/* * Standard PCI Hot Plug Driver * * Copyright (C) 1995,2001 Compaq Computer Corporation * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) * Copyright (C) 2001 IBM Corp. * Copyright (C) 2003-2004 Intel Corporation * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to <greg@kroah.com>,<kristen.c.accardi@intel.com> * */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/interrupt.h> #include "shpchp.h" /* Slot Available Register I field definition */ #define SLOT_33MHZ 0x0000001f #define SLOT_66MHZ_PCIX 0x00001f00 #define SLOT_100MHZ_PCIX 0x001f0000 #define SLOT_133MHZ_PCIX 0x1f000000 /* Slot Available Register II field definition */ #define SLOT_66MHZ 0x0000001f #define SLOT_66MHZ_PCIX_266 0x00000f00 #define SLOT_100MHZ_PCIX_266 0x0000f000 #define SLOT_133MHZ_PCIX_266 0x000f0000 #define SLOT_66MHZ_PCIX_533 0x00f00000 #define SLOT_100MHZ_PCIX_533 0x0f000000 #define SLOT_133MHZ_PCIX_533 0xf0000000 /* Slot Configuration */ #define SLOT_NUM 0x0000001F #define FIRST_DEV_NUM 0x00001F00 #define PSN 0x07FF0000 #define UPDOWN 0x20000000 #define MRLSENSOR 0x40000000 #define ATTN_BUTTON 0x80000000 /* * Interrupt Locator Register definitions */ #define CMD_INTR_PENDING (1 << 0) #define SLOT_INTR_PENDING(i) (1 << (i + 1)) /* * Controller SERR-INT Register */ #define GLOBAL_INTR_MASK (1 << 0) #define GLOBAL_SERR_MASK (1 << 1) #define COMMAND_INTR_MASK (1 << 2) #define ARBITER_SERR_MASK (1 << 3) #define COMMAND_DETECTED (1 << 16) #define ARBITER_DETECTED (1 << 17) #define SERR_INTR_RSVDZ_MASK 0xfffc0000 /* * Logical Slot Register definitions */ #define SLOT_REG(i) (SLOT1 + (4 * i)) #define SLOT_STATE_SHIFT (0) #define SLOT_STATE_MASK (3 << 0) #define SLOT_STATE_PWRONLY (1) #define SLOT_STATE_ENABLED (2) #define SLOT_STATE_DISABLED (3) #define PWR_LED_STATE_SHIFT (2) #define PWR_LED_STATE_MASK (3 << 2) #define ATN_LED_STATE_SHIFT (4) #define ATN_LED_STATE_MASK (3 << 4) #define ATN_LED_STATE_ON (1) #define ATN_LED_STATE_BLINK (2) #define ATN_LED_STATE_OFF (3) #define POWER_FAULT (1 << 6) #define ATN_BUTTON (1 << 7) #define MRL_SENSOR (1 << 8) #define MHZ66_CAP (1 << 9) #define PRSNT_SHIFT (10) #define PRSNT_MASK (3 << 10) #define PCIX_CAP_SHIFT (12) #define PCIX_CAP_MASK_PI1 (3 << 12) #define PCIX_CAP_MASK_PI2 (7 << 12) #define PRSNT_CHANGE_DETECTED (1 << 16) #define ISO_PFAULT_DETECTED (1 << 17) #define BUTTON_PRESS_DETECTED (1 << 18) #define MRL_CHANGE_DETECTED (1 << 19) #define CON_PFAULT_DETECTED (1 << 20) #define PRSNT_CHANGE_INTR_MASK (1 << 24) #define ISO_PFAULT_INTR_MASK (1 << 25) #define BUTTON_PRESS_INTR_MASK (1 << 26) #define MRL_CHANGE_INTR_MASK (1 << 27) #define CON_PFAULT_INTR_MASK (1 << 28) #define MRL_CHANGE_SERR_MASK (1 << 29) #define CON_PFAULT_SERR_MASK (1 << 30) #define SLOT_REG_RSVDZ_MASK ((1 << 15) | (7 << 21)) /* * SHPC Command Code definitnions * * Slot Operation 00h - 3Fh * Set Bus Segment Speed/Mode A 40h - 47h * Power-Only All Slots 48h * Enable All Slots 49h * Set Bus Segment Speed/Mode B (PI=2) 50h - 5Fh * Reserved Command Codes 60h - BFh * Vendor Specific Commands C0h - FFh */ #define SET_SLOT_PWR 0x01 /* Slot Operation */ #define SET_SLOT_ENABLE 0x02 #define SET_SLOT_DISABLE 0x03 #define SET_PWR_ON 0x04 #define SET_PWR_BLINK 0x08 #define SET_PWR_OFF 0x0c #define SET_ATTN_ON 0x10 #define SET_ATTN_BLINK 0x20 #define SET_ATTN_OFF 0x30 #define SETA_PCI_33MHZ 0x40 /* Set Bus Segment Speed/Mode A */ #define SETA_PCI_66MHZ 0x41 #define SETA_PCIX_66MHZ 0x42 #define SETA_PCIX_100MHZ 0x43 #define SETA_PCIX_133MHZ 0x44 #define SETA_RESERVED1 0x45 #define SETA_RESERVED2 0x46 #define SETA_RESERVED3 0x47 #define SET_PWR_ONLY_ALL 0x48 /* Power-Only All Slots */ #define SET_ENABLE_ALL 0x49 /* Enable All Slots */ #define SETB_PCI_33MHZ 0x50 /* Set Bus Segment Speed/Mode B */ #define SETB_PCI_66MHZ 0x51 #define SETB_PCIX_66MHZ_PM 0x52 #define SETB_PCIX_100MHZ_PM 0x53 #define SETB_PCIX_133MHZ_PM 0x54 #define SETB_PCIX_66MHZ_EM 0x55 #define SETB_PCIX_100MHZ_EM 0x56 #define SETB_PCIX_133MHZ_EM 0x57 #define SETB_PCIX_66MHZ_266 0x58 #define SETB_PCIX_100MHZ_266 0x59 #define SETB_PCIX_133MHZ_266 0x5a #define SETB_PCIX_66MHZ_533 0x5b #define SETB_PCIX_100MHZ_533 0x5c #define SETB_PCIX_133MHZ_533 0x5d #define SETB_RESERVED1 0x5e #define SETB_RESERVED2 0x5f /* * SHPC controller command error code */ #define SWITCH_OPEN 0x1 #define INVALID_CMD 0x2 #define INVALID_SPEED_MODE 0x4 /* * For accessing SHPC Working Register Set via PCI Configuration Space */ #define DWORD_SELECT 0x2 #define DWORD_DATA 0x4 /* Field Offset in Logical Slot Register - byte boundary */ #define SLOT_EVENT_LATCH 0x2 #define SLOT_SERR_INT_MASK 0x3 static irqreturn_t shpc_isr(int irq, void *dev_id); static void start_int_poll_timer(struct controller *ctrl, int sec); static int hpc_check_cmd_status(struct controller *ctrl); static inline u8 shpc_readb(struct controller *ctrl, int reg) { return readb(ctrl->creg + reg); } static inline void shpc_writeb(struct controller *ctrl, int reg, u8 val) { writeb(val, ctrl->creg + reg); } static inline u16 shpc_readw(struct controller *ctrl, int reg) { return readw(ctrl->creg + reg); } static inline void shpc_writew(struct controller *ctrl, int reg, u16 val) { writew(val, ctrl->creg + reg); } static inline u32 shpc_readl(struct controller *ctrl, int reg) { return readl(ctrl->creg + reg); } static inline void shpc_writel(struct controller *ctrl, int reg, u32 val) { writel(val, ctrl->creg + reg); } static inline int shpc_indirect_read(struct controller *ctrl, int index, u32 *value) { int rc; u32 cap_offset = ctrl->cap_offset; struct pci_dev *pdev = ctrl->pci_dev; rc = pci_write_config_byte(pdev, cap_offset + DWORD_SELECT, index); if (rc) return rc; return pci_read_config_dword(pdev, cap_offset + DWORD_DATA, value); } /* * This is the interrupt polling timeout function. */ static void int_poll_timeout(unsigned long data) { struct controller *ctrl = (struct controller *)data; /* Poll for interrupt events. regs == NULL => polling */ shpc_isr(0, ctrl); init_timer(&ctrl->poll_timer); if (!shpchp_poll_time) shpchp_poll_time = 2; /* default polling interval is 2 sec */ start_int_poll_timer(ctrl, shpchp_poll_time); } /* * This function starts the interrupt polling timer. */ static void start_int_poll_timer(struct controller *ctrl, int sec) { /* Clamp to sane value */ if ((sec <= 0) || (sec > 60)) sec = 2; ctrl->poll_timer.function = &int_poll_timeout; ctrl->poll_timer.data = (unsigned long)ctrl; ctrl->poll_timer.expires = jiffies + sec * HZ; add_timer(&ctrl->poll_timer); } static inline int is_ctrl_busy(struct controller *ctrl) { u16 cmd_status = shpc_readw(ctrl, CMD_STATUS); return cmd_status & 0x1; } /* * Returns 1 if SHPC finishes executing a command within 1 sec, * otherwise returns 0. */ static inline int shpc_poll_ctrl_busy(struct controller *ctrl) { int i; if (!is_ctrl_busy(ctrl)) return 1; /* Check every 0.1 sec for a total of 1 sec */ for (i = 0; i < 10; i++) { msleep(100); if (!is_ctrl_busy(ctrl)) return 1; } return 0; } static inline int shpc_wait_cmd(struct controller *ctrl) { int retval = 0; unsigned long timeout = msecs_to_jiffies(1000); int rc; if (shpchp_poll_mode) rc = shpc_poll_ctrl_busy(ctrl); else rc = wait_event_interruptible_timeout(ctrl->queue, !is_ctrl_busy(ctrl), timeout); if (!rc && is_ctrl_busy(ctrl)) { retval = -EIO; ctrl_err(ctrl, "Command not completed in 1000 msec\n"); } else if (rc < 0) { retval = -EINTR; ctrl_info(ctrl, "Command was interrupted by a signal\n"); } return retval; } static int shpc_write_cmd(struct slot *slot, u8 t_slot, u8 cmd) { struct controller *ctrl = slot->ctrl; u16 cmd_status; int retval = 0; u16 temp_word; mutex_lock(&slot->ctrl->cmd_lock); if (!shpc_poll_ctrl_busy(ctrl)) { /* After 1 sec and and the controller is still busy */ ctrl_err(ctrl, "Controller is still busy after 1 sec\n"); retval = -EBUSY; goto out; } ++t_slot; temp_word = (t_slot << 8) | (cmd & 0xFF); ctrl_dbg(ctrl, "%s: t_slot %x cmd %x\n", __func__, t_slot, cmd); /* To make sure the Controller Busy bit is 0 before we send out the * command. */ shpc_writew(ctrl, CMD, temp_word); /* * Wait for command completion. */ retval = shpc_wait_cmd(slot->ctrl); if (retval) goto out; cmd_status = hpc_check_cmd_status(slot->ctrl); if (cmd_status) { ctrl_err(ctrl, "Failed to issued command 0x%x (error code = %d)\n", cmd, cmd_status); retval = -EIO; } out: mutex_unlock(&slot->ctrl->cmd_lock); return retval; } static int hpc_check_cmd_status(struct controller *ctrl) { int retval = 0; u16 cmd_status = shpc_readw(ctrl, CMD_STATUS) & 0x000F; switch (cmd_status >> 1) { case 0: retval = 0; break; case 1: retval = SWITCH_OPEN; ctrl_err(ctrl, "Switch opened!\n"); break; case 2: retval = INVALID_CMD; ctrl_err(ctrl, "Invalid HPC command!\n"); break; case 4: retval = INVALID_SPEED_MODE; ctrl_err(ctrl, "Invalid bus speed/mode!\n"); break; default: retval = cmd_status; } return retval; } static int hpc_get_attention_status(struct slot *slot, u8 *status) { struct controller *ctrl = slot->ctrl; u32 slot_reg = shpc_readl(ctrl, SLOT_REG(slot->hp_slot)); u8 state = (slot_reg & ATN_LED_STATE_MASK) >> ATN_LED_STATE_SHIFT; switch (state) { case ATN_LED_STATE_ON: *status = 1; /* On */ break; case ATN_LED_STATE_BLINK: *status = 2; /* Blink */ break; case ATN_LED_STATE_OFF: *status = 0; /* Off */ break; default: *status = 0xFF; /* Reserved */ break; } return 0; } static int hpc_get_power_status(struct slot * slot, u8 *status) { struct controller *ctrl = slot->ctrl; u32 slot_reg = shpc_readl(ctrl, SLOT_REG(slot->hp_slot)); u8 state = (slot_reg & SLOT_STATE_MASK) >> SLOT_STATE_SHIFT; switch (state) { case SLOT_STATE_PWRONLY: *status = 2; /* Powered only */ break; case SLOT_STATE_ENABLED: *status = 1; /* Enabled */ break; case SLOT_STATE_DISABLED: *status = 0; /* Disabled */ break; default: *status = 0xFF; /* Reserved */ break; } return 0; } static int hpc_get_latch_status(struct slot *slot, u8 *status) { struct controller *ctrl = slot->ctrl; u32 slot_reg = shpc_readl(ctrl, SLOT_REG(slot->hp_slot)); *status = !!(slot_reg & MRL_SENSOR); /* 0 -> close; 1 -> open */ return 0; } static int hpc_get_adapter_status(struct slot *slot, u8 *status) { struct controller *ctrl = slot->ctrl; u32 slot_reg = shpc_readl(ctrl, SLOT_REG(slot->hp_slot)); u8 state = (slot_reg & PRSNT_MASK) >> PRSNT_SHIFT; *status = (state != 0x3) ? 1 : 0; return 0; } static int hpc_get_prog_int(struct slot *slot, u8 *prog_int) { struct controller *ctrl = slot->ctrl; *prog_int = shpc_readb(ctrl, PROG_INTERFACE); return 0; } static int hpc_get_adapter_speed(struct slot *slot, enum pci_bus_speed *value) { int retval = 0; struct controller *ctrl = slot->ctrl; u32 slot_reg = shpc_readl(ctrl, SLOT_REG(slot->hp_slot)); u8 m66_cap = !!(slot_reg & MHZ66_CAP); u8 pi, pcix_cap; if ((retval = hpc_get_prog_int(slot, &pi))) return retval; switch (pi) { case 1: pcix_cap = (slot_reg & PCIX_CAP_MASK_PI1) >> PCIX_CAP_SHIFT; break; case 2: pcix_cap = (slot_reg & PCIX_CAP_MASK_PI2) >> PCIX_CAP_SHIFT; break; default: return -ENODEV; } ctrl_dbg(ctrl, "%s: slot_reg = %x, pcix_cap = %x, m66_cap = %x\n", __func__, slot_reg, pcix_cap, m66_cap); switch (pcix_cap) { case 0x0: *value = m66_cap ? PCI_SPEED_66MHz : PCI_SPEED_33MHz; break; case 0x1: *value = PCI_SPEED_66MHz_PCIX; break; case 0x3: *value = PCI_SPEED_133MHz_PCIX; break; case 0x4: *value = PCI_SPEED_133MHz_PCIX_266; break; case 0x5: *value = PCI_SPEED_133MHz_PCIX_533; break; case 0x2: default: *value = PCI_SPEED_UNKNOWN; retval = -ENODEV; break; } ctrl_dbg(ctrl, "Adapter speed = %d\n", *value); return retval; } static int hpc_get_mode1_ECC_cap(struct slot *slot, u8 *mode) { int retval = 0; struct controller *ctrl = slot->ctrl; u16 sec_bus_status = shpc_readw(ctrl, SEC_BUS_CONFIG); u8 pi = shpc_readb(ctrl, PROG_INTERFACE); if (pi == 2) { *mode = (sec_bus_status & 0x0100) >> 8; } else { retval = -1; } ctrl_dbg(ctrl, "Mode 1 ECC cap = %d\n", *mode); return retval; } static int hpc_query_power_fault(struct slot * slot) { struct controller *ctrl = slot->ctrl; u32 slot_reg = shpc_readl(ctrl, SLOT_REG(slot->hp_slot)); /* Note: Logic 0 => fault */ return !(slot_reg & POWER_FAULT); } static int hpc_set_attention_status(struct slot *slot, u8 value) { u8 slot_cmd = 0; switch (value) { case 0 : slot_cmd = SET_ATTN_OFF; /* OFF */ break; case 1: slot_cmd = SET_ATTN_ON; /* ON */ break; case 2: slot_cmd = SET_ATTN_BLINK; /* BLINK */ break; default: return -1; } return shpc_write_cmd(slot, slot->hp_slot, slot_cmd); } static void hpc_set_green_led_on(struct slot *slot) { shpc_write_cmd(slot, slot->hp_slot, SET_PWR_ON); } static void hpc_set_green_led_off(struct slot *slot) { shpc_write_cmd(slot, slot->hp_slot, SET_PWR_OFF); } static void hpc_set_green_led_blink(struct slot *slot) { shpc_write_cmd(slot, slot->hp_slot, SET_PWR_BLINK); } static void hpc_release_ctlr(struct controller *ctrl) { int i; u32 slot_reg, serr_int; /* * Mask event interrupts and SERRs of all slots */ for (i = 0; i < ctrl->num_slots; i++) { slot_reg = shpc_readl(ctrl, SLOT_REG(i)); slot_reg |= (PRSNT_CHANGE_INTR_MASK | ISO_PFAULT_INTR_MASK | BUTTON_PRESS_INTR_MASK | MRL_CHANGE_INTR_MASK | CON_PFAULT_INTR_MASK | MRL_CHANGE_SERR_MASK | CON_PFAULT_SERR_MASK); slot_reg &= ~SLOT_REG_RSVDZ_MASK; shpc_writel(ctrl, SLOT_REG(i), slot_reg); } cleanup_slots(ctrl); /* * Mask SERR and System Interrupt generation */ serr_int = shpc_readl(ctrl, SERR_INTR_ENABLE); serr_int |= (GLOBAL_INTR_MASK | GLOBAL_SERR_MASK | COMMAND_INTR_MASK | ARBITER_SERR_MASK); serr_int &= ~SERR_INTR_RSVDZ_MASK; shpc_writel(ctrl, SERR_INTR_ENABLE, serr_int); if (shpchp_poll_mode) del_timer(&ctrl->poll_timer); else { free_irq(ctrl->pci_dev->irq, ctrl); pci_disable_msi(ctrl->pci_dev); } iounmap(ctrl->creg); release_mem_region(ctrl->mmio_base, ctrl->mmio_size); } static int hpc_power_on_slot(struct slot * slot) { int retval; retval = shpc_write_cmd(slot, slot->hp_slot, SET_SLOT_PWR); if (retval) ctrl_err(slot->ctrl, "%s: Write command failed!\n", __func__); return retval; } static int hpc_slot_enable(struct slot * slot) { int retval; /* Slot - Enable, Power Indicator - Blink, Attention Indicator - Off */ retval = shpc_write_cmd(slot, slot->hp_slot, SET_SLOT_ENABLE | SET_PWR_BLINK | SET_ATTN_OFF); if (retval) ctrl_err(slot->ctrl, "%s: Write command failed!\n", __func__); return retval; } static int hpc_slot_disable(struct slot * slot) { int retval; /* Slot - Disable, Power Indicator - Off, Attention Indicator - On */ retval = shpc_write_cmd(slot, slot->hp_slot, SET_SLOT_DISABLE | SET_PWR_OFF | SET_ATTN_ON); if (retval) ctrl_err(slot->ctrl, "%s: Write command failed!\n", __func__); return retval; } static int shpc_get_cur_bus_speed(struct controller *ctrl) { int retval = 0; struct pci_bus *bus = ctrl->pci_dev->subordinate; enum pci_bus_speed bus_speed = PCI_SPEED_UNKNOWN; u16 sec_bus_reg = shpc_readw(ctrl, SEC_BUS_CONFIG); u8 pi = shpc_readb(ctrl, PROG_INTERFACE); u8 speed_mode = (pi == 2) ? (sec_bus_reg & 0xF) : (sec_bus_reg & 0x7); if ((pi == 1) && (speed_mode > 4)) { retval = -ENODEV; goto out; } switch (speed_mode) { case 0x0: bus_speed = PCI_SPEED_33MHz; break; case 0x1: bus_speed = PCI_SPEED_66MHz; break; case 0x2: bus_speed = PCI_SPEED_66MHz_PCIX; break; case 0x3: bus_speed = PCI_SPEED_100MHz_PCIX; break; case 0x4: bus_speed = PCI_SPEED_133MHz_PCIX; break; case 0x5: bus_speed = PCI_SPEED_66MHz_PCIX_ECC; break; case 0x6: bus_speed = PCI_SPEED_100MHz_PCIX_ECC; break; case 0x7: bus_speed = PCI_SPEED_133MHz_PCIX_ECC; break; case 0x8: bus_speed = PCI_SPEED_66MHz_PCIX_266; break; case 0x9: bus_speed = PCI_SPEED_100MHz_PCIX_266; break; case 0xa: bus_speed = PCI_SPEED_133MHz_PCIX_266; break; case 0xb: bus_speed = PCI_SPEED_66MHz_PCIX_533; break; case 0xc: bus_speed = PCI_SPEED_100MHz_PCIX_533; break; case 0xd: bus_speed = PCI_SPEED_133MHz_PCIX_533; break; default: retval = -ENODEV; break; } out: bus->cur_bus_speed = bus_speed; dbg("Current bus speed = %d\n", bus_speed); return retval; } static int hpc_set_bus_speed_mode(struct slot * slot, enum pci_bus_speed value) { int retval; struct controller *ctrl = slot->ctrl; u8 pi, cmd; pi = shpc_readb(ctrl, PROG_INTERFACE); if ((pi == 1) && (value > PCI_SPEED_133MHz_PCIX)) return -EINVAL; switch (value) { case PCI_SPEED_33MHz: cmd = SETA_PCI_33MHZ; break; case PCI_SPEED_66MHz: cmd = SETA_PCI_66MHZ; break; case PCI_SPEED_66MHz_PCIX: cmd = SETA_PCIX_66MHZ; break; case PCI_SPEED_100MHz_PCIX: cmd = SETA_PCIX_100MHZ; break; case PCI_SPEED_133MHz_PCIX: cmd = SETA_PCIX_133MHZ; break; case PCI_SPEED_66MHz_PCIX_ECC: cmd = SETB_PCIX_66MHZ_EM; break; case PCI_SPEED_100MHz_PCIX_ECC: cmd = SETB_PCIX_100MHZ_EM; break; case PCI_SPEED_133MHz_PCIX_ECC: cmd = SETB_PCIX_133MHZ_EM; break; case PCI_SPEED_66MHz_PCIX_266: cmd = SETB_PCIX_66MHZ_266; break; case PCI_SPEED_100MHz_PCIX_266: cmd = SETB_PCIX_100MHZ_266; break; case PCI_SPEED_133MHz_PCIX_266: cmd = SETB_PCIX_133MHZ_266; break; case PCI_SPEED_66MHz_PCIX_533: cmd = SETB_PCIX_66MHZ_533; break; case PCI_SPEED_100MHz_PCIX_533: cmd = SETB_PCIX_100MHZ_533; break; case PCI_SPEED_133MHz_PCIX_533: cmd = SETB_PCIX_133MHZ_533; break; default: return -EINVAL; } retval = shpc_write_cmd(slot, 0, cmd); if (retval) ctrl_err(ctrl, "%s: Write command failed!\n", __func__); else shpc_get_cur_bus_speed(ctrl); return retval; } static irqreturn_t shpc_isr(int irq, void *dev_id) { struct controller *ctrl = (struct controller *)dev_id; u32 serr_int, slot_reg, intr_loc, intr_loc2; int hp_slot; /* Check to see if it was our interrupt */ intr_loc = shpc_readl(ctrl, INTR_LOC); if (!intr_loc) return IRQ_NONE; ctrl_dbg(ctrl, "%s: intr_loc = %x\n", __func__, intr_loc); if(!shpchp_poll_mode) { /* * Mask Global Interrupt Mask - see implementation * note on p. 139 of SHPC spec rev 1.0 */ serr_int = shpc_readl(ctrl, SERR_INTR_ENABLE); serr_int |= GLOBAL_INTR_MASK; serr_int &= ~SERR_INTR_RSVDZ_MASK; shpc_writel(ctrl, SERR_INTR_ENABLE, serr_int); intr_loc2 = shpc_readl(ctrl, INTR_LOC); ctrl_dbg(ctrl, "%s: intr_loc2 = %x\n", __func__, intr_loc2); } if (intr_loc & CMD_INTR_PENDING) { /* * Command Complete Interrupt Pending * RO only - clear by writing 1 to the Command Completion * Detect bit in Controller SERR-INT register */ serr_int = shpc_readl(ctrl, SERR_INTR_ENABLE); serr_int &= ~SERR_INTR_RSVDZ_MASK; shpc_writel(ctrl, SERR_INTR_ENABLE, serr_int); wake_up_interruptible(&ctrl->queue); } if (!(intr_loc & ~CMD_INTR_PENDING)) goto out; for (hp_slot = 0; hp_slot < ctrl->num_slots; hp_slot++) { /* To find out which slot has interrupt pending */ if (!(intr_loc & SLOT_INTR_PENDING(hp_slot))) continue; slot_reg = shpc_readl(ctrl, SLOT_REG(hp_slot)); ctrl_dbg(ctrl, "Slot %x with intr, slot register = %x\n", hp_slot, slot_reg); if (slot_reg & MRL_CHANGE_DETECTED) shpchp_handle_switch_change(hp_slot, ctrl); if (slot_reg & BUTTON_PRESS_DETECTED) shpchp_handle_attention_button(hp_slot, ctrl); if (slot_reg & PRSNT_CHANGE_DETECTED) shpchp_handle_presence_change(hp_slot, ctrl); if (slot_reg & (ISO_PFAULT_DETECTED | CON_PFAULT_DETECTED)) shpchp_handle_power_fault(hp_slot, ctrl); /* Clear all slot events */ slot_reg &= ~SLOT_REG_RSVDZ_MASK; shpc_writel(ctrl, SLOT_REG(hp_slot), slot_reg); } out: if (!shpchp_poll_mode) { /* Unmask Global Interrupt Mask */ serr_int = shpc_readl(ctrl, SERR_INTR_ENABLE); serr_int &= ~(GLOBAL_INTR_MASK | SERR_INTR_RSVDZ_MASK); shpc_writel(ctrl, SERR_INTR_ENABLE, serr_int); } return IRQ_HANDLED; } static int shpc_get_max_bus_speed(struct controller *ctrl) { int retval = 0; struct pci_bus *bus = ctrl->pci_dev->subordinate; enum pci_bus_speed bus_speed = PCI_SPEED_UNKNOWN; u8 pi = shpc_readb(ctrl, PROG_INTERFACE); u32 slot_avail1 = shpc_readl(ctrl, SLOT_AVAIL1); u32 slot_avail2 = shpc_readl(ctrl, SLOT_AVAIL2); if (pi == 2) { if (slot_avail2 & SLOT_133MHZ_PCIX_533) bus_speed = PCI_SPEED_133MHz_PCIX_533; else if (slot_avail2 & SLOT_100MHZ_PCIX_533) bus_speed = PCI_SPEED_100MHz_PCIX_533; else if (slot_avail2 & SLOT_66MHZ_PCIX_533) bus_speed = PCI_SPEED_66MHz_PCIX_533; else if (slot_avail2 & SLOT_133MHZ_PCIX_266) bus_speed = PCI_SPEED_133MHz_PCIX_266; else if (slot_avail2 & SLOT_100MHZ_PCIX_266) bus_speed = PCI_SPEED_100MHz_PCIX_266; else if (slot_avail2 & SLOT_66MHZ_PCIX_266) bus_speed = PCI_SPEED_66MHz_PCIX_266; } if (bus_speed == PCI_SPEED_UNKNOWN) { if (slot_avail1 & SLOT_133MHZ_PCIX) bus_speed = PCI_SPEED_133MHz_PCIX; else if (slot_avail1 & SLOT_100MHZ_PCIX) bus_speed = PCI_SPEED_100MHz_PCIX; else if (slot_avail1 & SLOT_66MHZ_PCIX) bus_speed = PCI_SPEED_66MHz_PCIX; else if (slot_avail2 & SLOT_66MHZ) bus_speed = PCI_SPEED_66MHz; else if (slot_avail1 & SLOT_33MHZ) bus_speed = PCI_SPEED_33MHz; else retval = -ENODEV; } bus->max_bus_speed = bus_speed; ctrl_dbg(ctrl, "Max bus speed = %d\n", bus_speed); return retval; } static struct hpc_ops shpchp_hpc_ops = { .power_on_slot = hpc_power_on_slot, .slot_enable = hpc_slot_enable, .slot_disable = hpc_slot_disable, .set_bus_speed_mode = hpc_set_bus_speed_mode, .set_attention_status = hpc_set_attention_status, .get_power_status = hpc_get_power_status, .get_attention_status = hpc_get_attention_status, .get_latch_status = hpc_get_latch_status, .get_adapter_status = hpc_get_adapter_status, .get_adapter_speed = hpc_get_adapter_speed, .get_mode1_ECC_cap = hpc_get_mode1_ECC_cap, .get_prog_int = hpc_get_prog_int, .query_power_fault = hpc_query_power_fault, .green_led_on = hpc_set_green_led_on, .green_led_off = hpc_set_green_led_off, .green_led_blink = hpc_set_green_led_blink, .release_ctlr = hpc_release_ctlr, }; int shpc_init(struct controller *ctrl, struct pci_dev *pdev) { int rc = -1, num_slots = 0; u8 hp_slot; u32 shpc_base_offset; u32 tempdword, slot_reg, slot_config; u8 i; ctrl->pci_dev = pdev; /* pci_dev of the P2P bridge */ ctrl_dbg(ctrl, "Hotplug Controller:\n"); if (pdev->vendor == PCI_VENDOR_ID_AMD && pdev->device == PCI_DEVICE_ID_AMD_GOLAM_7450) { /* amd shpc driver doesn't use Base Offset; assume 0 */ ctrl->mmio_base = pci_resource_start(pdev, 0); ctrl->mmio_size = pci_resource_len(pdev, 0); } else { ctrl->cap_offset = pci_find_capability(pdev, PCI_CAP_ID_SHPC); if (!ctrl->cap_offset) { ctrl_err(ctrl, "Cannot find PCI capability\n"); goto abort; } ctrl_dbg(ctrl, " cap_offset = %x\n", ctrl->cap_offset); rc = shpc_indirect_read(ctrl, 0, &shpc_base_offset); if (rc) { ctrl_err(ctrl, "Cannot read base_offset\n"); goto abort; } rc = shpc_indirect_read(ctrl, 3, &tempdword); if (rc) { ctrl_err(ctrl, "Cannot read slot config\n"); goto abort; } num_slots = tempdword & SLOT_NUM; ctrl_dbg(ctrl, " num_slots (indirect) %x\n", num_slots); for (i = 0; i < 9 + num_slots; i++) { rc = shpc_indirect_read(ctrl, i, &tempdword); if (rc) { ctrl_err(ctrl, "Cannot read creg (index = %d)\n", i); goto abort; } ctrl_dbg(ctrl, " offset %d: value %x\n", i, tempdword); } ctrl->mmio_base = pci_resource_start(pdev, 0) + shpc_base_offset; ctrl->mmio_size = 0x24 + 0x4 * num_slots; } ctrl_info(ctrl, "HPC vendor_id %x device_id %x ss_vid %x ss_did %x\n", pdev->vendor, pdev->device, pdev->subsystem_vendor, pdev->subsystem_device); rc = pci_enable_device(pdev); if (rc) { ctrl_err(ctrl, "pci_enable_device failed\n"); goto abort; } if (!request_mem_region(ctrl->mmio_base, ctrl->mmio_size, MY_NAME)) { ctrl_err(ctrl, "Cannot reserve MMIO region\n"); rc = -1; goto abort; } ctrl->creg = ioremap(ctrl->mmio_base, ctrl->mmio_size); if (!ctrl->creg) { ctrl_err(ctrl, "Cannot remap MMIO region %lx @ %lx\n", ctrl->mmio_size, ctrl->mmio_base); release_mem_region(ctrl->mmio_base, ctrl->mmio_size); rc = -1; goto abort; } ctrl_dbg(ctrl, "ctrl->creg %p\n", ctrl->creg); mutex_init(&ctrl->crit_sect); mutex_init(&ctrl->cmd_lock); /* Setup wait queue */ init_waitqueue_head(&ctrl->queue); ctrl->hpc_ops = &shpchp_hpc_ops; /* Return PCI Controller Info */ slot_config = shpc_readl(ctrl, SLOT_CONFIG); ctrl->slot_device_offset = (slot_config & FIRST_DEV_NUM) >> 8; ctrl->num_slots = slot_config & SLOT_NUM; ctrl->first_slot = (slot_config & PSN) >> 16; ctrl->slot_num_inc = ((slot_config & UPDOWN) >> 29) ? 1 : -1; /* Mask Global Interrupt Mask & Command Complete Interrupt Mask */ tempdword = shpc_readl(ctrl, SERR_INTR_ENABLE); ctrl_dbg(ctrl, "SERR_INTR_ENABLE = %x\n", tempdword); tempdword |= (GLOBAL_INTR_MASK | GLOBAL_SERR_MASK | COMMAND_INTR_MASK | ARBITER_SERR_MASK); tempdword &= ~SERR_INTR_RSVDZ_MASK; shpc_writel(ctrl, SERR_INTR_ENABLE, tempdword); tempdword = shpc_readl(ctrl, SERR_INTR_ENABLE); ctrl_dbg(ctrl, "SERR_INTR_ENABLE = %x\n", tempdword); /* Mask the MRL sensor SERR Mask of individual slot in * Slot SERR-INT Mask & clear all the existing event if any */ for (hp_slot = 0; hp_slot < ctrl->num_slots; hp_slot++) { slot_reg = shpc_readl(ctrl, SLOT_REG(hp_slot)); ctrl_dbg(ctrl, "Default Logical Slot Register %d value %x\n", hp_slot, slot_reg); slot_reg |= (PRSNT_CHANGE_INTR_MASK | ISO_PFAULT_INTR_MASK | BUTTON_PRESS_INTR_MASK | MRL_CHANGE_INTR_MASK | CON_PFAULT_INTR_MASK | MRL_CHANGE_SERR_MASK | CON_PFAULT_SERR_MASK); slot_reg &= ~SLOT_REG_RSVDZ_MASK; shpc_writel(ctrl, SLOT_REG(hp_slot), slot_reg); } if (shpchp_poll_mode) { /* Install interrupt polling timer. Start with 10 sec delay */ init_timer(&ctrl->poll_timer); start_int_poll_timer(ctrl, 10); } else { /* Installs the interrupt handler */ rc = pci_enable_msi(pdev); if (rc) { ctrl_info(ctrl, "Can't get msi for the hotplug controller\n"); ctrl_info(ctrl, "Use INTx for the hotplug controller\n"); } rc = request_irq(ctrl->pci_dev->irq, shpc_isr, IRQF_SHARED, MY_NAME, (void *)ctrl); ctrl_dbg(ctrl, "request_irq %d (returns %d)\n", ctrl->pci_dev->irq, rc); if (rc) { ctrl_err(ctrl, "Can't get irq %d for the hotplug " "controller\n", ctrl->pci_dev->irq); goto abort_iounmap; } } ctrl_dbg(ctrl, "HPC at %s irq=%x\n", pci_name(pdev), pdev->irq); shpc_get_max_bus_speed(ctrl); shpc_get_cur_bus_speed(ctrl); /* * Unmask all event interrupts of all slots */ for (hp_slot = 0; hp_slot < ctrl->num_slots; hp_slot++) { slot_reg = shpc_readl(ctrl, SLOT_REG(hp_slot)); ctrl_dbg(ctrl, "Default Logical Slot Register %d value %x\n", hp_slot, slot_reg); slot_reg &= ~(PRSNT_CHANGE_INTR_MASK | ISO_PFAULT_INTR_MASK | BUTTON_PRESS_INTR_MASK | MRL_CHANGE_INTR_MASK | CON_PFAULT_INTR_MASK | SLOT_REG_RSVDZ_MASK); shpc_writel(ctrl, SLOT_REG(hp_slot), slot_reg); } if (!shpchp_poll_mode) { /* Unmask all general input interrupts and SERR */ tempdword = shpc_readl(ctrl, SERR_INTR_ENABLE); tempdword &= ~(GLOBAL_INTR_MASK | COMMAND_INTR_MASK | SERR_INTR_RSVDZ_MASK); shpc_writel(ctrl, SERR_INTR_ENABLE, tempdword); tempdword = shpc_readl(ctrl, SERR_INTR_ENABLE); ctrl_dbg(ctrl, "SERR_INTR_ENABLE = %x\n", tempdword); } return 0; /* We end up here for the many possible ways to fail this API. */ abort_iounmap: iounmap(ctrl->creg); abort: return rc; }