xx_write_eeprom(dev, ee->offset, ee->len, data); } static int smsc95xx_ethtool_getregslen(struct net_device *netdev) { /* all smsc95xx registers */ return COE_CR - ID_REV + sizeof(u32); } static void smsc95xx_ethtool_getregs(struct net_device *netdev, struct ethtool_regs *regs, void *buf) { struct usbnet *dev = netdev_priv(netdev); unsigned int i, j; int retval; u32 *data = buf; retval = smsc95xx_read_reg(dev, ID_REV, ®s->version); if (retval < 0) { netdev_warn(netdev, "REGS: cannot read ID_REV\n"); return; } for (i = ID_REV, j = 0; i <= COE_CR; i += (sizeof(u32)), j++) { retval = smsc95xx_read_reg(dev, i, &data[j]); if (retval < 0) { netdev_warn(netdev, "REGS: cannot read reg[%x]\n", i); return; } } } static void smsc95xx_ethtool_get_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo) { struct usbnet *dev = netdev_priv(net); struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); wolinfo->supported = SUPPORTED_WAKE; wolinfo->wolopts = pdata->wolopts; } static int smsc95xx_ethtool_set_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo) { struct usbnet *dev = netdev_priv(net); struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); int ret; pdata->wolopts = wolinfo->wolopts & SUPPORTED_WAKE; ret = device_set_wakeup_enable(&dev->udev->dev, pdata->wolopts); if (ret < 0) netdev_warn(dev->net, "device_set_wakeup_enable error %d\n", ret); return ret; } static const struct ethtool_ops smsc95xx_ethtool_ops = { .get_link = usbnet_get_link, .nway_reset = usbnet_nway_reset, .get_drvinfo = usbnet_get_drvinfo, .get_msglevel = usbnet_get_msglevel, .set_msglevel = usbnet_set_msglevel, .get_settings = usbnet_get_settings, .set_settings = usbnet_set_settings, .get_eeprom_len = smsc95xx_ethtool_get_eeprom_len, .get_eeprom = smsc95xx_ethtool_get_eeprom, .set_eeprom = smsc95xx_ethtool_set_eeprom, .get_regs_len = smsc95xx_ethtool_getregslen, .get_regs = smsc95xx_ethtool_getregs, .get_wol = smsc95xx_ethtool_get_wol, .set_wol = smsc95xx_ethtool_set_wol, }; static int smsc95xx_ioctl(struct net_device *netdev, struct ifreq *rq, int cmd) { struct usbnet *dev = netdev_priv(netdev); if (!netif_running(netdev)) return -EINVAL; return generic_mii_ioctl(&dev->mii, if_mii(rq), cmd, NULL); } static void smsc95xx_init_mac_address(struct usbnet *dev) { /* try reading mac address from EEPROM */ if (smsc95xx_read_eeprom(dev, EEPROM_MAC_OFFSET, ETH_ALEN, dev->net->dev_addr) == 0) { if (is_valid_ether_addr(dev->net->dev_addr)) { /* eeprom values are valid so use them */ netif_dbg(dev, ifup, dev->net, "MAC address read from EEPROM\n"); return; } } /* no eeprom, or eeprom values are invalid. generate random MAC */ eth_hw_addr_random(dev->net); netif_dbg(dev, ifup, dev->net, "MAC address set to eth_random_addr\n"); } static int smsc95xx_set_mac_address(struct usbnet *dev) { u32 addr_lo = dev->net->dev_addr[0] | dev->net->dev_addr[1] << 8 | dev->net->dev_addr[2] << 16 | dev->net->dev_addr[3] << 24; u32 addr_hi = dev->net->dev_addr[4] | dev->net->dev_addr[5] << 8; int ret; ret = smsc95xx_write_reg(dev, ADDRL, addr_lo); if (ret < 0) return ret; return smsc95xx_write_reg(dev, ADDRH, addr_hi); } /* starts the TX path */ static int smsc95xx_start_tx_path(struct usbnet *dev) { struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); unsigned long flags; int ret; /* Enable Tx at MAC */ spin_lock_irqsave(&pdata->mac_cr_lock, flags); pdata->mac_cr |= MAC_CR_TXEN_; spin_unlock_irqrestore(&pdata->mac_cr_lock, flags); ret = smsc95xx_write_reg(dev, MAC_CR, pdata->mac_cr); if (ret < 0) return ret; /* Enable Tx at SCSRs */ return smsc95xx_write_reg(dev, TX_CFG, TX_CFG_ON_); } /* Starts the Receive path */ static int smsc95xx_start_rx_path(struct usbnet *dev, int in_pm) { struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); unsigned long flags; spin_lock_irqsave(&pdata->mac_cr_lock, flags); pdata->mac_cr |= MAC_CR_RXEN_; spin_unlock_irqrestore(&pdata->mac_cr_lock, flags); return __smsc95xx_write_reg(dev, MAC_CR, pdata->mac_cr, in_pm); } static int smsc95xx_phy_initialize(struct usbnet *dev) { int bmcr, ret, timeout = 0; /* Initialize MII structure */ dev->mii.dev = dev->net; dev->mii.mdio_read = smsc95xx_mdio_read; dev->mii.mdio_write = smsc95xx_mdio_write; dev->mii.phy_id_mask = 0x1f; dev->mii.reg_num_mask = 0x1f; dev->mii.phy_id = SMSC95XX_INTERNAL_PHY_ID; /* reset phy and wait for reset to complete */ smsc95xx_mdio_write(dev->net, dev->mii.phy_id, MII_BMCR, BMCR_RESET); do { msleep(10); bmcr = smsc95xx_mdio_read(dev->net, dev->mii.phy_id, MII_BMCR); timeout++; } while ((bmcr & BMCR_RESET) && (timeout < 100)); if (timeout >= 100) { netdev_warn(dev->net, "timeout on PHY Reset"); return -EIO; } smsc95xx_mdio_write(dev->net, dev->mii.phy_id, MII_ADVERTISE, ADVERTISE_ALL | ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); /* read to clear */ ret = smsc95xx_mdio_read(dev->net, dev->mii.phy_id, PHY_INT_SRC); if (ret < 0) { netdev_warn(dev->net, "Failed to read PHY_INT_SRC during init\n"); return ret; } smsc95xx_mdio_write(dev->net, dev->mii.phy_id, PHY_INT_MASK, PHY_INT_MASK_DEFAULT_); mii_nway_restart(&dev->mii); netif_dbg(dev, ifup, dev->net, "phy initialised successfully\n"); return 0; } static int smsc95xx_reset(struct usbnet *dev) { struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); u32 read_buf, write_buf, burst_cap; int ret = 0, timeout; netif_dbg(dev, ifup, dev->net, "entering smsc95xx_reset\n"); ret = smsc95xx_write_reg(dev, HW_CFG, HW_CFG_LRST_); if (ret < 0) return ret; timeout = 0; do { msleep(10); ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf); if (ret < 0) return ret; timeout++; } while ((read_buf & HW_CFG_LRST_) && (timeout < 100)); if (timeout >= 100) { netdev_warn(dev->net, "timeout waiting for completion of Lite Reset\n"); return ret; } ret = smsc95xx_write_reg(dev, PM_CTRL, PM_CTL_PHY_RST_); if (ret < 0) return ret; timeout = 0; do { msleep(10); ret = smsc95xx_read_reg(dev, PM_CTRL, &read_buf); if (ret < 0) return ret; timeout++; } while ((read_buf & PM_CTL_PHY_RST_) && (timeout < 100)); if (timeout >= 100) { netdev_warn(dev->net, "timeout waiting for PHY Reset\n"); return ret; } ret = smsc95xx_set_mac_address(dev); if (ret < 0) return ret; netif_dbg(dev, ifup, dev->net, "MAC Address: %pM\n", dev->net->dev_addr); ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf); if (ret < 0) return ret; netif_dbg(dev, ifup, dev->net, "Read Value from HW_CFG : 0x%08x\n", read_buf); read_buf |= HW_CFG_BIR_; ret = smsc95xx_write_reg(dev, HW_CFG, read_buf); if (ret < 0) return ret; ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf); if (ret < 0) return ret; netif_dbg(dev, ifup, dev->net, "Read Value from HW_CFG after writing HW_CFG_BIR_: 0x%08x\n", read_buf); if (!turbo_mode) { burst_cap = 0; dev->rx_urb_size = MAX_SINGLE_PACKET_SIZE; } else if (dev->udev->speed == USB_SPEED_HIGH) { burst_cap = DEFAULT_HS_BURST_CAP_SIZE / HS_USB_PKT_SIZE; dev->rx_urb_size = DEFAULT_HS_BURST_CAP_SIZE; } else { burst_cap = DEFAULT_FS_BURST_CAP_SIZE / FS_USB_PKT_SIZE; dev->rx_urb_size = DEFAULT_FS_BURST_CAP_SIZE; } netif_dbg(dev, ifup, dev->net, "rx_urb_size=%ld\n", (ulong)dev->rx_urb_size); ret = smsc95xx_write_reg(dev, BURST_CAP, burst_cap); if (ret < 0) return ret; ret = smsc95xx_read_reg(dev, BURST_CAP, &read_buf); if (ret < 0) return ret; netif_dbg(dev, ifup, dev->net, "Read Value from BURST_CAP after writing: 0x%08x\n", read_buf); ret = smsc95xx_write_reg(dev, BULK_IN_DLY, DEFAULT_BULK_IN_DELAY); if (ret < 0) return ret; ret = smsc95xx_read_reg(dev, BULK_IN_DLY, &read_buf); if (ret < 0) return ret; netif_dbg(dev, ifup, dev->net, "Read Value from BULK_IN_DLY after writing: 0x%08x\n", read_buf); ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf); if (ret < 0) return ret; netif_dbg(dev, ifup, dev->net, "Read Value from HW_CFG: 0x%08x\n", read_buf); if (turbo_mode) read_buf |= (HW_CFG_MEF_ | HW_CFG_BCE_); read_buf &= ~HW_CFG_RXDOFF_; /* set Rx data offset=2, Make IP header aligns on word boundary. */ read_buf |= NET_IP_ALIGN << 9; ret = smsc95xx_write_reg(dev, HW_CFG, read_buf); if (ret < 0) return ret; ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf); if (ret < 0) return ret; netif_dbg(dev, ifup, dev->net, "Read Value from HW_CFG after writing: 0x%08x\n", read_buf); ret = smsc95xx_write_reg(dev, INT_STS, INT_STS_CLEAR_ALL_); if (ret < 0) return ret; ret = smsc95xx_read_reg(dev, ID_REV, &read_buf); if (ret < 0) return ret; netif_dbg(dev, ifup, dev->net, "ID_REV = 0x%08x\n", read_buf); /* Configure GPIO pins as LED outputs */ write_buf = LED_GPIO_CFG_SPD_LED | LED_GPIO_CFG_LNK_LED | LED_GPIO_CFG_FDX_LED; ret = smsc95xx_write_reg(dev, LED_GPIO_CFG, write_buf); if (ret < 0) return ret; /* Init Tx */ ret = smsc95xx_write_reg(dev, FLOW, 0); if (ret < 0) return ret; ret = smsc95xx_write_reg(dev, AFC_CFG, AFC_CFG_DEFAULT); if (ret < 0) return ret; /* Don't need mac_cr_lock during initialisation */ ret = smsc95xx_read_reg(dev, MAC_CR, &pdata->mac_cr); if (ret < 0) return ret; /* Init Rx */ /* Set Vlan */ ret = smsc95xx_write_reg(dev, VLAN1, (u32)ETH_P_8021Q); if (ret < 0) return ret; /* Enable or disable checksum offload engines */ ret = smsc95xx_set_features(dev->net, dev->net->features); if (ret < 0) { netdev_warn(dev->net, "Failed to set checksum offload features\n"); return ret; } smsc95xx_set_multicast(dev->net); ret = smsc95xx_phy_initialize(dev); if (ret < 0) { netdev_warn(dev->net, "Failed to init PHY\n"); return ret; } ret = smsc95xx_read_reg(dev, INT_EP_CTL, &read_buf); if (ret < 0) return ret; /* enable PHY interrupts */ read_buf |= INT_EP_CTL_PHY_INT_; ret = smsc95xx_write_reg(dev, INT_EP_CTL, read_buf); if (ret < 0) return ret; ret = smsc95xx_start_tx_path(dev); if (ret < 0) { netdev_warn(dev->net, "Failed to start TX path\n"); return ret; } ret = smsc95xx_start_rx_path(dev, 0); if (ret < 0) { netdev_warn(dev->net, "Failed to start RX path\n"); return ret; } netif_dbg(dev, ifup, dev->net, "smsc95xx_reset, return 0\n"); return 0; } static const struct net_device_ops smsc95xx_netdev_ops = { .ndo_open = usbnet_open, .ndo_stop = usbnet_stop, .ndo_start_xmit = usbnet_start_xmit, .ndo_tx_timeout = usbnet_tx_timeout, .ndo_change_mtu = usbnet_change_mtu, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, .ndo_do_ioctl = smsc95xx_ioctl, .ndo_set_rx_mode = smsc95xx_set_multicast, .ndo_set_features = smsc95xx_set_features, }; static int smsc95xx_bind(struct usbnet *dev, struct usb_interface *intf) { struct smsc95xx_priv *pdata = NULL; u32 val; int ret; printk(KERN_INFO SMSC_CHIPNAME " v" SMSC_DRIVER_VERSION "\n"); ret = usbnet_get_endpoints(dev, intf); if (ret < 0) { netdev_warn(dev->net, "usbnet_get_endpoints failed: %d\n", ret); return ret; } dev->data[0] = (unsigned long)kzalloc(sizeof(struct smsc95xx_priv), GFP_KERNEL); pdata = (struct smsc95xx_priv *)(dev->data[0]); if (!pdata) return -ENOMEM; spin_lock_init(&pdata->mac_cr_lock); if (DEFAULT_TX_CSUM_ENABLE) dev->net->features |= NETIF_F_HW_CSUM; if (DEFAULT_RX_CSUM_ENABLE) dev->net->features |= NETIF_F_RXCSUM; dev->net->hw_features = NETIF_F_HW_CSUM | NETIF_F_RXCSUM; smsc95xx_init_mac_address(dev); /* Init all registers */ ret = smsc95xx_reset(dev); /* detect device revision as different features may be available */ ret = smsc95xx_read_reg(dev, ID_REV, &val); if (ret < 0) return ret; val >>= 16; if ((val == ID_REV_CHIP_ID_9500A_) || (val == ID_REV_CHIP_ID_9530_) || (val == ID_REV_CHIP_ID_89530_) || (val == ID_REV_CHIP_ID_9730_)) pdata->features = (FEATURE_8_WAKEUP_FILTERS | FEATURE_PHY_NLP_CROSSOVER | FEATURE_REMOTE_WAKEUP); else if (val == ID_REV_CHIP_ID_9512_) pdata->features = FEATURE_8_WAKEUP_FILTERS; dev->net->netdev_ops = &smsc95xx_netdev_ops; dev->net->ethtool_ops = &smsc95xx_ethtool_ops; dev->net->flags |= IFF_MULTICAST; dev->net->hard_header_len += SMSC95XX_TX_OVERHEAD_CSUM; dev->hard_mtu = dev->net->mtu + dev->net->hard_header_len; return 0; } static void smsc95xx_unbind(struct usbnet *dev, struct usb_interface *intf) { struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); if (pdata) { netif_dbg(dev, ifdown, dev->net, "free pdata\n"); kfree(pdata); pdata = NULL; dev->data[0] = 0; } } static u32 smsc_crc(const u8 *buffer, size_t len, int filter) { u32 crc = bitrev16(crc16(0xFFFF, buffer, len)); return crc << ((filter % 2) * 16); } static int smsc95xx_enable_phy_wakeup_interrupts(struct usbnet *dev, u16 mask) { struct mii_if_info *mii = &dev->mii; int ret; netdev_dbg(dev->net, "enabling PHY wakeup interrupts\n"); /* read to clear */ ret = smsc95xx_mdio_read_nopm(dev->net, mii->phy_id, PHY_INT_SRC); if (ret < 0) return ret; /* enable interrupt source */ ret = smsc95xx_mdio_read_nopm(dev->net, mii->phy_id, PHY_INT_MASK); if (ret < 0) return ret; ret |= mask; smsc95xx_mdio_write_nopm(dev->net, mii->phy_id, PHY_INT_MASK, ret); return 0; } static int smsc95xx_link_ok_nopm(struct usbnet *dev) { struct mii_if_info *mii = &dev->mii; int ret; /* first, a dummy read, needed to latch some MII phys */ ret = smsc95xx_mdio_read_nopm(dev->net, mii->phy_id, MII_BMSR); if (ret < 0) return ret; ret = smsc95xx_mdio_read_nopm(dev->net, mii->phy_id, MII_BMSR); if (ret < 0) return ret; return !!(ret & BMSR_LSTATUS); } static int smsc95xx_enter_suspend0(struct usbnet *dev) { struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); u32 val; int ret; ret = smsc95xx_read_reg_nopm(dev, PM_CTRL, &val); if (ret < 0) return ret; val &= (~(PM_CTL_SUS_MODE_ | PM_CTL_WUPS_ | PM_CTL_PHY_RST_)); val |= PM_CTL_SUS_MODE_0; ret = smsc95xx_write_reg_nopm(dev, PM_CTRL, val); if (ret < 0) return ret; /* clear wol status */ val &= ~PM_CTL_WUPS_; val |= PM_CTL_WUPS_WOL_; /* enable energy detection */ if (pdata->wolopts & WAKE_PHY) val |= PM_CTL_WUPS_ED_; ret = smsc95xx_write_reg_nopm(dev, PM_CTRL, val); if (ret < 0) return ret; /* read back PM_CTRL */ ret = smsc95xx_read_reg_nopm(dev, PM_CTRL, &val); if (ret < 0) return ret; pdata->suspend_flags |= SUSPEND_SUSPEND0; return 0; } static int smsc95xx_enter_suspend1(struct usbnet *dev) { struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); struct mii_if_info *mii = &dev->mii; u32 val; int ret; /* reconfigure link pulse detection timing for * compatibility with non-standard link partners */ if (pdata->features & FEATURE_PHY_NLP_CROSSOVER) smsc95xx_mdio_write_nopm(dev->net, mii->phy_id, PHY_EDPD_CONFIG, PHY_EDPD_CONFIG_DEFAULT); /* enable energy detect power-down mode */ ret = smsc95xx_mdio_read_nopm(dev->net, mii->phy_id, PHY_MODE_CTRL_STS); if (ret < 0) return ret; ret |= MODE_CTRL_STS_EDPWRDOWN_; smsc95xx_mdio_write_nopm(dev->net, mii->phy_id, PHY_MODE_CTRL_STS, ret); /* enter SUSPEND1 mode */ ret = smsc95xx_read_reg_nopm(dev, PM_CTRL, &val); if (ret < 0) return ret; val &= ~(PM_CTL_SUS_MODE_ | PM_CTL_WUPS_ | PM_CTL_PHY_RST_); val |= PM_CTL_SUS_MODE_1; ret = smsc95xx_write_reg_nopm(dev, PM_CTRL, val); if (ret < 0) return ret; /* clear wol status, enable energy detection */ val &= ~PM_CTL_WUPS_; val |= (PM_CTL_WUPS_ED_ | PM_CTL_ED_EN_); ret = smsc95xx_write_reg_nopm(dev, PM_CTRL, val); if (ret < 0) return ret; pdata->suspend_flags |= SUSPEND_SUSPEND1; return 0; } static int smsc95xx_enter_suspend2(struct usbnet *dev) { struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); u32 val; int ret; ret = smsc95xx_read_reg_nopm(dev, PM_CTRL, &val); if (ret < 0) return ret; val &= ~(PM_CTL_SUS_MODE_ | PM_CTL_WUPS_ | PM_CTL_PHY_RST_); val |= PM_CTL_SUS_MODE_2; ret = smsc95xx_write_reg_nopm(dev, PM_CTRL, val); if (ret < 0) return ret; pdata->suspend_flags |= SUSPEND_SUSPEND2; return 0; } static int smsc95xx_enter_suspend3(struct usbnet *dev) { struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); u32 val; int ret; ret = smsc95xx_read_reg_nopm(dev, RX_FIFO_INF, &val); if (ret < 0) return ret; if (val & 0xFFFF) { netdev_info(dev->net, "rx fifo not empty in autosuspend\n"); return -EBUSY; } ret = smsc95xx_read_reg_nopm(dev, PM_CTRL, &val); if (ret < 0) return ret; val &= ~(PM_CTL_SUS_MODE_ | PM_CTL_WUPS_ | PM_CTL_PHY_RST_); val |= PM_CTL_SUS_MODE_3 | PM_CTL_RES_CLR_WKP_STS; ret = smsc95xx_write_reg_nopm(dev, PM_CTRL, val); if (ret < 0) return ret; /* clear wol status */ val &= ~PM_CTL_WUPS_; val |= PM_CTL_WUPS_WOL_; ret = smsc95xx_write_reg_nopm(dev, PM_CTRL, val); if (ret < 0) return ret; pdata->suspend_flags |= SUSPEND_SUSPEND3; return 0; } static int smsc95xx_autosuspend(struct usbnet *dev, u32 link_up) { struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); int ret; if (!netif_running(dev->net)) { /* interface is ifconfig down so fully power down hw */ netdev_dbg(dev->net, "autosuspend entering SUSPEND2\n"); return smsc95xx_enter_suspend2(dev); } if (!link_up) { /* link is down so enter EDPD mode, but only if device can * reliably resume from it. This check should be redundant * as current FEATURE_REMOTE_WAKEUP parts also support * FEATURE_PHY_NLP_CROSSOVER but it's included for clarity */ if (!(pdata->features & FEATURE_PHY_NLP_CROSSOVER)) { netdev_warn(dev->net, "EDPD not supported\n"); return -EBUSY; } netdev_dbg(dev->net, "autosuspend entering SUSPEND1\n"); /* enable PHY wakeup events for if cable is attached */ ret = smsc95xx_enable_phy_wakeup_interrupts(dev, PHY_INT_MASK_ANEG_COMP_); if (ret < 0) { netdev_warn(dev->net, "error enabling PHY wakeup ints\n"); return ret; } netdev_info(dev->net, "entering SUSPEND1 mode\n"); return smsc95xx_enter_suspend1(dev); } /* enable PHY wakeup events so we remote wakeup if cable is pulled */ ret = smsc95xx_enable_phy_wakeup_interrupts(dev, PHY_INT_MASK_LINK_DOWN_); if (ret < 0) { netdev_warn(dev->net, "error enabling PHY wakeup ints\n"); return ret; } netdev_dbg(dev->net, "autosuspend entering SUSPEND3\n"); return smsc95xx_enter_suspend3(dev); } static int smsc95xx_suspend(struct usb_interface *intf, pm_message_t message) { struct usbnet *dev = usb_get_intfdata(intf); struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); u32 val, link_up; int ret; ret = usbnet_suspend(intf, message); if (ret < 0) { netdev_warn(dev->net, "usbnet_suspend error\n"); return ret; } if (pdata->suspend_flags) { netdev_warn(dev->net, "error during last resume\n"); pdata->suspend_flags = 0; } /* determine if link is up using only _nopm functions */ link_up = smsc95xx_link_ok_nopm(dev); if (message.event == PM_EVENT_AUTO_SUSPEND && (pdata->features & FEATURE_REMOTE_WAKEUP)) { ret = smsc95xx_autosuspend(dev, link_up); goto done; } /* if we get this far we're not autosuspending */ /* if no wol options set, or if link is down and we're not waking on * PHY activity, enter lowest power SUSPEND2 mode */ if (!(pdata->wolopts & SUPPORTED_WAKE) || !(link_up || (pdata->wolopts & WAKE_PHY))) { netdev_info(dev->net, "entering SUSPEND2 mode\n"); /* disable energy detect (link up) & wake up events */ ret = smsc95xx_read_reg_nopm(dev, WUCSR, &val); if (ret < 0) goto done; val &= ~(WUCSR_MPEN_ | WUCSR_WAKE_EN_); ret = smsc95xx_write_reg_nopm(dev, WUCSR, val); if (ret < 0) goto done; ret = smsc95xx_read_reg_nopm(dev, PM_CTRL, &val); if (ret < 0) goto done; val &= ~(PM_CTL_ED_EN_ | PM_CTL_WOL_EN_); ret = smsc95xx_write_reg_nopm(dev, PM_CTRL, val); if (ret < 0) goto done; ret = smsc95xx_enter_suspend2(dev); goto done; } if (pdata->wolopts & WAKE_PHY) { ret = smsc95xx_enable_phy_wakeup_interrupts(dev, (PHY_INT_MASK_ANEG_COMP_ | PHY_INT_MASK_LINK_DOWN_)); if (ret < 0) { netdev_warn(dev->net, "error enabling PHY wakeup ints\n"); goto done; } /* if link is down then configure EDPD and enter SUSPEND1, * otherwise enter SUSPEND0 below */ if (!link_up) { netdev_info(dev->net, "entering SUSPEND1 mode\n"); ret = smsc95xx_enter_suspend1(dev); goto done; } } if (pdata->wolopts & (WAKE_BCAST | WAKE_MCAST | WAKE_ARP | WAKE_UCAST)) { u32 *filter_mask = kzalloc(sizeof(u32) * 32, GFP_KERNEL); u32 command[2]; u32 offset[2]; u32 crc[4]; int wuff_filter_count = (pdata->features & FEATURE_8_WAKEUP_FILTERS) ? LAN9500A_WUFF_NUM : LAN9500_WUFF_NUM; int i, filter = 0; if (!filter_mask) { netdev_warn(dev->net, "Unable to allocate filter_mask\n"); ret = -ENOMEM; goto done; } memset(command, 0, sizeof(command)); memset(offset, 0, sizeof(offset)); memset(crc, 0, sizeof(crc)); if (pdata->wolopts & WAKE_BCAST) { const u8 bcast[] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; netdev_info(dev->net, "enabling broadcast detection\n"); filter_mask[filter * 4] = 0x003F; filter_mask[filter * 4 + 1] = 0x00; filter_mask[filter * 4 + 2] = 0x00; filter_mask[filter * 4 + 3] = 0x00; command[filter/4] |= 0x05UL << ((filter % 4) * 8); offset[filter/4] |= 0x00 << ((filter % 4) * 8); crc[filter/2] |= smsc_crc(bcast, 6, filter); filter++; } if (pdata->wolopts & WAKE_MCAST) { const u8 mcast[] = {0x01, 0x00, 0x5E}; netdev_info(dev->net, "enabling multicast detection\n"); filter_mask[filter * 4] = 0x0007; filter_mask[filter * 4 + 1] = 0x00; filter_mask[filter * 4 + 2] = 0x00; filter_mask[filter * 4 + 3] = 0x00; command[filter/4] |= 0x09UL << ((filter % 4) * 8); offset[filter/4] |= 0x00 << ((filter % 4) * 8); crc[filter/2] |= smsc_crc(mcast, 3, filter); filter++; } if (pdata->wolopts & WAKE_ARP) { const u8 arp[] = {0x08, 0x06}; netdev_info(dev->net, "enabling ARP detection\n"); filter_mask[filter * 4] = 0x0003; filter_mask[filter * 4 + 1] = 0x00; filter_mask[filter * 4 + 2] = 0x00; filter_mask[filter * 4 + 3] = 0x00; command[filter/4] |= 0x05UL << ((filter % 4) * 8); offset[filter/4] |= 0x0C << ((filter % 4) * 8); crc[filter/2] |= smsc_crc(arp, 2, filter); filter++; } if (pdata->wolopts & WAKE_UCAST) { netdev_info(dev->net, "enabling unicast detection\n"); filter_mask[filter * 4] = 0x003F; filter_mask[filter * 4 + 1] = 0x00; filter_mask[filter * 4 + 2] = 0x00; filter_mask[filter * 4 + 3] = 0x00; command[filter/4] |= 0x01UL << ((filter % 4) * 8); offset[filter/4] |= 0x00 << ((filter % 4) * 8); crc[filter/2] |= smsc_crc(dev->net->dev_addr, ETH_ALEN, filter); filter++; } for (i = 0; i < (wuff_filter_count * 4); i++) { ret = smsc95xx_write_reg_nopm(dev, WUFF, filter_mask[i]); if (ret < 0) { kfree(filter_mask); goto done; } } kfree(filter_mask); for (i = 0; i < (wuff_filter_count / 4); i++) { ret = smsc95xx_write_reg_nopm(dev, WUFF, command[i]); if (ret < 0) goto done; } for (i = 0; i < (wuff_filter_count / 4); i++) { ret = smsc95xx_write_reg_nopm(dev, WUFF, offset[i]); if (ret < 0) goto done; } for (i = 0; i < (wuff_filter_count / 2); i++) { ret = smsc95xx_write_reg_nopm(dev, WUFF, crc[i]); if (ret < 0) goto done; } /* clear any pending pattern match packet status */ ret = smsc95xx_read_reg_nopm(dev, WUCSR, &val); if (ret < 0) goto done; val |= WUCSR_WUFR_; ret = smsc95xx_write_reg_nopm(dev, WUCSR, val); if (ret < 0) goto done; } if (pdata->wolopts & WAKE_MAGIC) { /* clear any pending magic packet status */ ret = smsc95xx_read_reg_nopm(dev, WUCSR, &val); if (ret < 0) goto done; val |= WUCSR_MPR_; ret = smsc95xx_write_reg_nopm(dev, WUCSR, val); if (ret < 0) goto done; } /* enable/disable wakeup sources */ ret = smsc95xx_read_reg_nopm(dev, WUCSR, &val); if (ret < 0) goto done; if (pdata->wolopts & (WAKE_BCAST | WAKE_MCAST | WAKE_ARP | WAKE_UCAST)) { netdev_info(dev->net, "enabling pattern match wakeup\n"); val |= WUCSR_WAKE_EN_; } else { netdev_info(dev->net, "disabling pattern match wakeup\n"); val &= ~WUCSR_WAKE_EN_; } if (pdata->wolopts & WAKE_MAGIC) { netdev_info(dev->net, "enabling magic packet wakeup\n"); val |= WUCSR_MPEN_; } else { netdev_info(dev->net, "disabling magic packet wakeup\n"); val &= ~WUCSR_MPEN_; } ret = smsc95xx_write_reg_nopm(dev, WUCSR, val); if (ret < 0) goto done; /* enable wol wakeup source */ ret = smsc95xx_read_reg_nopm(dev, PM_CTRL, &val); if (ret < 0) goto done; val |= PM_CTL_WOL_EN_; /* phy energy detect wakeup source */ if (pdata->wolopts & WAKE_PHY) val |= PM_CTL_ED_EN_; ret = smsc95xx_write_reg_nopm(dev, PM_CTRL, val); if (ret < 0) goto done; /* enable receiver to enable frame reception */ smsc95xx_start_rx_path(dev, 1); /* some wol options are enabled, so enter SUSPEND0 */ netdev_info(dev->net, "entering SUSPEND0 mode\n"); ret = smsc95xx_enter_suspend0(dev); done: /* * TODO: resume() might need to handle the suspend failure * in system sleep */ if (ret && PMSG_IS_AUTO(message)) usbnet_resume(intf); return ret; } static int smsc95xx_resume(struct usb_interface *intf) { struct usbnet *dev = usb_get_intfdata(intf); struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); u8 suspend_flags = pdata->suspend_flags; int ret; u32 val; BUG_ON(!dev); netdev_dbg(dev->net, "resume suspend_flags=0x%02x\n", suspend_flags); /* do this first to ensure it's cleared even in error case */ pdata->suspend_flags = 0; if (suspend_flags & SUSPEND_ALLMODES) { /* clear wake-up sources */ ret = smsc95xx_read_reg_nopm(dev, WUCSR, &val); if (ret < 0) return ret; val &= ~(WUCSR_WAKE_EN_ | WUCSR_MPEN_); ret = smsc95xx_write_reg_nopm(dev, WUCSR, val); if (ret < 0) return ret; /* clear wake-up status */ ret = smsc95xx_read_reg_nopm(dev, PM_CTRL, &val); if (ret < 0) return ret; val &= ~PM_CTL_WOL_EN_; val |= PM_CTL_WUPS_; ret = smsc95xx_write_reg_nopm(dev, PM_CTRL, val); if (ret < 0) return ret; } ret = usbnet_resume(intf); if (ret < 0) netdev_warn(dev->net, "usbnet_resume error\n"); return ret; } static void smsc95xx_rx_csum_offload(struct sk_buff *skb) { skb->csum = *(u16 *)(skb_tail_pointer(skb) - 2); skb->ip_summed = CHECKSUM_COMPLETE; skb_trim(skb, skb->len - 2); } static int smsc95xx_rx_fixup(struct usbnet *dev, struct sk_buff *skb) { while (skb->len > 0) { u32 header, align_count; struct sk_buff *ax_skb; unsigned char *packet; u16 size; memcpy(&header, skb->data, sizeof(header)); le32_to_cpus(&header); skb_pull(skb, 4 + NET_IP_ALIGN); packet = skb->data; /* get the packet length */ size = (u16)((header & RX_STS_FL_) >> 16); align_count = (4 - ((size + NET_IP_ALIGN) % 4)) % 4; if (unlikely(header & RX_STS_ES_)) { netif_dbg(dev, rx_err, dev->net, "Error header=0x%08x\n", header); dev->net->stats.rx_errors++; dev->net->stats.rx_dropped++; if (header & RX_STS_CRC_) { dev->net->stats.rx_crc_errors++; } else { if (header & (RX_STS_TL_ | RX_STS_RF_)) dev->net->stats.rx_frame_errors++; if ((header & RX_STS_LE_) && (!(header & RX_STS_FT_))) dev->net->stats.rx_length_errors++; } } else { /* ETH_FRAME_LEN + 4(CRC) + 2(COE) + 4(Vlan) */ if (unlikely(size > (ETH_FRAME_LEN + 12))) { netif_dbg(dev, rx_err, dev->net, "size err header=0x%08x\n", header); return 0; } /* last frame in this batch */ if (skb->len == size) { if (dev->net->features & NETIF_F_RXCSUM) smsc95xx_rx_csum_offload(skb); skb_trim(skb, skb->len - 4); /* remove fcs */ skb->truesize = size + sizeof(struct sk_buff); return 1; } ax_skb = skb_clone(skb, GFP_ATOMIC); if (unlikely(!ax_skb)) { netdev_warn(dev->net, "Error allocating skb\n"); return 0; } ax_skb->len = size; ax_skb->data = packet; skb_set_tail_pointer(ax_skb, size); if (dev->net->features & NETIF_F_RXCSUM) smsc95xx_rx_csum_offload(ax_skb); skb_trim(ax_skb, ax_skb->len - 4); /* remove fcs */ ax_skb->truesize = size + sizeof(struct sk_buff); usbnet_skb_return(dev, ax_skb); } skb_pull(skb, size); /* padding bytes before the next frame starts */ if (skb->len) skb_pull(skb, align_count); } if (unlikely(skb->len < 0)) { netdev_warn(dev->net, "invalid rx length<0 %d\n", skb->len); return 0; } return 1; } static u32 smsc95xx_calc_csum_preamble(struct sk_buff *skb) { u16 low_16 = (u16)skb_checksum_start_offset(skb); u16 high_16 = low_16 + skb->csum_offset; return (high_16 << 16) | low_16; } static struct sk_buff *smsc95xx_tx_fixup(struct usbnet *dev, struct sk_buff *skb, gfp_t flags) { bool csum = skb->ip_summed == CHECKSUM_PARTIAL; int overhead = csum ? SMSC95XX_TX_OVERHEAD_CSUM : SMSC95XX_TX_OVERHEAD; u32 tx_cmd_a, tx_cmd_b; /* We do not advertise SG, so skbs should be already linearized */ BUG_ON(skb_shinfo(skb)->nr_frags); if (skb_headroom(skb) < overhead) { struct sk_buff *skb2 = skb_copy_expand(skb, overhead, 0, flags); dev_kfree_skb_any(skb); skb = skb2; if (!skb) return NULL; } if (csum) { if (skb->len <= 45) { /* workaround - hardware tx checksum does not work * properly with extremely small packets */ long csstart = skb_checksum_start_offset(skb); __wsum calc = csum_partial(skb->data + csstart, skb->len - csstart, 0); *((__sum16 *)(skb->data + csstart + skb->csum_offset)) = csum_fold(calc); csum = false; } else { u32 csum_preamble = smsc95xx_calc_csum_preamble(skb); skb_push(skb, 4); cpu_to_le32s(&csum_preamble); memcpy(skb->data, &csum_preamble, 4); } } skb_push(skb, 4); tx_cmd_b = (u32)(skb->len - 4); if (csum) tx_cmd_b |= TX_CMD_B_CSUM_ENABLE; cpu_to_le32s(&tx_cmd_b); memcpy(skb->data, &tx_cmd_b, 4); skb_push(skb, 4); tx_cmd_a = (u32)(skb->len - 8) | TX_CMD_A_FIRST_SEG_ | TX_CMD_A_LAST_SEG_; cpu_to_le32s(&tx_cmd_a); memcpy(skb->data, &tx_cmd_a, 4); return skb; } static int smsc95xx_manage_power(struct usbnet *dev, int on) { struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]); dev->intf->needs_remote_wakeup = on; if (pdata->features & FEATURE_REMOTE_WAKEUP) return 0; /* this chip revision isn't capable of remote wakeup */ netdev_info(dev->net, "hardware isn't capable of remote wakeup\n"); if (on) usb_autopm_get_interface_no_resume(dev->intf); else usb_autopm_put_interface(dev->intf); return 0; } static const struct driver_info smsc95xx_info = { .description = "smsc95xx USB 2.0 Ethernet", .bind = smsc95xx_bind, .unbind = smsc95xx_unbind, .link_reset = smsc95xx_link_reset, .reset = smsc95xx_reset, .rx_fixup = smsc95xx_rx_fixup, .tx_fixup = smsc95xx_tx_fixup, .status = smsc95xx_status, .manage_power = smsc95xx_manage_power, .flags = FLAG_ETHER | FLAG_SEND_ZLP | FLAG_LINK_INTR, }; static const struct usb_device_id products[] = { { /* SMSC9500 USB Ethernet Device */ USB_DEVICE(0x0424, 0x9500), .driver_info = (unsigned long) &smsc95xx_info, }, { /* SMSC9505 USB Ethernet Device */ USB_DEVICE(0x0424, 0x9505), .driver_info = (unsigned long) &smsc95xx_info, }, { /* SMSC9500A USB Ethernet Device */ USB_DEVICE(0x0424, 0x9E00), .driver_info = (unsigned long) &smsc95xx_info, }, { /* SMSC9505A USB Ethernet Device */ USB_DEVICE(0x0424, 0x9E01), .driver_info = (unsigned long) &smsc95xx_info, }, { /* SMSC9512/9514 USB Hub & Ethernet Device */ USB_DEVICE(0x0424, 0xec00), .driver_info = (unsigned long) &smsc95xx_info, }, { /* SMSC9500 USB Ethernet Device (SAL10) */ USB_DEVICE(0x0424, 0x9900), .driver_info = (unsigned long) &smsc95xx_info, }, { /* SMSC9505 USB Ethernet Device (SAL10) */ USB_DEVICE(0x0424, 0x9901), .driver_info = (unsigned long) &smsc95xx_info, }, { /* SMSC9500A USB Ethernet Device (SAL10) */ USB_DEVICE(0x0424, 0x9902), .driver_info = (unsigned long) &smsc95xx_info, }, { /* SMSC9505A USB Ethernet Device (SAL10) */ USB_DEVICE(0x0424, 0x9903), .driver_info = (unsigned long) &smsc95xx_info, }, { /* SMSC9512/9514 USB Hub & Ethernet Device (SAL10) */ USB_DEVICE(0x0424, 0x9904), .driver_info = (unsigned long) &smsc95xx_info, }, { /* SMSC9500A USB Ethernet Device (HAL) */ USB_DEVICE(0x0424, 0x9905), .driver_info = (unsigned long) &smsc95xx_info, }, { /* SMSC9505A USB Ethernet Device (HAL) */ USB_DEVICE(0x0424, 0x9906), .driver_info = (unsigned long) &smsc95xx_info, }, { /* SMSC9500 USB Ethernet Device (Alternate ID) */ USB_DEVICE(0x0424, 0x9907), .driver_info = (unsigned long) &smsc95xx_info, }, { /* SMSC9500A USB Ethernet Device (Alternate ID) */ USB_DEVICE(0x0424, 0x9908), .driver_info = (unsigned long) &smsc95xx_info, }, { /* SMSC9512/9514 USB Hub & Ethernet Device (Alternate ID) */ USB_DEVICE(0x0424, 0x9909), .driver_info = (unsigned long) &smsc95xx_info, }, { /* SMSC LAN9530 USB Ethernet Device */ USB_DEVICE(0x0424, 0x9530), .driver_info = (unsigned long) &smsc95xx_info, }, { /* SMSC LAN9730 USB Ethernet Device */ USB_DEVICE(0x0424, 0x9730), .driver_info = (unsigned long) &smsc95xx_info, }, { /* SMSC LAN89530 USB Ethernet Device */ USB_DEVICE(0x0424, 0x9E08), .driver_info = (unsigned long) &smsc95xx_info, }, { }, /* END */ }; MODULE_DEVICE_TABLE(usb, products); static struct usb_driver smsc95xx_driver = { .name = "smsc95xx", .id_table = products, .probe = usbnet_probe, .suspend = smsc95xx_suspend, .resume = smsc95xx_resume, .reset_resume = smsc95xx_resume, .disconnect = usbnet_disconnect, .disable_hub_initiated_lpm = 1, .supports_autosuspend = 1, }; module_usb_driver(smsc95xx_driver); MODULE_AUTHOR("Nancy Lin"); MODULE_AUTHOR("Steve Glendinning <steve.glendinning@shawell.net>"); MODULE_DESCRIPTION("SMSC95XX USB 2.0 Ethernet Devices"); MODULE_LICENSE("GPL");