/* * toshiba_acpi.c - Toshiba Laptop ACPI Extras * * * Copyright (C) 2002-2004 John Belmonte * Copyright (C) 2008 Philip Langdale * Copyright (C) 2010 Pierre Ducroquet * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * * The devolpment page for this driver is located at * http://memebeam.org/toys/ToshibaAcpiDriver. * * Credits: * Jonathan A. Buzzard - Toshiba HCI info, and critical tips on reverse * engineering the Windows drivers * Yasushi Nagato - changes for linux kernel 2.4 -> 2.5 * Rob Miller - TV out and hotkeys help * * * TODO * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #define TOSHIBA_ACPI_VERSION "0.19" #define PROC_INTERFACE_VERSION 1 #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/types.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/backlight.h> #include <linux/rfkill.h> #include <linux/input.h> #include <linux/input/sparse-keymap.h> #include <linux/leds.h> #include <linux/slab.h> #include <linux/workqueue.h> #include <linux/i8042.h> #include <asm/uaccess.h> #include <acpi/acpi_drivers.h> MODULE_AUTHOR("John Belmonte"); MODULE_DESCRIPTION("Toshiba Laptop ACPI Extras Driver"); MODULE_LICENSE("GPL"); #define TOSHIBA_WMI_EVENT_GUID "59142400-C6A3-40FA-BADB-8A2652834100" /* Scan code for Fn key on TOS1900 models */ #define TOS1900_FN_SCAN 0x6e /* Toshiba ACPI method paths */ #define METHOD_VIDEO_OUT "\\_SB_.VALX.DSSX" /* Toshiba HCI interface definitions * * HCI is Toshiba's "Hardware Control Interface" which is supposed to * be uniform across all their models. Ideally we would just call * dedicated ACPI methods instead of using this primitive interface. * However the ACPI methods seem to be incomplete in some areas (for * example they allow setting, but not reading, the LCD brightness value), * so this is still useful. */ #define HCI_WORDS 6 /* operations */ #define HCI_SET 0xff00 #define HCI_GET 0xfe00 /* return codes */ #define HCI_SUCCESS 0x0000 #define HCI_FAILURE 0x1000 #define HCI_NOT_SUPPORTED 0x8000 #define HCI_EMPTY 0x8c00 /* registers */ #define HCI_FAN 0x0004 #define HCI_TR_BACKLIGHT 0x0005 #define HCI_SYSTEM_EVENT 0x0016 #define HCI_VIDEO_OUT 0x001c #define HCI_HOTKEY_EVENT 0x001e #define HCI_LCD_BRIGHTNESS 0x002a #define HCI_WIRELESS 0x0056 /* field definitions */ #define HCI_HOTKEY_DISABLE 0x0b #define HCI_HOTKEY_ENABLE 0x09 #define HCI_LCD_BRIGHTNESS_BITS 3 #define HCI_LCD_BRIGHTNESS_SHIFT (16-HCI_LCD_BRIGHTNESS_BITS) #define HCI_LCD_BRIGHTNESS_LEVELS (1 << HCI_LCD_BRIGHTNESS_BITS) #define HCI_VIDEO_OUT_LCD 0x1 #define HCI_VIDEO_OUT_CRT 0x2 #define HCI_VIDEO_OUT_TV 0x4 #define HCI_WIRELESS_KILL_SWITCH 0x01 #define HCI_WIRELESS_BT_PRESENT 0x0f #define HCI_WIRELESS_BT_ATTACH 0x40 #define HCI_WIRELESS_BT_POWER 0x80 struct toshiba_acpi_dev { struct acpi_device *acpi_dev; const char *method_hci; struct rfkill *bt_rfk; struct input_dev *hotkey_dev; struct work_struct hotkey_work; struct backlight_device *backlight_dev; struct led_classdev led_dev; int force_fan; int last_key_event; int key_event_valid; unsigned int illumination_supported:1; unsigned int video_supported:1; unsigned int fan_supported:1; unsigned int system_event_supported:1; unsigned int ntfy_supported:1; unsigned int info_supported:1; unsigned int tr_backlight_supported:1; struct mutex mutex; }; static struct toshiba_acpi_dev *toshiba_acpi; static const struct acpi_device_id toshiba_device_ids[] = { {"TOS6200", 0}, {"TOS6208", 0}, {"TOS1900", 0}, {"", 0}, }; MODULE_DEVICE_TABLE(acpi, toshiba_device_ids); static const struct key_entry toshiba_acpi_keymap[] = { { KE_KEY, 0x101, { KEY_MUTE } }, { KE_KEY, 0x102, { KEY_ZOOMOUT } }, { KE_KEY, 0x103, { KEY_ZOOMIN } }, { KE_KEY, 0x12c, { KEY_KBDILLUMTOGGLE } }, { KE_KEY, 0x139, { KEY_ZOOMRESET } }, { KE_KEY, 0x13b, { KEY_COFFEE } }, { KE_KEY, 0x13c, { KEY_BATTERY } }, { KE_KEY, 0x13d, { KEY_SLEEP } }, { KE_KEY, 0x13e, { KEY_SUSPEND } }, { KE_KEY, 0x13f, { KEY_SWITCHVIDEOMODE } }, { KE_KEY, 0x140, { KEY_BRIGHTNESSDOWN } }, { KE_KEY, 0x141, { KEY_BRIGHTNESSUP } }, { KE_KEY, 0x142, { KEY_WLAN } }, { KE_KEY, 0x143, { KEY_TOUCHPAD_TOGGLE } }, { KE_KEY, 0x17f, { KEY_FN } }, { KE_KEY, 0xb05, { KEY_PROG2 } }, { KE_KEY, 0xb06, { KEY_WWW } }, { KE_KEY, 0xb07, { KEY_MAIL } }, { KE_KEY, 0xb30, { KEY_STOP } }, { KE_KEY, 0xb31, { KEY_PREVIOUSSONG } }, { KE_KEY, 0xb32, { KEY_NEXTSONG } }, { KE_KEY, 0xb33, { KEY_PLAYPAUSE } }, { KE_KEY, 0xb5a, { KEY_MEDIA } }, { KE_IGNORE, 0x1430, { KEY_RESERVED } }, { KE_END, 0 }, }; /* utility */ static __inline__ void _set_bit(u32 * word, u32 mask, int value) { *word = (*word & ~mask) | (mask * value); } /* acpi interface wrappers */ static int write_acpi_int(const char *methodName, int val) { struct acpi_object_list params; union acpi_object in_objs[1]; acpi_status status; params.count = ARRAY_SIZE(in_objs); params.pointer = in_objs; in_objs[0].type = ACPI_TYPE_INTEGER; in_objs[0].integer.value = val; status = acpi_evaluate_object(NULL, (char *)methodName, ¶ms, NULL); return (status == AE_OK) ? 0 : -EIO; } /* Perform a raw HCI call. Here we don't care about input or output buffer * format. */ static acpi_status hci_raw(struct toshiba_acpi_dev *dev, const u32 in[HCI_WORDS], u32 out[HCI_WORDS]) { struct acpi_object_list params; union acpi_object in_objs[HCI_WORDS]; struct acpi_buffer results; union acpi_object out_objs[HCI_WORDS + 1]; acpi_status status; int i; params.count = HCI_WORDS; params.pointer = in_objs; for (i = 0; i < HCI_WORDS; ++i) { in_objs[i].type = ACPI_TYPE_INTEGER; in_objs[i].integer.value = in[i]; } results.length = sizeof(out_objs); results.pointer = out_objs; status = acpi_evaluate_object(dev->acpi_dev->handle, (char *)dev->method_hci, ¶ms, &results); if ((status == AE_OK) && (out_objs->package.count <= HCI_WORDS)) { for (i = 0; i < out_objs->package.count; ++i) { out[i] = out_objs->package.elements[i].integer.value; } } return status; } /* common hci tasks (get or set one or two value) * * In addition to the ACPI status, the HCI system returns a result which * may be useful (such as "not supported"). */ static acpi_status hci_write1(struct toshiba_acpi_dev *dev, u32 reg, u32 in1, u32 *result) { u32 in[HCI_WORDS] = { HCI_SET, reg, in1, 0, 0, 0 }; u32 out[HCI_WORDS]; acpi_status status = hci_raw(dev, in, out); *result = (status == AE_OK) ? out[0] : HCI_FAILURE; return status; } static acpi_status hci_read1(struct toshiba_acpi_dev *dev, u32 reg, u32 *out1, u32 *result) { u32 in[HCI_WORDS] = { HCI_GET, reg, 0, 0, 0, 0 }; u32 out[HCI_WORDS]; acpi_status status = hci_raw(dev, in, out); *out1 = out[2]; *result = (status == AE_OK) ? out[0] : HCI_FAILURE; return status; } static acpi_status hci_write2(struct toshiba_acpi_dev *dev, u32 reg, u32 in1, u32 in2, u32 *result) { u32 in[HCI_WORDS] = { HCI_SET, reg, in1, in2, 0, 0 }; u32 out[HCI_WORDS]; acpi_status status = hci_raw(dev, in, out); *result = (status == AE_OK) ? out[0] : HCI_FAILURE; return status; } static acpi_status hci_read2(struct toshiba_acpi_dev *dev, u32 reg, u32 *out1, u32 *out2, u32 *result) { u32 in[HCI_WORDS] = { HCI_GET, reg, *out1, *out2, 0, 0 }; u32 out[HCI_WORDS]; acpi_status status = hci_raw(dev, in, out); *out1 = out[2]; *out2 = out[3]; *result = (status == AE_OK) ? out[0] : HCI_FAILURE; return status; } /* Illumination support */ static int toshiba_illumination_available(struct toshiba_acpi_dev *dev) { u32 in[HCI_WORDS] = { 0, 0, 0, 0, 0, 0 }; u32 out[HCI_WORDS]; acpi_status status; in[0] = 0xf100; status = hci_raw(dev, in, out); if (ACPI_FAILURE(status)) { pr_info("Illumination device not available\n"); return 0; } in[0] = 0xf400; status = hci_raw(dev, in, out); return 1; } static void toshiba_illumination_set(struct led_classdev *cdev, enum led_brightness brightness) { struct toshiba_acpi_dev *dev = container_of(cdev, struct toshiba_acpi_dev, led_dev); u32 in[HCI_WORDS] = { 0, 0, 0, 0, 0, 0 }; u32 out[HCI_WORDS]; acpi_status status; /* First request : initialize communication. */ in[0] = 0xf100; status = hci_raw(dev, in, out); if (ACPI_FAILURE(status)) { pr_info("Illumination device not available\n"); return; } if (brightness) { /* Switch the illumination on */ in[0] = 0xf400; in[1] = 0x14e; in[2] = 1; status = hci_raw(dev, in, out); if (ACPI_FAILURE(status)) { pr_info("ACPI call for illumination failed\n"); return; } } else { /* Switch the illumination off */ in[0] = 0xf400; in[1] = 0x14e; in[2] = 0; status = hci_raw(dev, in, out); if (ACPI_FAILURE(status)) { pr_info("ACPI call for illumination failed.\n"); return; } } /* Last request : close communication. */ in[0] = 0xf200; in[1] = 0; in[2] = 0; hci_raw(dev, in, out); } static enum led_brightness toshiba_illumination_get(struct led_classdev *cdev) { struct toshiba_acpi_dev *dev = container_of(cdev, struct toshiba_acpi_dev, led_dev); u32 in[HCI_WORDS] = { 0, 0, 0, 0, 0, 0 }; u32 out[HCI_WORDS]; acpi_status status; enum led_brightness result; /* First request : initialize communication. */ in[0] = 0xf100; status = hci_raw(dev, in, out); if (ACPI_FAILURE(status)) { pr_info("Illumination device not available\n"); return LED_OFF; } /* Check the illumination */ in[0] = 0xf300; in[1] = 0x14e; status = hci_raw(dev, in, out); if (ACPI_FAILURE(status)) { pr_info("ACPI call for illumination failed.\n"); return LED_OFF; } result = out[2] ? LED_FULL : LED_OFF; /* Last request : close communication. */ in[0] = 0xf200; in[1] = 0; in[2] = 0; hci_raw(dev, in, out); return result; } /* Bluetooth rfkill handlers */ static u32 hci_get_bt_present(struct toshiba_acpi_dev *dev, bool *present) { u32 hci_result; u32 value, value2; value = 0; value2 = 0; hci_read2(dev, HCI_WIRELESS, &value, &value2, &hci_result); if (hci_result == HCI_SUCCESS) *present = (value & HCI_WIRELESS_BT_PRESENT) ? true : false; return hci_result; } static u32 hci_get_radio_state(struct toshiba_acpi_dev *dev, bool *radio_state) { u32 hci_result; u32 value, value2; value = 0; value2 = 0x0001; hci_read2(dev, HCI_WIRELESS, &value, &value2, &hci_result); *radio_state = value & HCI_WIRELESS_KILL_SWITCH; return hci_result; } static int bt_rfkill_set_block(void *data, bool blocked) { struct toshiba_acpi_dev *dev = data; u32 result1, result2; u32 value; int err; bool radio_state; value = (blocked == false); mutex_lock(&dev->mutex); if (hci_get_radio_state(dev, &radio_state) != HCI_SUCCESS) { err = -EIO; goto out; } if (!radio_state) { err = 0; goto out; } hci_write2(dev, HCI_WIRELESS, value, HCI_WIRELESS_BT_POWER, &result1); hci_write2(dev, HCI_WIRELESS, value, HCI_WIRELESS_BT_ATTACH, &result2); if (result1 != HCI_SUCCESS || result2 != HCI_SUCCESS) err = -EIO; else err = 0; out: mutex_unlock(&dev->mutex); return err; } static void bt_rfkill_poll(struct rfkill *rfkill, void *data) { bool new_rfk_state; bool value; u32 hci_result; struct toshiba_acpi_dev *dev = data; mutex_lock(&dev->mutex); hci_result = hci_get_radio_state(dev, &value); if (hci_result != HCI_SUCCESS) { /* Can't do anything useful */ mutex_unlock(&dev->mutex); return; } new_rfk_state = value; mutex_unlock(&dev->mutex); if (rfkill_set_hw_state(rfkill, !new_rfk_state)) bt_rfkill_set_block(data, true); } static const struct rfkill_ops toshiba_rfk_ops = { .set_block = bt_rfkill_set_block, .poll = bt_rfkill_poll, }; static int get_tr_backlight_status(struct toshiba_acpi_dev *dev, bool *enabled) { u32 hci_result; u32 status; hci_read1(dev, HCI_TR_BACKLIGHT, &status, &hci_result); *enabled = !status; return hci_result == HCI_SUCCESS ? 0 : -EIO; } static int set_tr_backlight_status(struct toshiba_acpi_dev *dev, bool enable) { u32 hci_result; u32 value = !enable; hci_write1(dev, HCI_TR_BACKLIGHT, value, &hci_result); return hci_result == HCI_SUCCESS ? 0 : -EIO; } static struct proc_dir_entry *toshiba_proc_dir /*= 0*/ ; static int __get_lcd_brightness(struct toshiba_acpi_dev *dev) { u32 hci_result; u32 value; int brightness = 0; if (dev->tr_backlight_supported) { bool enabled; int ret = get_tr_backlight_status(dev, &enabled); if (ret) return ret; if (enabled) return 0; brightness++; } hci_read1(dev, HCI_LCD_BRIGHTNESS, &value, &hci_result); if (hci_result == HCI_SUCCESS) return brightness + (value >> HCI_LCD_BRIGHTNESS_SHIFT); return -EIO; } static int get_lcd_brightness(struct backlight_device *bd) { struct toshiba_acpi_dev *dev = bl_get_data(bd); return __get_lcd_brightness(dev); } static int lcd_proc_show(struct seq_file *m, void *v) { struct toshiba_acpi_dev *dev = m->private; int value; int levels; if (!dev->backlight_dev) return -ENODEV; levels = dev->backlight_dev->props.max_brightness + 1; value = get_lcd_brightness(dev->backlight_dev); if (value >= 0) { seq_printf(m, "brightness: %d\n", value); seq_printf(m, "brightness_levels: %d\n", levels); return 0; } pr_err("Error reading LCD brightness\n"); return -EIO; } static int lcd_proc_open(struct inode *inode, struct file *file) { return single_open(file, lcd_proc_show, PDE_DATA(inode)); } static int set_lcd_brightness(struct toshiba_acpi_dev *dev, int value) { u32 hci_result; if (dev->tr_backlight_supported) { bool enable = !value; int ret = set_tr_backlight_status(dev, enable); if (ret) return ret; if (value) value--; } value = value << HCI_LCD_BRIGHTNESS_SHIFT; hci_write1(dev, HCI_LCD_BRIGHTNESS, value, &hci_result); return hci_result == HCI_SUCCESS ? 0 : -EIO; } static int set_lcd_status(struct backlight_device *bd) { struct toshiba_acpi_dev *dev = bl_get_data(bd); return set_lcd_brightness(dev, bd->props.brightness); } static ssize_t lcd_proc_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { struct toshiba_acpi_dev *dev = PDE_DATA(file_inode(file)); char cmd[42]; size_t len; int value; int ret; int levels = dev->backlight_dev->props.max_brightness + 1; len = min(count, sizeof(cmd) - 1); if (copy_from_user(cmd, buf, len)) return -EFAULT; cmd[len] = '\0'; if (sscanf(cmd, " brightness : %i", &value) == 1 && value >= 0 && value < levels) { ret = set_lcd_brightness(dev, value); if (ret == 0) ret = count; } else { ret = -EINVAL; } return ret; } static const struct file_operations lcd_proc_fops = { .owner = THIS_MODULE, .open = lcd_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = lcd_proc_write, }; static int get_video_status(struct toshiba_acpi_dev *dev, u32 *status) { u32 hci_result; hci_read1(dev, HCI_VIDEO_OUT, status, &hci_result); return hci_result == HCI_SUCCESS ? 0 : -EIO; } static int video_proc_show(struct seq_file *m, void *v) { struct toshiba_acpi_dev *dev = m->private; u32 value; int ret; ret = get_video_status(dev, &value); if (!ret) { int is_lcd = (value & HCI_VIDEO_OUT_LCD) ? 1 : 0; int is_crt = (value & HCI_VIDEO_OUT_CRT) ? 1 : 0; int is_tv = (value & HCI_VIDEO_OUT_TV) ? 1 : 0; seq_printf(m, "lcd_out: %d\n", is_lcd); seq_printf(m, "crt_out: %d\n", is_crt); seq_printf(m, "tv_out: %d\n", is_tv); } return ret; } static int video_proc_open(struct inode *inode, struct file *file) { return single_open(file, video_proc_show, PDE_DATA(inode)); } static ssize_t video_proc_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { struct toshiba_acpi_dev *dev = PDE_DATA(file_inode(file)); char *cmd, *buffer; int ret; int value; int remain = count; int lcd_out = -1; int crt_out = -1; int tv_out = -1; u32 video_out; cmd = kmalloc(count + 1, GFP_KERNEL); if (!cmd) return -ENOMEM; if (copy_from_user(cmd, buf, count)) { kfree(cmd); return -EFAULT; } cmd[count] = '\0'; buffer = cmd; /* scan expression. Multiple expressions may be delimited with ; * * NOTE: to keep scanning simple, invalid fields are ignored */ while (remain) { if (sscanf(buffer, " lcd_out : %i", &value) == 1) lcd_out = value & 1; else if (sscanf(buffer, " crt_out : %i", &value) == 1) crt_out = value & 1; else if (sscanf(buffer, " tv_out : %i", &value) == 1) tv_out = value & 1; /* advance to one character past the next ; */ do { ++buffer; --remain; } while (remain && *(buffer - 1) != ';'); } kfree(cmd); ret = get_video_status(dev, &video_out); if (!ret) { unsigned int new_video_out = video_out; if (lcd_out != -1) _set_bit(&new_video_out, HCI_VIDEO_OUT_LCD, lcd_out); if (crt_out != -1) _set_bit(&new_video_out, HCI_VIDEO_OUT_CRT, crt_out); if (tv_out != -1) _set_bit(&new_video_out, HCI_VIDEO_OUT_TV, tv_out); /* To avoid unnecessary video disruption, only write the new * video setting if something changed. */ if (new_video_out != video_out) ret = write_acpi_int(METHOD_VIDEO_OUT, new_video_out); } return ret ? ret : count; } static const struct file_operations video_proc_fops = { .owner = THIS_MODULE, .open = video_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = video_proc_write, }; static int get_fan_status(struct toshiba_acpi_dev *dev, u32 *status) { u32 hci_result; hci_read1(dev, HCI_FAN, status, &hci_result); return hci_result == HCI_SUCCESS ? 0 : -EIO; } static int fan_proc_show(struct seq_file *m, void *v) { struct toshiba_acpi_dev *dev = m->private; int ret; u32 value; ret = get_fan_status(dev, &value); if (!ret) { seq_printf(m, "running: %d\n", (value > 0)); seq_printf(m, "force_on: %d\n", dev->force_fan); } return ret; } static int fan_proc_open(struct inode *inode, struct file *file) { return single_open(file, fan_proc_show, PDE_DATA(inode)); } static ssize_t fan_proc_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { struct toshiba_acpi_dev *dev = PDE_DATA(file_inode(file)); char cmd[42]; size_t len; int value; u32 hci_result; len = min(count, sizeof(cmd) - 1); if (copy_from_user(cmd, buf, len)) return -EFAULT; cmd[len] = '\0'; if (sscanf(cmd, " force_on : %i", &value) == 1 && value >= 0 && value <= 1) { hci_write1(dev, HCI_FAN, value, &hci_result); if (hci_result != HCI_SUCCESS) return -EIO; else dev->force_fan = value; } else { return -EINVAL; } return count; } static const struct file_operations fan_proc_fops = { .owner = THIS_MODULE, .open = fan_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = fan_proc_write, }; static int keys_proc_show(struct seq_file *m, void *v) { struct toshiba_acpi_dev *dev = m->private; u32 hci_result; u32 value; if (!dev->key_event_valid && dev->system_event_supported) { hci_read1(dev, HCI_SYSTEM_EVENT, &value, &hci_result); if (hci_result == HCI_SUCCESS) { dev->key_event_valid = 1; dev->last_key_event = value; } else if (hci_result == HCI_EMPTY) { /* better luck next time */ } else if (hci_result == HCI_NOT_SUPPORTED) { /* This is a workaround for an unresolved issue on * some machines where system events sporadically * become disabled. */ hci_write1(dev, HCI_SYSTEM_EVENT, 1, &hci_result); pr_notice("Re-enabled hotkeys\n"); } else { pr_err("Error reading hotkey status\n"); return -EIO; } } seq_printf(m, "hotkey_ready: %d\n", dev->key_event_valid); seq_printf(m, "hotkey: 0x%04x\n", dev->last_key_event); return 0; } static int keys_proc_open(struct inode *inode, struct file *file) { return single_open(file, keys_proc_show, PDE_DATA(inode)); } static ssize_t keys_proc_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { struct toshiba_acpi_dev *dev = PDE_DATA(file_inode(file)); char cmd[42]; size_t len; int value; len = min(count, sizeof(cmd) - 1); if (copy_from_user(cmd, buf, len)) return -EFAULT; cmd[len] = '\0'; if (sscanf(cmd, " hotkey_ready : %i", &value) == 1 && value == 0) { dev->key_event_valid = 0; } else { return -EINVAL; } return count; } static const struct file_operations keys_proc_fops = { .owner = THIS_MODULE, .open = keys_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = keys_proc_write, }; static int version_proc_show(struct seq_file *m, void *v) { seq_printf(m, "driver: %s\n", TOSHIBA_ACPI_VERSION); seq_printf(m, "proc_interface: %d\n", PROC_INTERFACE_VERSION); return 0; } static int version_proc_open(struct inode *inode, struct file *file) { return single_open(file, version_proc_show, PDE_DATA(inode)); } static const struct file_operations version_proc_fops = { .owner = THIS_MODULE, .open = version_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; /* proc and module init */ #define PROC_TOSHIBA "toshiba" static void create_toshiba_proc_entries(struct toshiba_acpi_dev *dev) { if (dev->backlight_dev) proc_create_data("lcd", S_IRUGO | S_IWUSR, toshiba_proc_dir, &lcd_proc_fops, dev); if (dev->video_supported) proc_create_data("video", S_IRUGO | S_IWUSR, toshiba_proc_dir, &video_proc_fops, dev); if (dev->fan_supported) proc_create_data("fan", S_IRUGO | S_IWUSR, toshiba_proc_dir, &fan_proc_fops, dev); if (dev->hotkey_dev) proc_create_data("keys", S_IRUGO | S_IWUSR, toshiba_proc_dir, &keys_proc_fops, dev); proc_create_data("version", S_IRUGO, toshiba_proc_dir, &version_proc_fops, dev); } static void remove_toshiba_proc_entries(struct toshiba_acpi_dev *dev) { if (dev->backlight_dev) remove_proc_entry("lcd", toshiba_proc_dir); if (dev->video_supported) remove_proc_entry("video", toshiba_proc_dir); if (dev->fan_supported) remove_proc_entry("fan", toshiba_proc_dir); if (dev->hotkey_dev) remove_proc_entry("keys", toshiba_proc_dir); remove_proc_entry("version", toshiba_proc_dir); } static const struct backlight_ops toshiba_backlight_data = { .options = BL_CORE_SUSPENDRESUME, .get_brightness = get_lcd_brightness, .update_status = set_lcd_status, }; static bool toshiba_acpi_i8042_filter(unsigned char data, unsigned char str, struct serio *port) { if (str & 0x20) return false; if (unlikely(data == 0xe0)) return false; if ((data & 0x7f) == TOS1900_FN_SCAN) { schedule_work(&toshiba_acpi->hotkey_work); return true; } return false; } static void toshiba_acpi_hotkey_work(struct work_struct *work) { acpi_handle ec_handle = ec_get_handle(); acpi_status status; if (!ec_handle) return; status = acpi_evaluate_object(ec_handle, "NTFY", NULL, NULL); if (ACPI_FAILURE(status)) pr_err("ACPI NTFY method execution failed\n"); } /* * Returns hotkey scancode, or < 0 on failure. */ static int toshiba_acpi_query_hotkey(struct toshiba_acpi_dev *dev) { struct acpi_buffer buf; union acpi_object out_obj; acpi_status status; buf.pointer = &out_obj; buf.length = sizeof(out_obj); status = acpi_evaluate_object(dev->acpi_dev->handle, "INFO", NULL, &buf); if (ACPI_FAILURE(status) || out_obj.type != ACPI_TYPE_INTEGER) { pr_err("ACPI INFO method execution failed\n"); return -EIO; } return out_obj.integer.value; } static void toshiba_acpi_report_hotkey(struct toshiba_acpi_dev *dev, int scancode) { if (scancode == 0x100) return; /* act on key press; ignore key release */ if (scancode & 0x80) return; if (!sparse_keymap_report_event(dev->hotkey_dev, scancode, 1, true)) pr_info("Unknown key %x\n", scancode); } static int toshiba_acpi_setup_keyboard(struct toshiba_acpi_dev *dev) { acpi_status status; acpi_handle ec_handle, handle; int error; u32 hci_result; dev->hotkey_dev = input_allocate_device(); if (!dev->hotkey_dev) { pr_info("Unable to register input device\n"); return -ENOMEM; } dev->hotkey_dev->name = "Toshiba input device"; dev->hotkey_dev->phys = "toshiba_acpi/input0"; dev->hotkey_dev->id.bustype = BUS_HOST; error = sparse_keymap_setup(dev->hotkey_dev, toshiba_acpi_keymap, NULL); if (error) goto err_free_dev; /* * For some machines the SCI responsible for providing hotkey * notification doesn't fire. We can trigger the notification * whenever the Fn key is pressed using the NTFY method, if * supported, so if it's present set up an i8042 key filter * for this purpose. */ status = AE_ERROR; ec_handle = ec_get_handle(); if (ec_handle) status = acpi_get_handle(ec_handle, "NTFY", &handle); if (ACPI_SUCCESS(status)) { INIT_WORK(&dev->hotkey_work, toshiba_acpi_hotkey_work); error = i8042_install_filter(toshiba_acpi_i8042_filter); if (error) { pr_err("Error installing key filter\n"); goto err_free_keymap; } dev->ntfy_supported = 1; } /* * Determine hotkey query interface. Prefer using the INFO * method when it is available. */ status = acpi_get_handle(dev->acpi_dev->handle, "INFO", &handle); if (ACPI_SUCCESS(status)) { dev->info_supported = 1; } else { hci_write1(dev, HCI_SYSTEM_EVENT, 1, &hci_result); if (hci_result == HCI_SUCCESS) dev->system_event_supported = 1; } if (!dev->info_supported && !dev->system_event_supported) { pr_warn("No hotkey query interface found\n"); goto err_remove_filter; } status = acpi_evaluate_object(dev->acpi_dev->handle, "ENAB", NULL, NULL); if (ACPI_FAILURE(status)) { pr_info("Unable to enable hotkeys\n"); error = -ENODEV; goto err_remove_filter; } error = input_register_device(dev->hotkey_dev); if (error) { pr_info("Unable to register input device\n"); goto err_remove_filter; } hci_write1(dev, HCI_HOTKEY_EVENT, HCI_HOTKEY_ENABLE, &hci_result); return 0; err_remove_filter: if (dev->ntfy_supported) i8042_remove_filter(toshiba_acpi_i8042_filter); err_free_keymap: sparse_keymap_free(dev->hotkey_dev); err_free_dev: input_free_device(dev->hotkey_dev); dev->hotkey_dev = NULL; return error; } static int toshiba_acpi_setup_backlight(struct toshiba_acpi_dev *dev) { struct backlight_properties props; int brightness; int ret; bool enabled; /* * Some machines don't support the backlight methods at all, and * others support it read-only. Either of these is pretty useless, * so only register the backlight device if the backlight method * supports both reads and writes. */ brightness = __get_lcd_brightness(dev); if (brightness < 0) return 0; ret = set_lcd_brightness(dev, brightness); if (ret) { pr_debug("Backlight method is read-only, disabling backlight support\n"); return 0; } /* Determine whether or not BIOS supports transflective backlight */ ret = get_tr_backlight_status(dev, &enabled); dev->tr_backlight_supported = !ret; memset(&props, 0, sizeof(props)); props.type = BACKLIGHT_PLATFORM; props.max_brightness = HCI_LCD_BRIGHTNESS_LEVELS - 1; /* adding an extra level and having 0 change to transflective mode */ if (dev->tr_backlight_supported) props.max_brightness++; dev->backlight_dev = backlight_device_register("toshiba", &dev->acpi_dev->dev, dev, &toshiba_backlight_data, &props); if (IS_ERR(dev->backlight_dev)) { ret = PTR_ERR(dev->backlight_dev); pr_err("Could not register toshiba backlight device\n"); dev->backlight_dev = NULL; return ret; } dev->backlight_dev->props.brightness = brightness; return 0; } static int toshiba_acpi_remove(struct acpi_device *acpi_dev) { struct toshiba_acpi_dev *dev = acpi_driver_data(acpi_dev); remove_toshiba_proc_entries(dev); if (dev->ntfy_supported) { i8042_remove_filter(toshiba_acpi_i8042_filter); cancel_work_sync(&dev->hotkey_work); } if (dev->hotkey_dev) { input_unregister_device(dev->hotkey_dev); sparse_keymap_free(dev->hotkey_dev); } if (dev->bt_rfk) { rfkill_unregister(dev->bt_rfk); rfkill_destroy(dev->bt_rfk); } if (dev->backlight_dev) backlight_device_unregister(dev->backlight_dev); if (dev->illumination_supported) led_classdev_unregister(&dev->led_dev); if (toshiba_acpi) toshiba_acpi = NULL; kfree(dev); return 0; } static const char *find_hci_method(acpi_handle handle) { acpi_status status; acpi_handle hci_handle; status = acpi_get_handle(handle, "GHCI", &hci_handle); if (ACPI_SUCCESS(status)) return "GHCI"; status = acpi_get_handle(handle, "SPFC", &hci_handle); if (ACPI_SUCCESS(status)) return "SPFC"; return NULL; } static int toshiba_acpi_add(struct acpi_device *acpi_dev) { struct toshiba_acpi_dev *dev; const char *hci_method; u32 dummy; bool bt_present; int ret = 0; if (toshiba_acpi) return -EBUSY; pr_info("Toshiba Laptop ACPI Extras version %s\n", TOSHIBA_ACPI_VERSION); hci_method = find_hci_method(acpi_dev->handle); if (!hci_method) { pr_err("HCI interface not found\n"); return -ENODEV; } dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; dev->acpi_dev = acpi_dev; dev->method_hci = hci_method; acpi_dev->driver_data = dev; if (toshiba_acpi_setup_keyboard(dev)) pr_info("Unable to activate hotkeys\n"); mutex_init(&dev->mutex); ret = toshiba_acpi_setup_backlight(dev); if (ret) goto error; /* Register rfkill switch for Bluetooth */ if (hci_get_bt_present(dev, &bt_present) == HCI_SUCCESS && bt_present) { dev->bt_rfk = rfkill_alloc("Toshiba Bluetooth", &acpi_dev->dev, RFKILL_TYPE_BLUETOOTH, &toshiba_rfk_ops, dev); if (!dev->bt_rfk) { pr_err("unable to allocate rfkill device\n"); ret = -ENOMEM; goto error; } ret = rfkill_register(dev->bt_rfk); if (ret) { pr_err("unable to register rfkill device\n"); rfkill_destroy(dev->bt_rfk); goto error; } } if (toshiba_illumination_available(dev)) { dev->led_dev.name = "toshiba::illumination"; dev->led_dev.max_brightness = 1; dev->led_dev.brightness_set = toshiba_illumination_set; dev->led_dev.brightness_get = toshiba_illumination_get; if (!led_classdev_register(&acpi_dev->dev, &dev->led_dev)) dev->illumination_supported = 1; } /* Determine whether or not BIOS supports fan and video interfaces */ ret = get_video_status(dev, &dummy); dev->video_supported = !ret; ret = get_fan_status(dev, &dummy); dev->fan_supported = !ret; create_toshiba_proc_entries(dev); toshiba_acpi = dev; return 0; error: toshiba_acpi_remove(acpi_dev); return ret; } static void toshiba_acpi_notify(struct acpi_device *acpi_dev, u32 event) { struct toshiba_acpi_dev *dev = acpi_driver_data(acpi_dev); u32 hci_result, value; int retries = 3; int scancode; if (event != 0x80) return; if (dev->info_supported) { scancode = toshiba_acpi_query_hotkey(dev); if (scancode < 0) pr_err("Failed to query hotkey event\n"); else if (scancode != 0) toshiba_acpi_report_hotkey(dev, scancode); } else if (dev->system_event_supported) { do { hci_read1(dev, HCI_SYSTEM_EVENT, &value, &hci_result); switch (hci_result) { case HCI_SUCCESS: toshiba_acpi_report_hotkey(dev, (int)value); break; case HCI_NOT_SUPPORTED: /* * This is a workaround for an unresolved * issue on some machines where system events * sporadically become disabled. */ hci_write1(dev, HCI_SYSTEM_EVENT, 1, &hci_result); pr_notice("Re-enabled hotkeys\n"); /* fall through */ default: retries--; break; } } while (retries && hci_result != HCI_EMPTY); } } #ifdef CONFIG_PM_SLEEP static int toshiba_acpi_suspend(struct device *device) { struct toshiba_acpi_dev *dev = acpi_driver_data(to_acpi_device(device)); u32 result; if (dev->hotkey_dev) hci_write1(dev, HCI_HOTKEY_EVENT, HCI_HOTKEY_DISABLE, &result); return 0; } static int toshiba_acpi_resume(struct device *device) { struct toshiba_acpi_dev *dev = acpi_driver_data(to_acpi_device(device)); u32 result; if (dev->hotkey_dev) hci_write1(dev, HCI_HOTKEY_EVENT, HCI_HOTKEY_ENABLE, &result); return 0; } #endif static SIMPLE_DEV_PM_OPS(toshiba_acpi_pm, toshiba_acpi_suspend, toshiba_acpi_resume); static struct acpi_driver toshiba_acpi_driver = { .name = "Toshiba ACPI driver", .owner = THIS_MODULE, .ids = toshiba_device_ids, .flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS, .ops = { .add = toshiba_acpi_add, .remove = toshiba_acpi_remove, .notify = toshiba_acpi_notify, }, .drv.pm = &toshiba_acpi_pm, }; static int __init toshiba_acpi_init(void) { int ret; /* * Machines with this WMI guid aren't supported due to bugs in * their AML. This check relies on wmi initializing before * toshiba_acpi to guarantee guids have been identified. */ if (wmi_has_guid(TOSHIBA_WMI_EVENT_GUID)) return -ENODEV; toshiba_proc_dir = proc_mkdir(PROC_TOSHIBA, acpi_root_dir); if (!toshiba_proc_dir) { pr_err("Unable to create proc dir " PROC_TOSHIBA "\n"); return -ENODEV; } ret = acpi_bus_register_driver(&toshiba_acpi_driver); if (ret) { pr_err("Failed to register ACPI driver: %d\n", ret); remove_proc_entry(PROC_TOSHIBA, acpi_root_dir); } return ret; } static void __exit toshiba_acpi_exit(void) { acpi_bus_unregister_driver(&toshiba_acpi_driver); if (toshiba_proc_dir) remove_proc_entry(PROC_TOSHIBA, acpi_root_dir); } module_init(toshiba_acpi_init); module_exit(toshiba_acpi_exit);