/****************************************************************************** * * Copyright(c) 2009-2012 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * wlanfae <wlanfae@realtek.com> * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, * Hsinchu 300, Taiwan. * * Larry Finger <Larry.Finger@lwfinger.net> * *****************************************************************************/ #include "../wifi.h" #include "../efuse.h" #include "../base.h" #include "../cam.h" #include "../ps.h" #include "../usb.h" #include "reg.h" #include "def.h" #include "phy.h" #include "mac.h" #include "dm.h" #include "hw.h" #include "../rtl8192ce/hw.h" #include "trx.h" #include "led.h" #include "table.h" static void _rtl92cu_phy_param_tab_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_efuse *rtlefuse = rtl_efuse(rtlpriv); rtlphy->hwparam_tables[MAC_REG].length = RTL8192CUMAC_2T_ARRAYLENGTH; rtlphy->hwparam_tables[MAC_REG].pdata = RTL8192CUMAC_2T_ARRAY; if (IS_HIGHT_PA(rtlefuse->board_type)) { rtlphy->hwparam_tables[PHY_REG_PG].length = RTL8192CUPHY_REG_Array_PG_HPLength; rtlphy->hwparam_tables[PHY_REG_PG].pdata = RTL8192CUPHY_REG_Array_PG_HP; } else { rtlphy->hwparam_tables[PHY_REG_PG].length = RTL8192CUPHY_REG_ARRAY_PGLENGTH; rtlphy->hwparam_tables[PHY_REG_PG].pdata = RTL8192CUPHY_REG_ARRAY_PG; } /* 2T */ rtlphy->hwparam_tables[PHY_REG_2T].length = RTL8192CUPHY_REG_2TARRAY_LENGTH; rtlphy->hwparam_tables[PHY_REG_2T].pdata = RTL8192CUPHY_REG_2TARRAY; rtlphy->hwparam_tables[RADIOA_2T].length = RTL8192CURADIOA_2TARRAYLENGTH; rtlphy->hwparam_tables[RADIOA_2T].pdata = RTL8192CURADIOA_2TARRAY; rtlphy->hwparam_tables[RADIOB_2T].length = RTL8192CURADIOB_2TARRAYLENGTH; rtlphy->hwparam_tables[RADIOB_2T].pdata = RTL8192CU_RADIOB_2TARRAY; rtlphy->hwparam_tables[AGCTAB_2T].length = RTL8192CUAGCTAB_2TARRAYLENGTH; rtlphy->hwparam_tables[AGCTAB_2T].pdata = RTL8192CUAGCTAB_2TARRAY; /* 1T */ if (IS_HIGHT_PA(rtlefuse->board_type)) { rtlphy->hwparam_tables[PHY_REG_1T].length = RTL8192CUPHY_REG_1T_HPArrayLength; rtlphy->hwparam_tables[PHY_REG_1T].pdata = RTL8192CUPHY_REG_1T_HPArray; rtlphy->hwparam_tables[RADIOA_1T].length = RTL8192CURadioA_1T_HPArrayLength; rtlphy->hwparam_tables[RADIOA_1T].pdata = RTL8192CURadioA_1T_HPArray; rtlphy->hwparam_tables[RADIOB_1T].length = RTL8192CURADIOB_1TARRAYLENGTH; rtlphy->hwparam_tables[RADIOB_1T].pdata = RTL8192CU_RADIOB_1TARRAY; rtlphy->hwparam_tables[AGCTAB_1T].length = RTL8192CUAGCTAB_1T_HPArrayLength; rtlphy->hwparam_tables[AGCTAB_1T].pdata = Rtl8192CUAGCTAB_1T_HPArray; } else { rtlphy->hwparam_tables[PHY_REG_1T].length = RTL8192CUPHY_REG_1TARRAY_LENGTH; rtlphy->hwparam_tables[PHY_REG_1T].pdata = RTL8192CUPHY_REG_1TARRAY; rtlphy->hwparam_tables[RADIOA_1T].length = RTL8192CURADIOA_1TARRAYLENGTH; rtlphy->hwparam_tables[RADIOA_1T].pdata = RTL8192CU_RADIOA_1TARRAY; rtlphy->hwparam_tables[RADIOB_1T].length = RTL8192CURADIOB_1TARRAYLENGTH; rtlphy->hwparam_tables[RADIOB_1T].pdata = RTL8192CU_RADIOB_1TARRAY; rtlphy->hwparam_tables[AGCTAB_1T].length = RTL8192CUAGCTAB_1TARRAYLENGTH; rtlphy->hwparam_tables[AGCTAB_1T].pdata = RTL8192CUAGCTAB_1TARRAY; } } static void _rtl92cu_read_txpower_info_from_hwpg(struct ieee80211_hw *hw, bool autoload_fail, u8 *hwinfo) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); u8 rf_path, index, tempval; u16 i; for (rf_path = 0; rf_path < 2; rf_path++) { for (i = 0; i < 3; i++) { if (!autoload_fail) { rtlefuse-> eeprom_chnlarea_txpwr_cck[rf_path][i] = hwinfo[EEPROM_TXPOWERCCK + rf_path * 3 + i]; rtlefuse-> eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] = hwinfo[EEPROM_TXPOWERHT40_1S + rf_path * 3 + i]; } else { rtlefuse-> eeprom_chnlarea_txpwr_cck[rf_path][i] = EEPROM_DEFAULT_TXPOWERLEVEL; rtlefuse-> eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] = EEPROM_DEFAULT_TXPOWERLEVEL; } } } for (i = 0; i < 3; i++) { if (!autoload_fail) tempval = hwinfo[EEPROM_TXPOWERHT40_2SDIFF + i]; else tempval = EEPROM_DEFAULT_HT40_2SDIFF; rtlefuse->eprom_chnl_txpwr_ht40_2sdf[RF90_PATH_A][i] = (tempval & 0xf); rtlefuse->eprom_chnl_txpwr_ht40_2sdf[RF90_PATH_B][i] = ((tempval & 0xf0) >> 4); } for (rf_path = 0; rf_path < 2; rf_path++) for (i = 0; i < 3; i++) RTPRINT(rtlpriv, FINIT, INIT_EEPROM, "RF(%d) EEPROM CCK Area(%d) = 0x%x\n", rf_path, i, rtlefuse-> eeprom_chnlarea_txpwr_cck[rf_path][i]); for (rf_path = 0; rf_path < 2; rf_path++) for (i = 0; i < 3; i++) RTPRINT(rtlpriv, FINIT, INIT_EEPROM, "RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n", rf_path, i, rtlefuse-> eeprom_chnlarea_txpwr_ht40_1s[rf_path][i]); for (rf_path = 0; rf_path < 2; rf_path++) for (i = 0; i < 3; i++) RTPRINT(rtlpriv, FINIT, INIT_EEPROM, "RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n", rf_path, i, rtlefuse-> eprom_chnl_txpwr_ht40_2sdf[rf_path][i]); for (rf_path = 0; rf_path < 2; rf_path++) { for (i = 0; i < 14; i++) { index = _rtl92c_get_chnl_group((u8) i); rtlefuse->txpwrlevel_cck[rf_path][i] = rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][index]; rtlefuse->txpwrlevel_ht40_1s[rf_path][i] = rtlefuse-> eeprom_chnlarea_txpwr_ht40_1s[rf_path][index]; if ((rtlefuse-> eeprom_chnlarea_txpwr_ht40_1s[rf_path][index] - rtlefuse-> eprom_chnl_txpwr_ht40_2sdf[rf_path][index]) > 0) { rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = rtlefuse-> eeprom_chnlarea_txpwr_ht40_1s[rf_path] [index] - rtlefuse-> eprom_chnl_txpwr_ht40_2sdf[rf_path] [index]; } else { rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = 0; } } for (i = 0; i < 14; i++) { RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n", rf_path, i, rtlefuse->txpwrlevel_cck[rf_path][i], rtlefuse->txpwrlevel_ht40_1s[rf_path][i], rtlefuse->txpwrlevel_ht40_2s[rf_path][i]); } } for (i = 0; i < 3; i++) { if (!autoload_fail) { rtlefuse->eeprom_pwrlimit_ht40[i] = hwinfo[EEPROM_TXPWR_GROUP + i]; rtlefuse->eeprom_pwrlimit_ht20[i] = hwinfo[EEPROM_TXPWR_GROUP + 3 + i]; } else { rtlefuse->eeprom_pwrlimit_ht40[i] = 0; rtlefuse->eeprom_pwrlimit_ht20[i] = 0; } } for (rf_path = 0; rf_path < 2; rf_path++) { for (i = 0; i < 14; i++) { index = _rtl92c_get_chnl_group((u8) i); if (rf_path == RF90_PATH_A) { rtlefuse->pwrgroup_ht20[rf_path][i] = (rtlefuse->eeprom_pwrlimit_ht20[index] & 0xf); rtlefuse->pwrgroup_ht40[rf_path][i] = (rtlefuse->eeprom_pwrlimit_ht40[index] & 0xf); } else if (rf_path == RF90_PATH_B) { rtlefuse->pwrgroup_ht20[rf_path][i] = ((rtlefuse->eeprom_pwrlimit_ht20[index] & 0xf0) >> 4); rtlefuse->pwrgroup_ht40[rf_path][i] = ((rtlefuse->eeprom_pwrlimit_ht40[index] & 0xf0) >> 4); } RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-%d pwrgroup_ht20[%d] = 0x%x\n", rf_path, i, rtlefuse->pwrgroup_ht20[rf_path][i]); RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-%d pwrgroup_ht40[%d] = 0x%x\n", rf_path, i, rtlefuse->pwrgroup_ht40[rf_path][i]); } } for (i = 0; i < 14; i++) { index = _rtl92c_get_chnl_group((u8) i); if (!autoload_fail) tempval = hwinfo[EEPROM_TXPOWERHT20DIFF + index]; else tempval = EEPROM_DEFAULT_HT20_DIFF; rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF); rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] = ((tempval >> 4) & 0xF); if (rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] & BIT(3)) rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] |= 0xF0; if (rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] & BIT(3)) rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] |= 0xF0; index = _rtl92c_get_chnl_group((u8) i); if (!autoload_fail) tempval = hwinfo[EEPROM_TXPOWER_OFDMDIFF + index]; else tempval = EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF; rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] = (tempval & 0xF); rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] = ((tempval >> 4) & 0xF); } rtlefuse->legacy_ht_txpowerdiff = rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][7]; for (i = 0; i < 14; i++) RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-A Ht20 to HT40 Diff[%d] = 0x%x\n", i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]); for (i = 0; i < 14; i++) RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-A Legacy to Ht40 Diff[%d] = 0x%x\n", i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]); for (i = 0; i < 14; i++) RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-B Ht20 to HT40 Diff[%d] = 0x%x\n", i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]); for (i = 0; i < 14; i++) RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-B Legacy to HT40 Diff[%d] = 0x%x\n", i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]); if (!autoload_fail) rtlefuse->eeprom_regulatory = (hwinfo[RF_OPTION1] & 0x7); else rtlefuse->eeprom_regulatory = 0; RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory); if (!autoload_fail) { rtlefuse->eeprom_tssi[RF90_PATH_A] = hwinfo[EEPROM_TSSI_A]; rtlefuse->eeprom_tssi[RF90_PATH_B] = hwinfo[EEPROM_TSSI_B]; } else { rtlefuse->eeprom_tssi[RF90_PATH_A] = EEPROM_DEFAULT_TSSI; rtlefuse->eeprom_tssi[RF90_PATH_B] = EEPROM_DEFAULT_TSSI; } RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n", rtlefuse->eeprom_tssi[RF90_PATH_A], rtlefuse->eeprom_tssi[RF90_PATH_B]); if (!autoload_fail) tempval = hwinfo[EEPROM_THERMAL_METER]; else tempval = EEPROM_DEFAULT_THERMALMETER; rtlefuse->eeprom_thermalmeter = (tempval & 0x1f); if (rtlefuse->eeprom_thermalmeter < 0x06 || rtlefuse->eeprom_thermalmeter > 0x1c) rtlefuse->eeprom_thermalmeter = 0x12; if (rtlefuse->eeprom_thermalmeter == 0x1f || autoload_fail) rtlefuse->apk_thermalmeterignore = true; rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter; RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter); } static void _rtl92cu_read_board_type(struct ieee80211_hw *hw, u8 *contents) { struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 boardType; if (IS_NORMAL_CHIP(rtlhal->version)) { boardType = ((contents[EEPROM_RF_OPT1]) & BOARD_TYPE_NORMAL_MASK) >> 5; /*bit[7:5]*/ } else { boardType = contents[EEPROM_RF_OPT4]; boardType &= BOARD_TYPE_TEST_MASK; } rtlefuse->board_type = boardType; if (IS_HIGHT_PA(rtlefuse->board_type)) rtlefuse->external_pa = 1; pr_info("Board Type %x\n", rtlefuse->board_type); } static void _rtl92cu_read_adapter_info(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u16 i, usvalue; u8 hwinfo[HWSET_MAX_SIZE] = {0}; u16 eeprom_id; if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) { rtl_efuse_shadow_map_update(hw); memcpy((void *)hwinfo, (void *)&rtlefuse->efuse_map[EFUSE_INIT_MAP][0], HWSET_MAX_SIZE); } else if (rtlefuse->epromtype == EEPROM_93C46) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "RTL819X Not boot from eeprom, check it !!\n"); } RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD, "MAP", hwinfo, HWSET_MAX_SIZE); eeprom_id = le16_to_cpu(*((__le16 *)&hwinfo[0])); if (eeprom_id != RTL8190_EEPROM_ID) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "EEPROM ID(%#x) is invalid!!\n", eeprom_id); rtlefuse->autoload_failflag = true; } else { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); rtlefuse->autoload_failflag = false; } if (rtlefuse->autoload_failflag) return; for (i = 0; i < 6; i += 2) { usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i]; *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue; } pr_info("MAC address: %pM\n", rtlefuse->dev_addr); _rtl92cu_read_txpower_info_from_hwpg(hw, rtlefuse->autoload_failflag, hwinfo); rtlefuse->eeprom_vid = le16_to_cpu(*(__le16 *)&hwinfo[EEPROM_VID]); rtlefuse->eeprom_did = le16_to_cpu(*(__le16 *)&hwinfo[EEPROM_DID]); RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, " VID = 0x%02x PID = 0x%02x\n", rtlefuse->eeprom_vid, rtlefuse->eeprom_did); rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN]; rtlefuse->eeprom_version = le16_to_cpu(*(__le16 *)&hwinfo[EEPROM_VERSION]); rtlefuse->txpwr_fromeprom = true; rtlefuse->eeprom_oemid = hwinfo[EEPROM_CUSTOMER_ID]; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid); if (rtlhal->oem_id == RT_CID_DEFAULT) { switch (rtlefuse->eeprom_oemid) { case EEPROM_CID_DEFAULT: if (rtlefuse->eeprom_did == 0x8176) { if ((rtlefuse->eeprom_svid == 0x103C && rtlefuse->eeprom_smid == 0x1629)) rtlhal->oem_id = RT_CID_819x_HP; else rtlhal->oem_id = RT_CID_DEFAULT; } else { rtlhal->oem_id = RT_CID_DEFAULT; } break; case EEPROM_CID_TOSHIBA: rtlhal->oem_id = RT_CID_TOSHIBA; break; case EEPROM_CID_QMI: rtlhal->oem_id = RT_CID_819x_QMI; break; case EEPROM_CID_WHQL: default: rtlhal->oem_id = RT_CID_DEFAULT; break; } } _rtl92cu_read_board_type(hw, hwinfo); } static void _rtl92cu_hal_customized_behavior(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_usb_priv *usb_priv = rtl_usbpriv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); switch (rtlhal->oem_id) { case RT_CID_819x_HP: usb_priv->ledctl.led_opendrain = true; break; case RT_CID_819x_Lenovo: case RT_CID_DEFAULT: case RT_CID_TOSHIBA: case RT_CID_CCX: case RT_CID_819x_Acer: case RT_CID_WHQL: default: break; } RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RT Customized ID: 0x%02X\n", rtlhal->oem_id); } void rtl92cu_read_eeprom_info(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 tmp_u1b; if (!IS_NORMAL_CHIP(rtlhal->version)) return; tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR); rtlefuse->epromtype = (tmp_u1b & BOOT_FROM_EEPROM) ? EEPROM_93C46 : EEPROM_BOOT_EFUSE; RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from %s\n", tmp_u1b & BOOT_FROM_EEPROM ? "EERROM" : "EFUSE"); rtlefuse->autoload_failflag = (tmp_u1b & EEPROM_EN) ? false : true; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload %s\n", tmp_u1b & EEPROM_EN ? "OK!!" : "ERR!!"); _rtl92cu_read_adapter_info(hw); _rtl92cu_hal_customized_behavior(hw); return; } static int _rtl92cu_init_power_on(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); int status = 0; u16 value16; u8 value8; /* polling autoload done. */ u32 pollingCount = 0; do { if (rtl_read_byte(rtlpriv, REG_APS_FSMCO) & PFM_ALDN) { RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Autoload Done!\n"); break; } if (pollingCount++ > 100) { RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "Failed to polling REG_APS_FSMCO[PFM_ALDN] done!\n"); return -ENODEV; } } while (true); /* 0. RSV_CTRL 0x1C[7:0] = 0 unlock ISO/CLK/Power control register */ rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0); /* Power on when re-enter from IPS/Radio off/card disable */ /* enable SPS into PWM mode */ rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b); udelay(100); value8 = rtl_read_byte(rtlpriv, REG_LDOV12D_CTRL); if (0 == (value8 & LDV12_EN)) { value8 |= LDV12_EN; rtl_write_byte(rtlpriv, REG_LDOV12D_CTRL, value8); RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, " power-on :REG_LDOV12D_CTRL Reg0x21:0x%02x\n", value8); udelay(100); value8 = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL); value8 &= ~ISO_MD2PP; rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, value8); } /* auto enable WLAN */ pollingCount = 0; value16 = rtl_read_word(rtlpriv, REG_APS_FSMCO); value16 |= APFM_ONMAC; rtl_write_word(rtlpriv, REG_APS_FSMCO, value16); do { if (!(rtl_read_word(rtlpriv, REG_APS_FSMCO) & APFM_ONMAC)) { pr_info("MAC auto ON okay!\n"); break; } if (pollingCount++ > 100) { RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "Failed to polling REG_APS_FSMCO[APFM_ONMAC] done!\n"); return -ENODEV; } } while (true); /* Enable Radio ,GPIO ,and LED function */ rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x0812); /* release RF digital isolation */ value16 = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL); value16 &= ~ISO_DIOR; rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, value16); /* Reconsider when to do this operation after asking HWSD. */ pollingCount = 0; rtl_write_byte(rtlpriv, REG_APSD_CTRL, (rtl_read_byte(rtlpriv, REG_APSD_CTRL) & ~BIT(6))); do { pollingCount++; } while ((pollingCount < 200) && (rtl_read_byte(rtlpriv, REG_APSD_CTRL) & BIT(7))); /* Enable MAC DMA/WMAC/SCHEDULE/SEC block */ value16 = rtl_read_word(rtlpriv, REG_CR); value16 |= (HCI_TXDMA_EN | HCI_RXDMA_EN | TXDMA_EN | RXDMA_EN | PROTOCOL_EN | SCHEDULE_EN | MACTXEN | MACRXEN | ENSEC); rtl_write_word(rtlpriv, REG_CR, value16); return status; } static void _rtl92cu_init_queue_reserved_page(struct ieee80211_hw *hw, bool wmm_enable, u8 out_ep_num, u8 queue_sel) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); bool isChipN = IS_NORMAL_CHIP(rtlhal->version); u32 outEPNum = (u32)out_ep_num; u32 numHQ = 0; u32 numLQ = 0; u32 numNQ = 0; u32 numPubQ; u32 value32; u8 value8; u32 txQPageNum, txQPageUnit, txQRemainPage; if (!wmm_enable) { numPubQ = (isChipN) ? CHIP_B_PAGE_NUM_PUBQ : CHIP_A_PAGE_NUM_PUBQ; txQPageNum = TX_TOTAL_PAGE_NUMBER - numPubQ; txQPageUnit = txQPageNum/outEPNum; txQRemainPage = txQPageNum % outEPNum; if (queue_sel & TX_SELE_HQ) numHQ = txQPageUnit; if (queue_sel & TX_SELE_LQ) numLQ = txQPageUnit; /* HIGH priority queue always present in the configuration of * 2 out-ep. Remainder pages have assigned to High queue */ if ((outEPNum > 1) && (txQRemainPage)) numHQ += txQRemainPage; /* NOTE: This step done before writting REG_RQPN. */ if (isChipN) { if (queue_sel & TX_SELE_NQ) numNQ = txQPageUnit; value8 = (u8)_NPQ(numNQ); rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8); } } else { /* for WMM ,number of out-ep must more than or equal to 2! */ numPubQ = isChipN ? WMM_CHIP_B_PAGE_NUM_PUBQ : WMM_CHIP_A_PAGE_NUM_PUBQ; if (queue_sel & TX_SELE_HQ) { numHQ = isChipN ? WMM_CHIP_B_PAGE_NUM_HPQ : WMM_CHIP_A_PAGE_NUM_HPQ; } if (queue_sel & TX_SELE_LQ) { numLQ = isChipN ? WMM_CHIP_B_PAGE_NUM_LPQ : WMM_CHIP_A_PAGE_NUM_LPQ; } /* NOTE: This step done before writting REG_RQPN. */ if (isChipN) { if (queue_sel & TX_SELE_NQ) numNQ = WMM_CHIP_B_PAGE_NUM_NPQ; value8 = (u8)_NPQ(numNQ); rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8); } } /* TX DMA */ value32 = _HPQ(numHQ) | _LPQ(numLQ) | _PUBQ(numPubQ) | LD_RQPN; rtl_write_dword(rtlpriv, REG_RQPN, value32); } static void _rtl92c_init_trx_buffer(struct ieee80211_hw *hw, bool wmm_enable) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 txpktbuf_bndy; u8 value8; if (!wmm_enable) txpktbuf_bndy = TX_PAGE_BOUNDARY; else /* for WMM */ txpktbuf_bndy = (IS_NORMAL_CHIP(rtlhal->version)) ? WMM_CHIP_B_TX_PAGE_BOUNDARY : WMM_CHIP_A_TX_PAGE_BOUNDARY; rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy); rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy); rtl_write_byte(rtlpriv, REG_TXPKTBUF_WMAC_LBK_BF_HD, txpktbuf_bndy); rtl_write_byte(rtlpriv, REG_TRXFF_BNDY, txpktbuf_bndy); rtl_write_byte(rtlpriv, REG_TDECTRL+1, txpktbuf_bndy); rtl_write_word(rtlpriv, (REG_TRXFF_BNDY + 2), 0x27FF); value8 = _PSRX(RX_PAGE_SIZE_REG_VALUE) | _PSTX(PBP_128); rtl_write_byte(rtlpriv, REG_PBP, value8); } static void _rtl92c_init_chipN_reg_priority(struct ieee80211_hw *hw, u16 beQ, u16 bkQ, u16 viQ, u16 voQ, u16 mgtQ, u16 hiQ) { struct rtl_priv *rtlpriv = rtl_priv(hw); u16 value16 = (rtl_read_word(rtlpriv, REG_TRXDMA_CTRL) & 0x7); value16 |= _TXDMA_BEQ_MAP(beQ) | _TXDMA_BKQ_MAP(bkQ) | _TXDMA_VIQ_MAP(viQ) | _TXDMA_VOQ_MAP(voQ) | _TXDMA_MGQ_MAP(mgtQ) | _TXDMA_HIQ_MAP(hiQ); rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, value16); } static void _rtl92cu_init_chipN_one_out_ep_priority(struct ieee80211_hw *hw, bool wmm_enable, u8 queue_sel) { u16 uninitialized_var(value); switch (queue_sel) { case TX_SELE_HQ: value = QUEUE_HIGH; break; case TX_SELE_LQ: value = QUEUE_LOW; break; case TX_SELE_NQ: value = QUEUE_NORMAL; break; default: WARN_ON(1); /* Shall not reach here! */ break; } _rtl92c_init_chipN_reg_priority(hw, value, value, value, value, value, value); pr_info("Tx queue select: 0x%02x\n", queue_sel); } static void _rtl92cu_init_chipN_two_out_ep_priority(struct ieee80211_hw *hw, bool wmm_enable, u8 queue_sel) { u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ; u16 uninitialized_var(valueHi); u16 uninitialized_var(valueLow); switch (queue_sel) { case (TX_SELE_HQ | TX_SELE_LQ): valueHi = QUEUE_HIGH; valueLow = QUEUE_LOW; break; case (TX_SELE_NQ | TX_SELE_LQ): valueHi = QUEUE_NORMAL; valueLow = QUEUE_LOW; break; case (TX_SELE_HQ | TX_SELE_NQ): valueHi = QUEUE_HIGH; valueLow = QUEUE_NORMAL; break; default: WARN_ON(1); break; } if (!wmm_enable) { beQ = valueLow; bkQ = valueLow; viQ = valueHi; voQ = valueHi; mgtQ = valueHi; hiQ = valueHi; } else {/* for WMM ,CONFIG_OUT_EP_WIFI_MODE */ beQ = valueHi; bkQ = valueLow; viQ = valueLow; voQ = valueHi; mgtQ = valueHi; hiQ = valueHi; } _rtl92c_init_chipN_reg_priority(hw, beQ, bkQ, viQ, voQ, mgtQ, hiQ); pr_info("Tx queue select: 0x%02x\n", queue_sel); } static void _rtl92cu_init_chipN_three_out_ep_priority(struct ieee80211_hw *hw, bool wmm_enable, u8 queue_sel) { u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ; struct rtl_priv *rtlpriv = rtl_priv(hw); if (!wmm_enable) { /* typical setting */ beQ = QUEUE_LOW; bkQ = QUEUE_LOW; viQ = QUEUE_NORMAL; voQ = QUEUE_HIGH; mgtQ = QUEUE_HIGH; hiQ = QUEUE_HIGH; } else { /* for WMM */ beQ = QUEUE_LOW; bkQ = QUEUE_NORMAL; viQ = QUEUE_NORMAL; voQ = QUEUE_HIGH; mgtQ = QUEUE_HIGH; hiQ = QUEUE_HIGH; } _rtl92c_init_chipN_reg_priority(hw, beQ, bkQ, viQ, voQ, mgtQ, hiQ); RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "Tx queue select :0x%02x..\n", queue_sel); } static void _rtl92cu_init_chipN_queue_priority(struct ieee80211_hw *hw, bool wmm_enable, u8 out_ep_num, u8 queue_sel) { switch (out_ep_num) { case 1: _rtl92cu_init_chipN_one_out_ep_priority(hw, wmm_enable, queue_sel); break; case 2: _rtl92cu_init_chipN_two_out_ep_priority(hw, wmm_enable, queue_sel); break; case 3: _rtl92cu_init_chipN_three_out_ep_priority(hw, wmm_enable, queue_sel); break; default: WARN_ON(1); /* Shall not reach here! */ break; } } static void _rtl92cu_init_chipT_queue_priority(struct ieee80211_hw *hw, bool wmm_enable, u8 out_ep_num, u8 queue_sel) { u8 hq_sele = 0; struct rtl_priv *rtlpriv = rtl_priv(hw); switch (out_ep_num) { case 2: /* (TX_SELE_HQ|TX_SELE_LQ) */ if (!wmm_enable) /* typical setting */ hq_sele = HQSEL_VOQ | HQSEL_VIQ | HQSEL_MGTQ | HQSEL_HIQ; else /* for WMM */ hq_sele = HQSEL_VOQ | HQSEL_BEQ | HQSEL_MGTQ | HQSEL_HIQ; break; case 1: if (TX_SELE_LQ == queue_sel) { /* map all endpoint to Low queue */ hq_sele = 0; } else if (TX_SELE_HQ == queue_sel) { /* map all endpoint to High queue */ hq_sele = HQSEL_VOQ | HQSEL_VIQ | HQSEL_BEQ | HQSEL_BKQ | HQSEL_MGTQ | HQSEL_HIQ; } break; default: WARN_ON(1); /* Shall not reach here! */ break; } rtl_write_byte(rtlpriv, (REG_TRXDMA_CTRL+1), hq_sele); RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "Tx queue select :0x%02x..\n", hq_sele); } static void _rtl92cu_init_queue_priority(struct ieee80211_hw *hw, bool wmm_enable, u8 out_ep_num, u8 queue_sel) { struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); if (IS_NORMAL_CHIP(rtlhal->version)) _rtl92cu_init_chipN_queue_priority(hw, wmm_enable, out_ep_num, queue_sel); else _rtl92cu_init_chipT_queue_priority(hw, wmm_enable, out_ep_num, queue_sel); } static void _rtl92cu_init_usb_aggregation(struct ieee80211_hw *hw) { } static void _rtl92cu_init_wmac_setting(struct ieee80211_hw *hw) { u16 value16; struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); mac->rx_conf = (RCR_APM | RCR_AM | RCR_ADF | RCR_AB | RCR_APPFCS | RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL | RCR_APP_MIC | RCR_APP_PHYSTS | RCR_ACRC32); rtl_write_dword(rtlpriv, REG_RCR, mac->rx_conf); /* Accept all multicast address */ rtl_write_dword(rtlpriv, REG_MAR, 0xFFFFFFFF); rtl_write_dword(rtlpriv, REG_MAR + 4, 0xFFFFFFFF); /* Accept all management frames */ value16 = 0xFFFF; rtl92c_set_mgt_filter(hw, value16); /* Reject all control frame - default value is 0 */ rtl92c_set_ctrl_filter(hw, 0x0); /* Accept all data frames */ value16 = 0xFFFF; rtl92c_set_data_filter(hw, value16); } static int _rtl92cu_init_mac(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_usb_priv *usb_priv = rtl_usbpriv(hw); struct rtl_usb *rtlusb = rtl_usbdev(usb_priv); int err = 0; u32 boundary = 0; u8 wmm_enable = false; /* TODO */ u8 out_ep_nums = rtlusb->out_ep_nums; u8 queue_sel = rtlusb->out_queue_sel; err = _rtl92cu_init_power_on(hw); if (err) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Failed to init power on!\n"); return err; } if (!wmm_enable) { boundary = TX_PAGE_BOUNDARY; } else { /* for WMM */ boundary = (IS_NORMAL_CHIP(rtlhal->version)) ? WMM_CHIP_B_TX_PAGE_BOUNDARY : WMM_CHIP_A_TX_PAGE_BOUNDARY; } if (false == rtl92c_init_llt_table(hw, boundary)) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Failed to init LLT Table!\n"); return -EINVAL; } _rtl92cu_init_queue_reserved_page(hw, wmm_enable, out_ep_nums, queue_sel); _rtl92c_init_trx_buffer(hw, wmm_enable); _rtl92cu_init_queue_priority(hw, wmm_enable, out_ep_nums, queue_sel); /* Get Rx PHY status in order to report RSSI and others. */ rtl92c_init_driver_info_size(hw, RTL92C_DRIVER_INFO_SIZE); rtl92c_init_interrupt(hw); rtl92c_init_network_type(hw); _rtl92cu_init_wmac_setting(hw); rtl92c_init_adaptive_ctrl(hw); rtl92c_init_edca(hw); rtl92c_init_rate_fallback(hw); rtl92c_init_retry_function(hw); _rtl92cu_init_usb_aggregation(hw); rtlpriv->cfg->ops->set_bw_mode(hw, NL80211_CHAN_HT20); rtl92c_set_min_space(hw, IS_92C_SERIAL(rtlhal->version)); rtl92c_init_beacon_parameters(hw, rtlhal->version); rtl92c_init_ampdu_aggregation(hw); rtl92c_init_beacon_max_error(hw, true); return err; } void rtl92cu_enable_hw_security_config(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 sec_reg_value = 0x0; struct rtl_hal *rtlhal = rtl_hal(rtlpriv); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n", rtlpriv->sec.pairwise_enc_algorithm, rtlpriv->sec.group_enc_algorithm); if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) { RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "not open sw encryption\n"); return; } sec_reg_value = SCR_TxEncEnable | SCR_RxDecEnable; if (rtlpriv->sec.use_defaultkey) { sec_reg_value |= SCR_TxUseDK; sec_reg_value |= SCR_RxUseDK; } if (IS_NORMAL_CHIP(rtlhal->version)) sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK); rtl_write_byte(rtlpriv, REG_CR + 1, 0x02); RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n", sec_reg_value); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value); } static void _rtl92cu_hw_configure(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw)); /* To Fix MAC loopback mode fail. */ rtl_write_byte(rtlpriv, REG_LDOHCI12_CTRL, 0x0f); rtl_write_byte(rtlpriv, 0x15, 0xe9); /* HW SEQ CTRL */ /* set 0x0 to 0xFF by tynli. Default enable HW SEQ NUM. */ rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF); /* fixed USB interface interference issue */ rtl_write_byte(rtlpriv, 0xfe40, 0xe0); rtl_write_byte(rtlpriv, 0xfe41, 0x8d); rtl_write_byte(rtlpriv, 0xfe42, 0x80); rtlusb->reg_bcn_ctrl_val = 0x18; rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8)rtlusb->reg_bcn_ctrl_val); } static void _InitPABias(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 pa_setting; /* FIXED PA current issue */ pa_setting = efuse_read_1byte(hw, 0x1FA); if (!(pa_setting & BIT(0))) { rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0x0F406); rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0x4F406); rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0x8F406); rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0xCF406); } if (!(pa_setting & BIT(1)) && IS_NORMAL_CHIP(rtlhal->version) && IS_92C_SERIAL(rtlhal->version)) { rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0x0F406); rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0x4F406); rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0x8F406); rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0xCF406); } if (!(pa_setting & BIT(4))) { pa_setting = rtl_read_byte(rtlpriv, 0x16); pa_setting &= 0x0F; rtl_write_byte(rtlpriv, 0x16, pa_setting | 0x90); } } static void _update_mac_setting(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); mac->rx_conf = rtl_read_dword(rtlpriv, REG_RCR); mac->rx_mgt_filter = rtl_read_word(rtlpriv, REG_RXFLTMAP0); mac->rx_ctrl_filter = rtl_read_word(rtlpriv, REG_RXFLTMAP1); mac->rx_data_filter = rtl_read_word(rtlpriv, REG_RXFLTMAP2); } int rtl92cu_hw_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); int err = 0; static bool iqk_initialized; rtlhal->hw_type = HARDWARE_TYPE_RTL8192CU; err = _rtl92cu_init_mac(hw); if (err) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "init mac failed!\n"); return err; } err = rtl92c_download_fw(hw); if (err) { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "Failed to download FW. Init HW without FW now..\n"); err = 1; return err; } rtlhal->last_hmeboxnum = 0; /* h2c */ _rtl92cu_phy_param_tab_init(hw); rtl92cu_phy_mac_config(hw); rtl92cu_phy_bb_config(hw); rtlphy->rf_mode = RF_OP_BY_SW_3WIRE; rtl92c_phy_rf_config(hw); if (IS_VENDOR_UMC_A_CUT(rtlhal->version) && !IS_92C_SERIAL(rtlhal->version)) { rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G1, MASKDWORD, 0x30255); rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G2, MASKDWORD, 0x50a00); } rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0, RF_CHNLBW, RFREG_OFFSET_MASK); rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1, RF_CHNLBW, RFREG_OFFSET_MASK); rtl92cu_bb_block_on(hw); rtl_cam_reset_all_entry(hw); rtl92cu_enable_hw_security_config(hw); ppsc->rfpwr_state = ERFON; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr); if (ppsc->rfpwr_state == ERFON) { rtl92c_phy_set_rfpath_switch(hw, 1); if (iqk_initialized) { rtl92c_phy_iq_calibrate(hw, false); } else { rtl92c_phy_iq_calibrate(hw, false); iqk_initialized = true; } rtl92c_dm_check_txpower_tracking(hw); rtl92c_phy_lc_calibrate(hw); } _rtl92cu_hw_configure(hw); _InitPABias(hw); _update_mac_setting(hw); rtl92c_dm_init(hw); return err; } static void _DisableRFAFEAndResetBB(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); /************************************** a. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue b. RF path 0 offset 0x00 = 0x00 disable RF c. APSD_CTRL 0x600[7:0] = 0x40 d. SYS_FUNC_EN 0x02[7:0] = 0x16 reset BB state machine e. SYS_FUNC_EN 0x02[7:0] = 0x14 reset BB state machine ***************************************/ u8 eRFPath = 0, value8 = 0; rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF); rtl_set_rfreg(hw, (enum radio_path)eRFPath, 0x0, MASKBYTE0, 0x0); value8 |= APSDOFF; rtl_write_byte(rtlpriv, REG_APSD_CTRL, value8); /*0x40*/ value8 = 0; value8 |= (FEN_USBD | FEN_USBA | FEN_BB_GLB_RSTn); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, value8);/*0x16*/ value8 &= (~FEN_BB_GLB_RSTn); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, value8); /*0x14*/ } static void _ResetDigitalProcedure1(struct ieee80211_hw *hw, bool bWithoutHWSM) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); if (rtlhal->fw_version <= 0x20) { /***************************** f. MCUFWDL 0x80[7:0]=0 reset MCU ready status g. SYS_FUNC_EN 0x02[10]= 0 reset MCU reg, (8051 reset) h. SYS_FUNC_EN 0x02[15-12]= 5 reset MAC reg, DCORE i. SYS_FUNC_EN 0x02[10]= 1 enable MCU reg, (8051 enable) ******************************/ u16 valu16 = 0; rtl_write_byte(rtlpriv, REG_MCUFWDL, 0); valu16 = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN); rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (valu16 & (~FEN_CPUEN))); /* reset MCU ,8051 */ valu16 = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN)&0x0FFF; rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (valu16 | (FEN_HWPDN|FEN_ELDR))); /* reset MAC */ valu16 = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN); rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (valu16 | FEN_CPUEN)); /* enable MCU ,8051 */ } else { u8 retry_cnts = 0; /* IF fw in RAM code, do reset */ if (rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(1)) { /* reset MCU ready status */ rtl_write_byte(rtlpriv, REG_MCUFWDL, 0); /* 8051 reset by self */ rtl_write_byte(rtlpriv, REG_HMETFR+3, 0x20); while ((retry_cnts++ < 100) && (FEN_CPUEN & rtl_read_word(rtlpriv, REG_SYS_FUNC_EN))) { udelay(50); } if (retry_cnts >= 100) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "#####=> 8051 reset failed!.........................\n"); /* if 8051 reset fail, reset MAC. */ rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x50); udelay(100); } } /* Reset MAC and Enable 8051 */ rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x54); rtl_write_byte(rtlpriv, REG_MCUFWDL, 0); } if (bWithoutHWSM) { /***************************** Without HW auto state machine g.SYS_CLKR 0x08[15:0] = 0x30A3 disable MAC clock h.AFE_PLL_CTRL 0x28[7:0] = 0x80 disable AFE PLL i.AFE_XTAL_CTRL 0x24[15:0] = 0x880F gated AFE DIG_CLOCK j.SYS_ISu_CTRL 0x00[7:0] = 0xF9 isolated digital to PON ******************************/ rtl_write_word(rtlpriv, REG_SYS_CLKR, 0x70A3); rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80); rtl_write_word(rtlpriv, REG_AFE_XTAL_CTRL, 0x880F); rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xF9); } } static void _ResetDigitalProcedure2(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); /***************************** k. SYS_FUNC_EN 0x03[7:0] = 0x44 disable ELDR runction l. SYS_CLKR 0x08[15:0] = 0x3083 disable ELDR clock m. SYS_ISO_CTRL 0x01[7:0] = 0x83 isolated ELDR to PON ******************************/ rtl_write_word(rtlpriv, REG_SYS_CLKR, 0x70A3); rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL+1, 0x82); } static void _DisableGPIO(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); /*************************************** j. GPIO_PIN_CTRL 0x44[31:0]=0x000 k. Value = GPIO_PIN_CTRL[7:0] l. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); write ext PIN level m. GPIO_MUXCFG 0x42 [15:0] = 0x0780 n. LEDCFG 0x4C[15:0] = 0x8080 ***************************************/ u8 value8; u16 value16; u32 value32; /* 1. Disable GPIO[7:0] */ rtl_write_word(rtlpriv, REG_GPIO_PIN_CTRL+2, 0x0000); value32 = rtl_read_dword(rtlpriv, REG_GPIO_PIN_CTRL) & 0xFFFF00FF; value8 = (u8) (value32&0x000000FF); value32 |= ((value8<<8) | 0x00FF0000); rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, value32); /* 2. Disable GPIO[10:8] */ rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG+3, 0x00); value16 = rtl_read_word(rtlpriv, REG_GPIO_MUXCFG+2) & 0xFF0F; value8 = (u8) (value16&0x000F); value16 |= ((value8<<4) | 0x0780); rtl_write_word(rtlpriv, REG_GPIO_PIN_CTRL+2, value16); /* 3. Disable LED0 & 1 */ rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080); } static void _DisableAnalog(struct ieee80211_hw *hw, bool bWithoutHWSM) { struct rtl_priv *rtlpriv = rtl_priv(hw); u16 value16 = 0; u8 value8 = 0; if (bWithoutHWSM) { /***************************** n. LDOA15_CTRL 0x20[7:0] = 0x04 disable A15 power o. LDOV12D_CTRL 0x21[7:0] = 0x54 disable digital core power r. When driver call disable, the ASIC will turn off remaining clock automatically ******************************/ rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04); value8 = rtl_read_byte(rtlpriv, REG_LDOV12D_CTRL); value8 &= (~LDV12_EN); rtl_write_byte(rtlpriv, REG_LDOV12D_CTRL, value8); } /***************************** h. SPS0_CTRL 0x11[7:0] = 0x23 enter PFM mode i. APS_FSMCO 0x04[15:0] = 0x4802 set USB suspend ******************************/ rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23); value16 |= (APDM_HOST | AFSM_HSUS | PFM_ALDN); rtl_write_word(rtlpriv, REG_APS_FSMCO, (u16)value16); rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0E); } static void _CardDisableHWSM(struct ieee80211_hw *hw) { /* ==== RF Off Sequence ==== */ _DisableRFAFEAndResetBB(hw); /* ==== Reset digital sequence ====== */ _ResetDigitalProcedure1(hw, false); /* ==== Pull GPIO PIN to balance level and LED control ====== */ _DisableGPIO(hw); /* ==== Disable analog sequence === */ _DisableAnalog(hw, false); } static void _CardDisableWithoutHWSM(struct ieee80211_hw *hw) { /*==== RF Off Sequence ==== */ _DisableRFAFEAndResetBB(hw); /* ==== Reset digital sequence ====== */ _ResetDigitalProcedure1(hw, true); /* ==== Pull GPIO PIN to balance level and LED control ====== */ _DisableGPIO(hw); /* ==== Reset digital sequence ====== */ _ResetDigitalProcedure2(hw); /* ==== Disable analog sequence === */ _DisableAnalog(hw, true); } static void _rtl92cu_set_bcn_ctrl_reg(struct ieee80211_hw *hw, u8 set_bits, u8 clear_bits) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw)); rtlusb->reg_bcn_ctrl_val |= set_bits; rtlusb->reg_bcn_ctrl_val &= ~clear_bits; rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlusb->reg_bcn_ctrl_val); } static void _rtl92cu_stop_tx_beacon(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtlpriv); u8 tmp1byte = 0; if (IS_NORMAL_CHIP(rtlhal->version)) { tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6))); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64); tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); tmp1byte &= ~(BIT(0)); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte); } else { rtl_write_byte(rtlpriv, REG_TXPAUSE, rtl_read_byte(rtlpriv, REG_TXPAUSE) | BIT(6)); } } static void _rtl92cu_resume_tx_beacon(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtlpriv); u8 tmp1byte = 0; if (IS_NORMAL_CHIP(rtlhal->version)) { tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6)); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); tmp1byte |= BIT(0); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte); } else { rtl_write_byte(rtlpriv, REG_TXPAUSE, rtl_read_byte(rtlpriv, REG_TXPAUSE) & (~BIT(6))); } } static void _rtl92cu_enable_bcn_sub_func(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtlpriv); if (IS_NORMAL_CHIP(rtlhal->version)) _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(1)); else _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(4)); } static void _rtl92cu_disable_bcn_sub_func(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtlpriv); if (IS_NORMAL_CHIP(rtlhal->version)) _rtl92cu_set_bcn_ctrl_reg(hw, BIT(1), 0); else _rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0); } static int _rtl92cu_set_media_status(struct ieee80211_hw *hw, enum nl80211_iftype type) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 bt_msr = rtl_read_byte(rtlpriv, MSR); enum led_ctl_mode ledaction = LED_CTL_NO_LINK; bt_msr &= 0xfc; rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xFF); if (type == NL80211_IFTYPE_UNSPECIFIED || type == NL80211_IFTYPE_STATION) { _rtl92cu_stop_tx_beacon(hw); _rtl92cu_enable_bcn_sub_func(hw); } else if (type == NL80211_IFTYPE_ADHOC || type == NL80211_IFTYPE_AP) { _rtl92cu_resume_tx_beacon(hw); _rtl92cu_disable_bcn_sub_func(hw); } else { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "Set HW_VAR_MEDIA_STATUS:No such media status(%x)\n", type); } switch (type) { case NL80211_IFTYPE_UNSPECIFIED: bt_msr |= MSR_NOLINK; ledaction = LED_CTL_LINK; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to NO LINK!\n"); break; case NL80211_IFTYPE_ADHOC: bt_msr |= MSR_ADHOC; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to Ad Hoc!\n"); break; case NL80211_IFTYPE_STATION: bt_msr |= MSR_INFRA; ledaction = LED_CTL_LINK; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to STA!\n"); break; case NL80211_IFTYPE_AP: bt_msr |= MSR_AP; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to AP!\n"); break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Network type %d not supported!\n", type); goto error_out; } rtl_write_byte(rtlpriv, (MSR), bt_msr); rtlpriv->cfg->ops->led_control(hw, ledaction); if ((bt_msr & 0xfc) == MSR_AP) rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00); else rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66); return 0; error_out: return 1; } void rtl92cu_card_disable(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); enum nl80211_iftype opmode; mac->link_state = MAC80211_NOLINK; opmode = NL80211_IFTYPE_UNSPECIFIED; _rtl92cu_set_media_status(hw, opmode); rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); if (rtlusb->disableHWSM) _CardDisableHWSM(hw); else _CardDisableWithoutHWSM(hw); } void rtl92cu_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtlpriv); u32 reg_rcr = rtl_read_dword(rtlpriv, REG_RCR); if (rtlpriv->psc.rfpwr_state != ERFON) return; if (check_bssid) { u8 tmp; if (IS_NORMAL_CHIP(rtlhal->version)) { reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN); tmp = BIT(4); } else { reg_rcr |= RCR_CBSSID; tmp = BIT(4) | BIT(5); } rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *) (®_rcr)); _rtl92cu_set_bcn_ctrl_reg(hw, 0, tmp); } else { u8 tmp; if (IS_NORMAL_CHIP(rtlhal->version)) { reg_rcr &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN); tmp = BIT(4); } else { reg_rcr &= ~RCR_CBSSID; tmp = BIT(4) | BIT(5); } reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN)); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *) (®_rcr)); _rtl92cu_set_bcn_ctrl_reg(hw, tmp, 0); } } /*========================================================================== */ int rtl92cu_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type) { struct rtl_priv *rtlpriv = rtl_priv(hw); if (_rtl92cu_set_media_status(hw, type)) return -EOPNOTSUPP; if (rtlpriv->mac80211.link_state == MAC80211_LINKED) { if (type != NL80211_IFTYPE_AP) rtl92cu_set_check_bssid(hw, true); } else { rtl92cu_set_check_bssid(hw, false); } return 0; } static void _InitBeaconParameters(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtlpriv); rtl_write_word(rtlpriv, REG_BCN_CTRL, 0x1010); /* TODO: Remove these magic number */ rtl_write_word(rtlpriv, REG_TBTT_PROHIBIT, 0x6404); rtl_write_byte(rtlpriv, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME); rtl_write_byte(rtlpriv, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME); /* Change beacon AIFS to the largest number * beacause test chip does not contension before sending beacon. */ if (IS_NORMAL_CHIP(rtlhal->version)) rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660F); else rtl_write_word(rtlpriv, REG_BCNTCFG, 0x66FF); } static void _beacon_function_enable(struct ieee80211_hw *hw, bool Enable, bool Linked) { struct rtl_priv *rtlpriv = rtl_priv(hw); _rtl92cu_set_bcn_ctrl_reg(hw, (BIT(4) | BIT(3) | BIT(1)), 0x00); rtl_write_byte(rtlpriv, REG_RD_CTRL+1, 0x6F); } void rtl92cu_set_beacon_related_registers(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 bcn_interval, atim_window; u32 value32; bcn_interval = mac->beacon_interval; atim_window = 2; /*FIX MERGE */ rtl_write_word(rtlpriv, REG_ATIMWND, atim_window); rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); _InitBeaconParameters(hw); rtl_write_byte(rtlpriv, REG_SLOT, 0x09); /* * Force beacon frame transmission even after receiving beacon frame * from other ad hoc STA * * * Reset TSF Timer to zero, added by Roger. 2008.06.24 */ value32 = rtl_read_dword(rtlpriv, REG_TCR); value32 &= ~TSFRST; rtl_write_dword(rtlpriv, REG_TCR, value32); value32 |= TSFRST; rtl_write_dword(rtlpriv, REG_TCR, value32); RT_TRACE(rtlpriv, COMP_INIT|COMP_BEACON, DBG_LOUD, "SetBeaconRelatedRegisters8192CUsb(): Set TCR(%x)\n", value32); /* TODO: Modify later (Find the right parameters) * NOTE: Fix test chip's bug (about contention windows's randomness) */ if ((mac->opmode == NL80211_IFTYPE_ADHOC) || (mac->opmode == NL80211_IFTYPE_AP)) { rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x50); rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x50); } _beacon_function_enable(hw, true, true); } void rtl92cu_set_beacon_interval(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 bcn_interval = mac->beacon_interval; RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG, "beacon_interval:%d\n", bcn_interval); rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); } void rtl92cu_update_interrupt_mask(struct ieee80211_hw *hw, u32 add_msr, u32 rm_msr) { } void rtl92cu_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); switch (variable) { case HW_VAR_RCR: *((u32 *)(val)) = mac->rx_conf; break; case HW_VAR_RF_STATE: *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state; break; case HW_VAR_FWLPS_RF_ON:{ enum rf_pwrstate rfState; u32 val_rcr; rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, (u8 *)(&rfState)); if (rfState == ERFOFF) { *((bool *) (val)) = true; } else { val_rcr = rtl_read_dword(rtlpriv, REG_RCR); val_rcr &= 0x00070000; if (val_rcr) *((bool *) (val)) = false; else *((bool *) (val)) = true; } break; } case HW_VAR_FW_PSMODE_STATUS: *((bool *) (val)) = ppsc->fw_current_inpsmode; break; case HW_VAR_CORRECT_TSF:{ u64 tsf; u32 *ptsf_low = (u32 *)&tsf; u32 *ptsf_high = ((u32 *)&tsf) + 1; *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4)); *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR); *((u64 *)(val)) = tsf; break; } case HW_VAR_MGT_FILTER: *((u16 *) (val)) = rtl_read_word(rtlpriv, REG_RXFLTMAP0); break; case HW_VAR_CTRL_FILTER: *((u16 *) (val)) = rtl_read_word(rtlpriv, REG_RXFLTMAP1); break; case HW_VAR_DATA_FILTER: *((u16 *) (val)) = rtl_read_word(rtlpriv, REG_RXFLTMAP2); break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case not processed\n"); break; } } void rtl92cu_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw)); enum wireless_mode wirelessmode = mac->mode; u8 idx = 0; switch (variable) { case HW_VAR_ETHER_ADDR:{ for (idx = 0; idx < ETH_ALEN; idx++) { rtl_write_byte(rtlpriv, (REG_MACID + idx), val[idx]); } break; } case HW_VAR_BASIC_RATE:{ u16 rate_cfg = ((u16 *) val)[0]; u8 rate_index = 0; rate_cfg &= 0x15f; /* TODO */ /* if (mac->current_network.vender == HT_IOT_PEER_CISCO * && ((rate_cfg & 0x150) == 0)) { * rate_cfg |= 0x010; * } */ rate_cfg |= 0x01; rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff); rtl_write_byte(rtlpriv, REG_RRSR + 1, (rate_cfg >> 8) & 0xff); while (rate_cfg > 0x1) { rate_cfg >>= 1; rate_index++; } rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, rate_index); break; } case HW_VAR_BSSID:{ for (idx = 0; idx < ETH_ALEN; idx++) { rtl_write_byte(rtlpriv, (REG_BSSID + idx), val[idx]); } break; } case HW_VAR_SIFS:{ rtl_write_byte(rtlpriv, REG_SIFS_CCK + 1, val[0]); rtl_write_byte(rtlpriv, REG_SIFS_OFDM + 1, val[1]); rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]); rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]); rtl_write_byte(rtlpriv, REG_R2T_SIFS+1, val[0]); rtl_write_byte(rtlpriv, REG_T2T_SIFS+1, val[0]); RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "HW_VAR_SIFS\n"); break; } case HW_VAR_SLOT_TIME:{ u8 e_aci; u8 QOS_MODE = 1; rtl_write_byte(rtlpriv, REG_SLOT, val[0]); RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "HW_VAR_SLOT_TIME %x\n", val[0]); if (QOS_MODE) { for (e_aci = 0; e_aci < AC_MAX; e_aci++) rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AC_PARAM, &e_aci); } else { u8 sifstime = 0; u8 u1bAIFS; if (IS_WIRELESS_MODE_A(wirelessmode) || IS_WIRELESS_MODE_N_24G(wirelessmode) || IS_WIRELESS_MODE_N_5G(wirelessmode)) sifstime = 16; else sifstime = 10; u1bAIFS = sifstime + (2 * val[0]); rtl_write_byte(rtlpriv, REG_EDCA_VO_PARAM, u1bAIFS); rtl_write_byte(rtlpriv, REG_EDCA_VI_PARAM, u1bAIFS); rtl_write_byte(rtlpriv, REG_EDCA_BE_PARAM, u1bAIFS); rtl_write_byte(rtlpriv, REG_EDCA_BK_PARAM, u1bAIFS); } break; } case HW_VAR_ACK_PREAMBLE:{ u8 reg_tmp; u8 short_preamble = (bool)*val; reg_tmp = 0; if (short_preamble) reg_tmp |= 0x80; rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp); break; } case HW_VAR_AMPDU_MIN_SPACE:{ u8 min_spacing_to_set; u8 sec_min_space; min_spacing_to_set = *val; if (min_spacing_to_set <= 7) { switch (rtlpriv->sec.pairwise_enc_algorithm) { case NO_ENCRYPTION: case AESCCMP_ENCRYPTION: sec_min_space = 0; break; case WEP40_ENCRYPTION: case WEP104_ENCRYPTION: case TKIP_ENCRYPTION: sec_min_space = 6; break; default: sec_min_space = 7; break; } if (min_spacing_to_set < sec_min_space) min_spacing_to_set = sec_min_space; mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) | min_spacing_to_set); *val = min_spacing_to_set; RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n", mac->min_space_cfg); rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, mac->min_space_cfg); } break; } case HW_VAR_SHORTGI_DENSITY:{ u8 density_to_set; density_to_set = *val; density_to_set &= 0x1f; mac->min_space_cfg &= 0x07; mac->min_space_cfg |= (density_to_set << 3); RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "Set HW_VAR_SHORTGI_DENSITY: %#x\n", mac->min_space_cfg); rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, mac->min_space_cfg); break; } case HW_VAR_AMPDU_FACTOR:{ u8 regtoset_normal[4] = {0x41, 0xa8, 0x72, 0xb9}; u8 factor_toset; u8 *p_regtoset = NULL; u8 index = 0; p_regtoset = regtoset_normal; factor_toset = *val; if (factor_toset <= 3) { factor_toset = (1 << (factor_toset + 2)); if (factor_toset > 0xf) factor_toset = 0xf; for (index = 0; index < 4; index++) { if ((p_regtoset[index] & 0xf0) > (factor_toset << 4)) p_regtoset[index] = (p_regtoset[index] & 0x0f) | (factor_toset << 4); if ((p_regtoset[index] & 0x0f) > factor_toset) p_regtoset[index] = (p_regtoset[index] & 0xf0) | (factor_toset); rtl_write_byte(rtlpriv, (REG_AGGLEN_LMT + index), p_regtoset[index]); } RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "Set HW_VAR_AMPDU_FACTOR: %#x\n", factor_toset); } break; } case HW_VAR_AC_PARAM:{ u8 e_aci = *val; u32 u4b_ac_param; u16 cw_min = le16_to_cpu(mac->ac[e_aci].cw_min); u16 cw_max = le16_to_cpu(mac->ac[e_aci].cw_max); u16 tx_op = le16_to_cpu(mac->ac[e_aci].tx_op); u4b_ac_param = (u32) mac->ac[e_aci].aifs; u4b_ac_param |= (u32) ((cw_min & 0xF) << AC_PARAM_ECW_MIN_OFFSET); u4b_ac_param |= (u32) ((cw_max & 0xF) << AC_PARAM_ECW_MAX_OFFSET); u4b_ac_param |= (u32) tx_op << AC_PARAM_TXOP_OFFSET; RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "queue:%x, ac_param:%x\n", e_aci, u4b_ac_param); switch (e_aci) { case AC1_BK: rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, u4b_ac_param); break; case AC0_BE: rtl_write_dword(rtlpriv, REG_EDCA_BE_PARAM, u4b_ac_param); break; case AC2_VI: rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, u4b_ac_param); break; case AC3_VO: rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, u4b_ac_param); break; default: RT_ASSERT(false, "SetHwReg8185(): invalid aci: %d !\n", e_aci); break; } if (rtlusb->acm_method != eAcmWay2_SW) rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL, &e_aci); break; } case HW_VAR_ACM_CTRL:{ u8 e_aci = *val; union aci_aifsn *p_aci_aifsn = (union aci_aifsn *) (&(mac->ac[0].aifs)); u8 acm = p_aci_aifsn->f.acm; u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL); acm_ctrl = acm_ctrl | ((rtlusb->acm_method == 2) ? 0x0 : 0x1); if (acm) { switch (e_aci) { case AC0_BE: acm_ctrl |= AcmHw_BeqEn; break; case AC2_VI: acm_ctrl |= AcmHw_ViqEn; break; case AC3_VO: acm_ctrl |= AcmHw_VoqEn; break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n", acm); break; } } else { switch (e_aci) { case AC0_BE: acm_ctrl &= (~AcmHw_BeqEn); break; case AC2_VI: acm_ctrl &= (~AcmHw_ViqEn); break; case AC3_VO: acm_ctrl &= (~AcmHw_BeqEn); break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case not processed\n"); break; } } RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE, "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n", acm_ctrl); rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl); break; } case HW_VAR_RCR:{ rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]); mac->rx_conf = ((u32 *) (val))[0]; RT_TRACE(rtlpriv, COMP_RECV, DBG_DMESG, "### Set RCR(0x%08x) ###\n", mac->rx_conf); break; } case HW_VAR_RETRY_LIMIT:{ u8 retry_limit = val[0]; rtl_write_word(rtlpriv, REG_RL, retry_limit << RETRY_LIMIT_SHORT_SHIFT | retry_limit << RETRY_LIMIT_LONG_SHIFT); RT_TRACE(rtlpriv, COMP_MLME, DBG_DMESG, "Set HW_VAR_RETRY_LIMIT(0x%08x)\n", retry_limit); break; } case HW_VAR_DUAL_TSF_RST: rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1))); break; case HW_VAR_EFUSE_BYTES: rtlefuse->efuse_usedbytes = *((u16 *) val); break; case HW_VAR_EFUSE_USAGE: rtlefuse->efuse_usedpercentage = *val; break; case HW_VAR_IO_CMD: rtl92c_phy_set_io_cmd(hw, (*(enum io_type *)val)); break; case HW_VAR_WPA_CONFIG: rtl_write_byte(rtlpriv, REG_SECCFG, *val); break; case HW_VAR_SET_RPWM:{ u8 rpwm_val = rtl_read_byte(rtlpriv, REG_USB_HRPWM); if (rpwm_val & BIT(7)) rtl_write_byte(rtlpriv, REG_USB_HRPWM, *val); else rtl_write_byte(rtlpriv, REG_USB_HRPWM, *val | BIT(7)); break; } case HW_VAR_H2C_FW_PWRMODE:{ u8 psmode = *val; if ((psmode != FW_PS_ACTIVE_MODE) && (!IS_92C_SERIAL(rtlhal->version))) rtl92c_dm_rf_saving(hw, true); rtl92c_set_fw_pwrmode_cmd(hw, (*val)); break; } case HW_VAR_FW_PSMODE_STATUS: ppsc->fw_current_inpsmode = *((bool *) val); break; case HW_VAR_H2C_FW_JOINBSSRPT:{ u8 mstatus = *val; u8 tmp_reg422; bool recover = false; if (mstatus == RT_MEDIA_CONNECT) { rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID, NULL); rtl_write_byte(rtlpriv, REG_CR + 1, 0x03); _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(3)); _rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0); tmp_reg422 = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); if (tmp_reg422 & BIT(6)) recover = true; rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp_reg422 & (~BIT(6))); rtl92c_set_fw_rsvdpagepkt(hw, 0); _rtl92cu_set_bcn_ctrl_reg(hw, BIT(3), 0); _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(4)); if (recover) rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp_reg422 | BIT(6)); rtl_write_byte(rtlpriv, REG_CR + 1, 0x02); } rtl92c_set_fw_joinbss_report_cmd(hw, (*val)); break; } case HW_VAR_AID:{ u16 u2btmp; u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT); u2btmp &= 0xC000; rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp | mac->assoc_id)); break; } case HW_VAR_CORRECT_TSF:{ u8 btype_ibss = val[0]; if (btype_ibss) _rtl92cu_stop_tx_beacon(hw); _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(3)); rtl_write_dword(rtlpriv, REG_TSFTR, (u32)(mac->tsf & 0xffffffff)); rtl_write_dword(rtlpriv, REG_TSFTR + 4, (u32)((mac->tsf >> 32) & 0xffffffff)); _rtl92cu_set_bcn_ctrl_reg(hw, BIT(3), 0); if (btype_ibss) _rtl92cu_resume_tx_beacon(hw); break; } case HW_VAR_MGT_FILTER: rtl_write_word(rtlpriv, REG_RXFLTMAP0, *(u16 *)val); break; case HW_VAR_CTRL_FILTER: rtl_write_word(rtlpriv, REG_RXFLTMAP1, *(u16 *)val); break; case HW_VAR_DATA_FILTER: rtl_write_word(rtlpriv, REG_RXFLTMAP2, *(u16 *)val); break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case not processed\n"); break; } } static void rtl92cu_update_hal_rate_table(struct ieee80211_hw *hw, struct ieee80211_sta *sta) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u32 ratr_value; u8 ratr_index = 0; u8 nmode = mac->ht_enable; u8 mimo_ps = IEEE80211_SMPS_OFF; u16 shortgi_rate; u32 tmp_ratr_value; u8 curtxbw_40mhz = mac->bw_40; u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? 1 : 0; u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? 1 : 0; enum wireless_mode wirelessmode = mac->mode; if (rtlhal->current_bandtype == BAND_ON_5G) ratr_value = sta->supp_rates[1] << 4; else ratr_value = sta->supp_rates[0]; if (mac->opmode == NL80211_IFTYPE_ADHOC) ratr_value = 0xfff; ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 | sta->ht_cap.mcs.rx_mask[0] << 12); switch (wirelessmode) { case WIRELESS_MODE_B: if (ratr_value & 0x0000000c) ratr_value &= 0x0000000d; else ratr_value &= 0x0000000f; break; case WIRELESS_MODE_G: ratr_value &= 0x00000FF5; break; case WIRELESS_MODE_N_24G: case WIRELESS_MODE_N_5G: nmode = 1; if (mimo_ps == IEEE80211_SMPS_STATIC) { ratr_value &= 0x0007F005; } else { u32 ratr_mask; if (get_rf_type(rtlphy) == RF_1T2R || get_rf_type(rtlphy) == RF_1T1R) ratr_mask = 0x000ff005; else ratr_mask = 0x0f0ff005; ratr_value &= ratr_mask; } break; default: if (rtlphy->rf_type == RF_1T2R) ratr_value &= 0x000ff0ff; else ratr_value &= 0x0f0ff0ff; break; } ratr_value &= 0x0FFFFFFF; if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) || (!curtxbw_40mhz && curshortgi_20mhz))) { ratr_value |= 0x10000000; tmp_ratr_value = (ratr_value >> 12); for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) { if ((1 << shortgi_rate) & tmp_ratr_value) break; } shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) | (shortgi_rate << 4) | (shortgi_rate); } rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value); RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n", rtl_read_dword(rtlpriv, REG_ARFR0)); } static void rtl92cu_update_hal_rate_mask(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u8 rssi_level) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_sta_info *sta_entry = NULL; u32 ratr_bitmap; u8 ratr_index; u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0; u8 curshortgi_40mhz = curtxbw_40mhz && (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? 1 : 0; u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? 1 : 0; enum wireless_mode wirelessmode = 0; bool shortgi = false; u8 rate_mask[5]; u8 macid = 0; u8 mimo_ps = IEEE80211_SMPS_OFF; sta_entry = (struct rtl_sta_info *) sta->drv_priv; wirelessmode = sta_entry->wireless_mode; if (mac->opmode == NL80211_IFTYPE_STATION || mac->opmode == NL80211_IFTYPE_MESH_POINT) curtxbw_40mhz = mac->bw_40; else if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_ADHOC) macid = sta->aid + 1; if (rtlhal->current_bandtype == BAND_ON_5G) ratr_bitmap = sta->supp_rates[1] << 4; else ratr_bitmap = sta->supp_rates[0]; if (mac->opmode == NL80211_IFTYPE_ADHOC) ratr_bitmap = 0xfff; ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 | sta->ht_cap.mcs.rx_mask[0] << 12); switch (wirelessmode) { case WIRELESS_MODE_B: ratr_index = RATR_INX_WIRELESS_B; if (ratr_bitmap & 0x0000000c) ratr_bitmap &= 0x0000000d; else ratr_bitmap &= 0x0000000f; break; case WIRELESS_MODE_G: ratr_index = RATR_INX_WIRELESS_GB; if (rssi_level == 1) ratr_bitmap &= 0x00000f00; else if (rssi_level == 2) ratr_bitmap &= 0x00000ff0; else ratr_bitmap &= 0x00000ff5; break; case WIRELESS_MODE_A: ratr_index = RATR_INX_WIRELESS_A; ratr_bitmap &= 0x00000ff0; break; case WIRELESS_MODE_N_24G: case WIRELESS_MODE_N_5G: ratr_index = RATR_INX_WIRELESS_NGB; if (mimo_ps == IEEE80211_SMPS_STATIC) { if (rssi_level == 1) ratr_bitmap &= 0x00070000; else if (rssi_level == 2) ratr_bitmap &= 0x0007f000; else ratr_bitmap &= 0x0007f005; } else { if (rtlphy->rf_type == RF_1T2R || rtlphy->rf_type == RF_1T1R) { if (curtxbw_40mhz) { if (rssi_level == 1) ratr_bitmap &= 0x000f0000; else if (rssi_level == 2) ratr_bitmap &= 0x000ff000; else ratr_bitmap &= 0x000ff015; } else { if (rssi_level == 1) ratr_bitmap &= 0x000f0000; else if (rssi_level == 2) ratr_bitmap &= 0x000ff000; else ratr_bitmap &= 0x000ff005; } } else { if (curtxbw_40mhz) { if (rssi_level == 1) ratr_bitmap &= 0x0f0f0000; else if (rssi_level == 2) ratr_bitmap &= 0x0f0ff000; else ratr_bitmap &= 0x0f0ff015; } else { if (rssi_level == 1) ratr_bitmap &= 0x0f0f0000; else if (rssi_level == 2) ratr_bitmap &= 0x0f0ff000; else ratr_bitmap &= 0x0f0ff005; } } } if ((curtxbw_40mhz && curshortgi_40mhz) || (!curtxbw_40mhz && curshortgi_20mhz)) { if (macid == 0) shortgi = true; else if (macid == 1) shortgi = false; } break; default: ratr_index = RATR_INX_WIRELESS_NGB; if (rtlphy->rf_type == RF_1T2R) ratr_bitmap &= 0x000ff0ff; else ratr_bitmap &= 0x0f0ff0ff; break; } sta_entry->ratr_index = ratr_index; RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "ratr_bitmap :%x\n", ratr_bitmap); *(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28); rate_mask[4] = macid | (shortgi ? 0x20 : 0x00) | 0x80; RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "Rate_index:%x, ratr_val:%x, %5phC\n", ratr_index, ratr_bitmap, rate_mask); memcpy(rtlpriv->rate_mask, rate_mask, 5); /* rtl92c_fill_h2c_cmd() does USB I/O and will result in a * "scheduled while atomic" if called directly */ schedule_work(&rtlpriv->works.fill_h2c_cmd); if (macid != 0) sta_entry->ratr_index = ratr_index; } void rtl92cu_update_hal_rate_tbl(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u8 rssi_level) { struct rtl_priv *rtlpriv = rtl_priv(hw); if (rtlpriv->dm.useramask) rtl92cu_update_hal_rate_mask(hw, sta, rssi_level); else rtl92cu_update_hal_rate_table(hw, sta); } void rtl92cu_update_channel_access_setting(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 sifs_timer; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME, &mac->slot_time); if (!mac->ht_enable) sifs_timer = 0x0a0a; else sifs_timer = 0x0e0e; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer); } bool rtl92cu_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 * valid) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); enum rf_pwrstate e_rfpowerstate_toset, cur_rfstate; u8 u1tmp = 0; bool actuallyset = false; unsigned long flag = 0; /* to do - usb autosuspend */ u8 usb_autosuspend = 0; if (ppsc->swrf_processing) return false; spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); if (ppsc->rfchange_inprogress) { spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); return false; } else { ppsc->rfchange_inprogress = true; spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); } cur_rfstate = ppsc->rfpwr_state; if (usb_autosuspend) { /* to do................... */ } else { if (ppsc->pwrdown_mode) { u1tmp = rtl_read_byte(rtlpriv, REG_HSISR); e_rfpowerstate_toset = (u1tmp & BIT(7)) ? ERFOFF : ERFON; RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG, "pwrdown, 0x5c(BIT7)=%02x\n", u1tmp); } else { rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv, REG_MAC_PINMUX_CFG) & ~(BIT(3))); u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL); e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF; RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG, "GPIO_IN=%02x\n", u1tmp); } RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, "N-SS RF =%x\n", e_rfpowerstate_toset); } if ((ppsc->hwradiooff) && (e_rfpowerstate_toset == ERFON)) { RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, "GPIOChangeRF - HW Radio ON, RF ON\n"); ppsc->hwradiooff = false; actuallyset = true; } else if ((!ppsc->hwradiooff) && (e_rfpowerstate_toset == ERFOFF)) { RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, "GPIOChangeRF - HW Radio OFF\n"); ppsc->hwradiooff = true; actuallyset = true; } else { RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, "pHalData->bHwRadioOff and eRfPowerStateToSet do not match: pHalData->bHwRadioOff %x, eRfPowerStateToSet %x\n", ppsc->hwradiooff, e_rfpowerstate_toset); } if (actuallyset) { ppsc->hwradiooff = true; if (e_rfpowerstate_toset == ERFON) { if ((ppsc->reg_rfps_level & RT_RF_OFF_LEVL_ASPM) && RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM)) RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM); else if ((ppsc->reg_rfps_level & RT_RF_OFF_LEVL_PCI_D3) && RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3)) RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3); } spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); ppsc->rfchange_inprogress = false; spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); /* For power down module, we need to enable register block * contrl reg at 0x1c. Then enable power down control bit * of register 0x04 BIT4 and BIT15 as 1. */ if (ppsc->pwrdown_mode && e_rfpowerstate_toset == ERFOFF) { /* Enable register area 0x0-0xc. */ rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0); if (IS_HARDWARE_TYPE_8723U(rtlhal)) { /* * We should configure HW PDn source for WiFi * ONLY, and then our HW will be set in * power-down mode if PDn source from all * functions are configured. */ u1tmp = rtl_read_byte(rtlpriv, REG_MULTI_FUNC_CTRL); rtl_write_byte(rtlpriv, REG_MULTI_FUNC_CTRL, (u1tmp|WL_HWPDN_EN)); } else { rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x8812); } } if (e_rfpowerstate_toset == ERFOFF) { if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_ASPM) RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM); else if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_PCI_D3) RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3); } } else if (e_rfpowerstate_toset == ERFOFF || cur_rfstate == ERFOFF) { /* Enter D3 or ASPM after GPIO had been done. */ if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_ASPM) RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM); else if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_PCI_D3) RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3); spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); ppsc->rfchange_inprogress = false; spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); } else { spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); ppsc->rfchange_inprogress = false; spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); } *valid = 1; return !ppsc->hwradiooff; }