/* * This file is part of the Chelsio FCoE driver for Linux. * * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/device.h> #include <linux/delay.h> #include <linux/ctype.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/compiler.h> #include <linux/export.h> #include <linux/module.h> #include <asm/unaligned.h> #include <asm/page.h> #include <scsi/scsi.h> #include <scsi/scsi_device.h> #include <scsi/scsi_transport_fc.h> #include "csio_hw.h" #include "csio_lnode.h" #include "csio_rnode.h" #include "csio_scsi.h" #include "csio_init.h" int csio_scsi_eqsize = 65536; int csio_scsi_iqlen = 128; int csio_scsi_ioreqs = 2048; uint32_t csio_max_scan_tmo; uint32_t csio_delta_scan_tmo = 5; int csio_lun_qdepth = 32; static int csio_ddp_descs = 128; static int csio_do_abrt_cls(struct csio_hw *, struct csio_ioreq *, bool); static void csio_scsis_uninit(struct csio_ioreq *, enum csio_scsi_ev); static void csio_scsis_io_active(struct csio_ioreq *, enum csio_scsi_ev); static void csio_scsis_tm_active(struct csio_ioreq *, enum csio_scsi_ev); static void csio_scsis_aborting(struct csio_ioreq *, enum csio_scsi_ev); static void csio_scsis_closing(struct csio_ioreq *, enum csio_scsi_ev); static void csio_scsis_shost_cmpl_await(struct csio_ioreq *, enum csio_scsi_ev); /* * csio_scsi_match_io - Match an ioreq with the given SCSI level data. * @ioreq: The I/O request * @sld: Level information * * Should be called with lock held. * */ static bool csio_scsi_match_io(struct csio_ioreq *ioreq, struct csio_scsi_level_data *sld) { struct scsi_cmnd *scmnd = csio_scsi_cmnd(ioreq); switch (sld->level) { case CSIO_LEV_LUN: if (scmnd == NULL) return false; return ((ioreq->lnode == sld->lnode) && (ioreq->rnode == sld->rnode) && ((uint64_t)scmnd->device->lun == sld->oslun)); case CSIO_LEV_RNODE: return ((ioreq->lnode == sld->lnode) && (ioreq->rnode == sld->rnode)); case CSIO_LEV_LNODE: return (ioreq->lnode == sld->lnode); case CSIO_LEV_ALL: return true; default: return false; } } /* * csio_scsi_gather_active_ios - Gather active I/Os based on level * @scm: SCSI module * @sld: Level information * @dest: The queue where these I/Os have to be gathered. * * Should be called with lock held. */ static void csio_scsi_gather_active_ios(struct csio_scsim *scm, struct csio_scsi_level_data *sld, struct list_head *dest) { struct list_head *tmp, *next; if (list_empty(&scm->active_q)) return; /* Just splice the entire active_q into dest */ if (sld->level == CSIO_LEV_ALL) { list_splice_tail_init(&scm->active_q, dest); return; } list_for_each_safe(tmp, next, &scm->active_q) { if (csio_scsi_match_io((struct csio_ioreq *)tmp, sld)) { list_del_init(tmp); list_add_tail(tmp, dest); } } } static inline bool csio_scsi_itnexus_loss_error(uint16_t error) { switch (error) { case FW_ERR_LINK_DOWN: case FW_RDEV_NOT_READY: case FW_ERR_RDEV_LOST: case FW_ERR_RDEV_LOGO: case FW_ERR_RDEV_IMPL_LOGO: return 1; } return 0; } static inline void csio_scsi_tag(struct scsi_cmnd *scmnd, uint8_t *tag, uint8_t hq, uint8_t oq, uint8_t sq) { char stag[2]; if (scsi_populate_tag_msg(scmnd, stag)) { switch (stag[0]) { case HEAD_OF_QUEUE_TAG: *tag = hq; break; case ORDERED_QUEUE_TAG: *tag = oq; break; default: *tag = sq; break; } } else *tag = 0; } /* * csio_scsi_fcp_cmnd - Frame the SCSI FCP command paylod. * @req: IO req structure. * @addr: DMA location to place the payload. * * This routine is shared between FCP_WRITE, FCP_READ and FCP_CMD requests. */ static inline void csio_scsi_fcp_cmnd(struct csio_ioreq *req, void *addr) { struct fcp_cmnd *fcp_cmnd = (struct fcp_cmnd *)addr; struct scsi_cmnd *scmnd = csio_scsi_cmnd(req); /* Check for Task Management */ if (likely(scmnd->SCp.Message == 0)) { int_to_scsilun(scmnd->device->lun, &fcp_cmnd->fc_lun); fcp_cmnd->fc_tm_flags = 0; fcp_cmnd->fc_cmdref = 0; fcp_cmnd->fc_pri_ta = 0; memcpy(fcp_cmnd->fc_cdb, scmnd->cmnd, 16); csio_scsi_tag(scmnd, &fcp_cmnd->fc_pri_ta, FCP_PTA_HEADQ, FCP_PTA_ORDERED, FCP_PTA_SIMPLE); fcp_cmnd->fc_dl = cpu_to_be32(scsi_bufflen(scmnd)); if (req->nsge) if (req->datadir == DMA_TO_DEVICE) fcp_cmnd->fc_flags = FCP_CFL_WRDATA; else fcp_cmnd->fc_flags = FCP_CFL_RDDATA; else fcp_cmnd->fc_flags = 0; } else { memset(fcp_cmnd, 0, sizeof(*fcp_cmnd)); int_to_scsilun(scmnd->device->lun, &fcp_cmnd->fc_lun); fcp_cmnd->fc_tm_flags = (uint8_t)scmnd->SCp.Message; } } /* * csio_scsi_init_cmd_wr - Initialize the SCSI CMD WR. * @req: IO req structure. * @addr: DMA location to place the payload. * @size: Size of WR (including FW WR + immed data + rsp SG entry * * Wrapper for populating fw_scsi_cmd_wr. */ static inline void csio_scsi_init_cmd_wr(struct csio_ioreq *req, void *addr, uint32_t size) { struct csio_hw *hw = req->lnode->hwp; struct csio_rnode *rn = req->rnode; struct fw_scsi_cmd_wr *wr = (struct fw_scsi_cmd_wr *)addr; struct csio_dma_buf *dma_buf; uint8_t imm = csio_hw_to_scsim(hw)->proto_cmd_len; wr->op_immdlen = cpu_to_be32(FW_WR_OP(FW_SCSI_CMD_WR) | FW_SCSI_CMD_WR_IMMDLEN(imm)); wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID(rn->flowid) | FW_WR_LEN16( DIV_ROUND_UP(size, 16))); wr->cookie = (uintptr_t) req; wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx)); wr->tmo_val = (uint8_t) req->tmo; wr->r3 = 0; memset(&wr->r5, 0, 8); /* Get RSP DMA buffer */ dma_buf = &req->dma_buf; /* Prepare RSP SGL */ wr->rsp_dmalen = cpu_to_be32(dma_buf->len); wr->rsp_dmaaddr = cpu_to_be64(dma_buf->paddr); wr->r6 = 0; wr->u.fcoe.ctl_pri = 0; wr->u.fcoe.cp_en_class = 0; wr->u.fcoe.r4_lo[0] = 0; wr->u.fcoe.r4_lo[1] = 0; /* Frame a FCP command */ csio_scsi_fcp_cmnd(req, (void *)((uintptr_t)addr + sizeof(struct fw_scsi_cmd_wr))); } #define CSIO_SCSI_CMD_WR_SZ(_imm) \ (sizeof(struct fw_scsi_cmd_wr) + /* WR size */ \ ALIGN((_imm), 16)) /* Immed data */ #define CSIO_SCSI_CMD_WR_SZ_16(_imm) \ (ALIGN(CSIO_SCSI_CMD_WR_SZ((_imm)), 16)) /* * csio_scsi_cmd - Create a SCSI CMD WR. * @req: IO req structure. * * Gets a WR slot in the ingress queue and initializes it with SCSI CMD WR. * */ static inline void csio_scsi_cmd(struct csio_ioreq *req) { struct csio_wr_pair wrp; struct csio_hw *hw = req->lnode->hwp; struct csio_scsim *scsim = csio_hw_to_scsim(hw); uint32_t size = CSIO_SCSI_CMD_WR_SZ_16(scsim->proto_cmd_len); req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp); if (unlikely(req->drv_status != 0)) return; if (wrp.size1 >= size) { /* Initialize WR in one shot */ csio_scsi_init_cmd_wr(req, wrp.addr1, size); } else { uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx); /* * Make a temporary copy of the WR and write back * the copy into the WR pair. */ csio_scsi_init_cmd_wr(req, (void *)tmpwr, size); memcpy(wrp.addr1, tmpwr, wrp.size1); memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1); } } /* * csio_scsi_init_ulptx_dsgl - Fill in a ULP_TX_SC_DSGL * @hw: HW module * @req: IO request * @sgl: ULP TX SGL pointer. * */ static inline void csio_scsi_init_ultptx_dsgl(struct csio_hw *hw, struct csio_ioreq *req, struct ulptx_sgl *sgl) { struct ulptx_sge_pair *sge_pair = NULL; struct scatterlist *sgel; uint32_t i = 0; uint32_t xfer_len; struct list_head *tmp; struct csio_dma_buf *dma_buf; struct scsi_cmnd *scmnd = csio_scsi_cmnd(req); sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | ULPTX_MORE | ULPTX_NSGE(req->nsge)); /* Now add the data SGLs */ if (likely(!req->dcopy)) { scsi_for_each_sg(scmnd, sgel, req->nsge, i) { if (i == 0) { sgl->addr0 = cpu_to_be64(sg_dma_address(sgel)); sgl->len0 = cpu_to_be32(sg_dma_len(sgel)); sge_pair = (struct ulptx_sge_pair *)(sgl + 1); continue; } if ((i - 1) & 0x1) { sge_pair->addr[1] = cpu_to_be64( sg_dma_address(sgel)); sge_pair->len[1] = cpu_to_be32( sg_dma_len(sgel)); sge_pair++; } else { sge_pair->addr[0] = cpu_to_be64( sg_dma_address(sgel)); sge_pair->len[0] = cpu_to_be32( sg_dma_len(sgel)); } } } else { /* Program sg elements with driver's DDP buffer */ xfer_len = scsi_bufflen(scmnd); list_for_each(tmp, &req->gen_list) { dma_buf = (struct csio_dma_buf *)tmp; if (i == 0) { sgl->addr0 = cpu_to_be64(dma_buf->paddr); sgl->len0 = cpu_to_be32( min(xfer_len, dma_buf->len)); sge_pair = (struct ulptx_sge_pair *)(sgl + 1); } else if ((i - 1) & 0x1) { sge_pair->addr[1] = cpu_to_be64(dma_buf->paddr); sge_pair->len[1] = cpu_to_be32( min(xfer_len, dma_buf->len)); sge_pair++; } else { sge_pair->addr[0] = cpu_to_be64(dma_buf->paddr); sge_pair->len[0] = cpu_to_be32( min(xfer_len, dma_buf->len)); } xfer_len -= min(xfer_len, dma_buf->len); i++; } } } /* * csio_scsi_init_read_wr - Initialize the READ SCSI WR. * @req: IO req structure. * @wrp: DMA location to place the payload. * @size: Size of WR (including FW WR + immed data + rsp SG entry + data SGL * * Wrapper for populating fw_scsi_read_wr. */ static inline void csio_scsi_init_read_wr(struct csio_ioreq *req, void *wrp, uint32_t size) { struct csio_hw *hw = req->lnode->hwp; struct csio_rnode *rn = req->rnode; struct fw_scsi_read_wr *wr = (struct fw_scsi_read_wr *)wrp; struct ulptx_sgl *sgl; struct csio_dma_buf *dma_buf; uint8_t imm = csio_hw_to_scsim(hw)->proto_cmd_len; struct scsi_cmnd *scmnd = csio_scsi_cmnd(req); wr->op_immdlen = cpu_to_be32(FW_WR_OP(FW_SCSI_READ_WR) | FW_SCSI_READ_WR_IMMDLEN(imm)); wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID(rn->flowid) | FW_WR_LEN16(DIV_ROUND_UP(size, 16))); wr->cookie = (uintptr_t)req; wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx)); wr->tmo_val = (uint8_t)(req->tmo); wr->use_xfer_cnt = 1; wr->xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd)); wr->ini_xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd)); /* Get RSP DMA buffer */ dma_buf = &req->dma_buf; /* Prepare RSP SGL */ wr->rsp_dmalen = cpu_to_be32(dma_buf->len); wr->rsp_dmaaddr = cpu_to_be64(dma_buf->paddr); wr->r4 = 0; wr->u.fcoe.ctl_pri = 0; wr->u.fcoe.cp_en_class = 0; wr->u.fcoe.r3_lo[0] = 0; wr->u.fcoe.r3_lo[1] = 0; csio_scsi_fcp_cmnd(req, (void *)((uintptr_t)wrp + sizeof(struct fw_scsi_read_wr))); /* Move WR pointer past command and immediate data */ sgl = (struct ulptx_sgl *)((uintptr_t)wrp + sizeof(struct fw_scsi_read_wr) + ALIGN(imm, 16)); /* Fill in the DSGL */ csio_scsi_init_ultptx_dsgl(hw, req, sgl); } /* * csio_scsi_init_write_wr - Initialize the WRITE SCSI WR. * @req: IO req structure. * @wrp: DMA location to place the payload. * @size: Size of WR (including FW WR + immed data + rsp SG entry + data SGL * * Wrapper for populating fw_scsi_write_wr. */ static inline void csio_scsi_init_write_wr(struct csio_ioreq *req, void *wrp, uint32_t size) { struct csio_hw *hw = req->lnode->hwp; struct csio_rnode *rn = req->rnode; struct fw_scsi_write_wr *wr = (struct fw_scsi_write_wr *)wrp; struct ulptx_sgl *sgl; struct csio_dma_buf *dma_buf; uint8_t imm = csio_hw_to_scsim(hw)->proto_cmd_len; struct scsi_cmnd *scmnd = csio_scsi_cmnd(req); wr->op_immdlen = cpu_to_be32(FW_WR_OP(FW_SCSI_WRITE_WR) | FW_SCSI_WRITE_WR_IMMDLEN(imm)); wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID(rn->flowid) | FW_WR_LEN16(DIV_ROUND_UP(size, 16))); wr->cookie = (uintptr_t)req; wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx)); wr->tmo_val = (uint8_t)(req->tmo); wr->use_xfer_cnt = 1; wr->xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd)); wr->ini_xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd)); /* Get RSP DMA buffer */ dma_buf = &req->dma_buf; /* Prepare RSP SGL */ wr->rsp_dmalen = cpu_to_be32(dma_buf->len); wr->rsp_dmaaddr = cpu_to_be64(dma_buf->paddr); wr->r4 = 0; wr->u.fcoe.ctl_pri = 0; wr->u.fcoe.cp_en_class = 0; wr->u.fcoe.r3_lo[0] = 0; wr->u.fcoe.r3_lo[1] = 0; csio_scsi_fcp_cmnd(req, (void *)((uintptr_t)wrp + sizeof(struct fw_scsi_write_wr))); /* Move WR pointer past command and immediate data */ sgl = (struct ulptx_sgl *)((uintptr_t)wrp + sizeof(struct fw_scsi_write_wr) + ALIGN(imm, 16)); /* Fill in the DSGL */ csio_scsi_init_ultptx_dsgl(hw, req, sgl); } /* Calculate WR size needed for fw_scsi_read_wr/fw_scsi_write_wr */ #define CSIO_SCSI_DATA_WRSZ(req, oper, sz, imm) \ do { \ (sz) = sizeof(struct fw_scsi_##oper##_wr) + /* WR size */ \ ALIGN((imm), 16) + /* Immed data */ \ sizeof(struct ulptx_sgl); /* ulptx_sgl */ \ \ if (unlikely((req)->nsge > 1)) \ (sz) += (sizeof(struct ulptx_sge_pair) * \ (ALIGN(((req)->nsge - 1), 2) / 2)); \ /* Data SGE */ \ } while (0) /* * csio_scsi_read - Create a SCSI READ WR. * @req: IO req structure. * * Gets a WR slot in the ingress queue and initializes it with * SCSI READ WR. * */ static inline void csio_scsi_read(struct csio_ioreq *req) { struct csio_wr_pair wrp; uint32_t size; struct csio_hw *hw = req->lnode->hwp; struct csio_scsim *scsim = csio_hw_to_scsim(hw); CSIO_SCSI_DATA_WRSZ(req, read, size, scsim->proto_cmd_len); size = ALIGN(size, 16); req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp); if (likely(req->drv_status == 0)) { if (likely(wrp.size1 >= size)) { /* Initialize WR in one shot */ csio_scsi_init_read_wr(req, wrp.addr1, size); } else { uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx); /* * Make a temporary copy of the WR and write back * the copy into the WR pair. */ csio_scsi_init_read_wr(req, (void *)tmpwr, size); memcpy(wrp.addr1, tmpwr, wrp.size1); memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1); } } } /* * csio_scsi_write - Create a SCSI WRITE WR. * @req: IO req structure. * * Gets a WR slot in the ingress queue and initializes it with * SCSI WRITE WR. * */ static inline void csio_scsi_write(struct csio_ioreq *req) { struct csio_wr_pair wrp; uint32_t size; struct csio_hw *hw = req->lnode->hwp; struct csio_scsim *scsim = csio_hw_to_scsim(hw); CSIO_SCSI_DATA_WRSZ(req, write, size, scsim->proto_cmd_len); size = ALIGN(size, 16); req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp); if (likely(req->drv_status == 0)) { if (likely(wrp.size1 >= size)) { /* Initialize WR in one shot */ csio_scsi_init_write_wr(req, wrp.addr1, size); } else { uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx); /* * Make a temporary copy of the WR and write back * the copy into the WR pair. */ csio_scsi_init_write_wr(req, (void *)tmpwr, size); memcpy(wrp.addr1, tmpwr, wrp.size1); memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1); } } } /* * csio_setup_ddp - Setup DDP buffers for Read request. * @req: IO req structure. * * Checks SGLs/Data buffers are virtually contiguous required for DDP. * If contiguous,driver posts SGLs in the WR otherwise post internal * buffers for such request for DDP. */ static inline void csio_setup_ddp(struct csio_scsim *scsim, struct csio_ioreq *req) { #ifdef __CSIO_DEBUG__ struct csio_hw *hw = req->lnode->hwp; #endif struct scatterlist *sgel = NULL; struct scsi_cmnd *scmnd = csio_scsi_cmnd(req); uint64_t sg_addr = 0; uint32_t ddp_pagesz = 4096; uint32_t buf_off; struct csio_dma_buf *dma_buf = NULL; uint32_t alloc_len = 0; uint32_t xfer_len = 0; uint32_t sg_len = 0; uint32_t i; scsi_for_each_sg(scmnd, sgel, req->nsge, i) { sg_addr = sg_dma_address(sgel); sg_len = sg_dma_len(sgel); buf_off = sg_addr & (ddp_pagesz - 1); /* Except 1st buffer,all buffer addr have to be Page aligned */ if (i != 0 && buf_off) { csio_dbg(hw, "SGL addr not DDP aligned (%llx:%d)\n", sg_addr, sg_len); goto unaligned; } /* Except last buffer,all buffer must end on page boundary */ if ((i != (req->nsge - 1)) && ((buf_off + sg_len) & (ddp_pagesz - 1))) { csio_dbg(hw, "SGL addr not ending on page boundary" "(%llx:%d)\n", sg_addr, sg_len); goto unaligned; } } /* SGL's are virtually contiguous. HW will DDP to SGLs */ req->dcopy = 0; csio_scsi_read(req); return; unaligned: CSIO_INC_STATS(scsim, n_unaligned); /* * For unaligned SGLs, driver will allocate internal DDP buffer. * Once command is completed data from DDP buffer copied to SGLs */ req->dcopy = 1; /* Use gen_list to store the DDP buffers */ INIT_LIST_HEAD(&req->gen_list); xfer_len = scsi_bufflen(scmnd); i = 0; /* Allocate ddp buffers for this request */ while (alloc_len < xfer_len) { dma_buf = csio_get_scsi_ddp(scsim); if (dma_buf == NULL || i > scsim->max_sge) { req->drv_status = -EBUSY; break; } alloc_len += dma_buf->len; /* Added to IO req */ list_add_tail(&dma_buf->list, &req->gen_list); i++; } if (!req->drv_status) { /* set number of ddp bufs used */ req->nsge = i; csio_scsi_read(req); return; } /* release dma descs */ if (i > 0) csio_put_scsi_ddp_list(scsim, &req->gen_list, i); } /* * csio_scsi_init_abrt_cls_wr - Initialize an ABORT/CLOSE WR. * @req: IO req structure. * @addr: DMA location to place the payload. * @size: Size of WR * @abort: abort OR close * * Wrapper for populating fw_scsi_cmd_wr. */ static inline void csio_scsi_init_abrt_cls_wr(struct csio_ioreq *req, void *addr, uint32_t size, bool abort) { struct csio_hw *hw = req->lnode->hwp; struct csio_rnode *rn = req->rnode; struct fw_scsi_abrt_cls_wr *wr = (struct fw_scsi_abrt_cls_wr *)addr; wr->op_immdlen = cpu_to_be32(FW_WR_OP(FW_SCSI_ABRT_CLS_WR)); wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID(rn->flowid) | FW_WR_LEN16( DIV_ROUND_UP(size, 16))); wr->cookie = (uintptr_t) req; wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx)); wr->tmo_val = (uint8_t) req->tmo; /* 0 for CHK_ALL_IO tells FW to look up t_cookie */ wr->sub_opcode_to_chk_all_io = (FW_SCSI_ABRT_CLS_WR_SUB_OPCODE(abort) | FW_SCSI_ABRT_CLS_WR_CHK_ALL_IO(0)); wr->r3[0] = 0; wr->r3[1] = 0; wr->r3[2] = 0; wr->r3[3] = 0; /* Since we re-use the same ioreq for abort as well */ wr->t_cookie = (uintptr_t) req; } static inline void csio_scsi_abrt_cls(struct csio_ioreq *req, bool abort) { struct csio_wr_pair wrp; struct csio_hw *hw = req->lnode->hwp; uint32_t size = ALIGN(sizeof(struct fw_scsi_abrt_cls_wr), 16); req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp); if (req->drv_status != 0) return; if (wrp.size1 >= size) { /* Initialize WR in one shot */ csio_scsi_init_abrt_cls_wr(req, wrp.addr1, size, abort); } else { uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx); /* * Make a temporary copy of the WR and write back * the copy into the WR pair. */ csio_scsi_init_abrt_cls_wr(req, (void *)tmpwr, size, abort); memcpy(wrp.addr1, tmpwr, wrp.size1); memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1); } } /*****************************************************************************/ /* START: SCSI SM */ /*****************************************************************************/ static void csio_scsis_uninit(struct csio_ioreq *req, enum csio_scsi_ev evt) { struct csio_hw *hw = req->lnode->hwp; struct csio_scsim *scsim = csio_hw_to_scsim(hw); switch (evt) { case CSIO_SCSIE_START_IO: if (req->nsge) { if (req->datadir == DMA_TO_DEVICE) { req->dcopy = 0; csio_scsi_write(req); } else csio_setup_ddp(scsim, req); } else { csio_scsi_cmd(req); } if (likely(req->drv_status == 0)) { /* change state and enqueue on active_q */ csio_set_state(&req->sm, csio_scsis_io_active); list_add_tail(&req->sm.sm_list, &scsim->active_q); csio_wr_issue(hw, req->eq_idx, false); CSIO_INC_STATS(scsim, n_active); return; } break; case CSIO_SCSIE_START_TM: csio_scsi_cmd(req); if (req->drv_status == 0) { /* * NOTE: We collect the affected I/Os prior to issuing * LUN reset, and not after it. This is to prevent * aborting I/Os that get issued after the LUN reset, * but prior to LUN reset completion (in the event that * the host stack has not blocked I/Os to a LUN that is * being reset. */ csio_set_state(&req->sm, csio_scsis_tm_active); list_add_tail(&req->sm.sm_list, &scsim->active_q); csio_wr_issue(hw, req->eq_idx, false); CSIO_INC_STATS(scsim, n_tm_active); } return; case CSIO_SCSIE_ABORT: case CSIO_SCSIE_CLOSE: /* * NOTE: * We could get here due to : * - a window in the cleanup path of the SCSI module * (csio_scsi_abort_io()). Please see NOTE in this function. * - a window in the time we tried to issue an abort/close * of a request to FW, and the FW completed the request * itself. * Print a message for now, and return INVAL either way. */ req->drv_status = -EINVAL; csio_warn(hw, "Trying to abort/close completed IO:%p!\n", req); break; default: csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req); CSIO_DB_ASSERT(0); } } static void csio_scsis_io_active(struct csio_ioreq *req, enum csio_scsi_ev evt) { struct csio_hw *hw = req->lnode->hwp; struct csio_scsim *scm = csio_hw_to_scsim(hw); struct csio_rnode *rn; switch (evt) { case CSIO_SCSIE_COMPLETED: CSIO_DEC_STATS(scm, n_active); list_del_init(&req->sm.sm_list); csio_set_state(&req->sm, csio_scsis_uninit); /* * In MSIX mode, with multiple queues, the SCSI compeltions * could reach us sooner than the FW events sent to indicate * I-T nexus loss (link down, remote device logo etc). We * dont want to be returning such I/Os to the upper layer * immediately, since we wouldnt have reported the I-T nexus * loss itself. This forces us to serialize such completions * with the reporting of the I-T nexus loss. Therefore, we * internally queue up such up such completions in the rnode. * The reporting of I-T nexus loss to the upper layer is then * followed by the returning of I/Os in this internal queue. * Having another state alongwith another queue helps us take * actions for events such as ABORT received while we are * in this rnode queue. */ if (unlikely(req->wr_status != FW_SUCCESS)) { rn = req->rnode; /* * FW says remote device is lost, but rnode * doesnt reflect it. */ if (csio_scsi_itnexus_loss_error(req->wr_status) && csio_is_rnode_ready(rn)) { csio_set_state(&req->sm, csio_scsis_shost_cmpl_await); list_add_tail(&req->sm.sm_list, &rn->host_cmpl_q); } } break; case CSIO_SCSIE_ABORT: csio_scsi_abrt_cls(req, SCSI_ABORT); if (req->drv_status == 0) { csio_wr_issue(hw, req->eq_idx, false); csio_set_state(&req->sm, csio_scsis_aborting); } break; case CSIO_SCSIE_CLOSE: csio_scsi_abrt_cls(req, SCSI_CLOSE); if (req->drv_status == 0) { csio_wr_issue(hw, req->eq_idx, false); csio_set_state(&req->sm, csio_scsis_closing); } break; case CSIO_SCSIE_DRVCLEANUP: req->wr_status = FW_HOSTERROR; CSIO_DEC_STATS(scm, n_active); csio_set_state(&req->sm, csio_scsis_uninit); break; default: csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req); CSIO_DB_ASSERT(0); } } static void csio_scsis_tm_active(struct csio_ioreq *req, enum csio_scsi_ev evt) { struct csio_hw *hw = req->lnode->hwp; struct csio_scsim *scm = csio_hw_to_scsim(hw); switch (evt) { case CSIO_SCSIE_COMPLETED: CSIO_DEC_STATS(scm, n_tm_active); list_del_init(&req->sm.sm_list); csio_set_state(&req->sm, csio_scsis_uninit); break; case CSIO_SCSIE_ABORT: csio_scsi_abrt_cls(req, SCSI_ABORT); if (req->drv_status == 0) { csio_wr_issue(hw, req->eq_idx, false); csio_set_state(&req->sm, csio_scsis_aborting); } break; case CSIO_SCSIE_CLOSE: csio_scsi_abrt_cls(req, SCSI_CLOSE); if (req->drv_status == 0) { csio_wr_issue(hw, req->eq_idx, false); csio_set_state(&req->sm, csio_scsis_closing); } break; case CSIO_SCSIE_DRVCLEANUP: req->wr_status = FW_HOSTERROR; CSIO_DEC_STATS(scm, n_tm_active); csio_set_state(&req->sm, csio_scsis_uninit); break; default: csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req); CSIO_DB_ASSERT(0); } } static void csio_scsis_aborting(struct csio_ioreq *req, enum csio_scsi_ev evt) { struct csio_hw *hw = req->lnode->hwp; struct csio_scsim *scm = csio_hw_to_scsim(hw); switch (evt) { case CSIO_SCSIE_COMPLETED: csio_dbg(hw, "ioreq %p recvd cmpltd (wr_status:%d) " "in aborting st\n", req, req->wr_status); /* * Use -ECANCELED to explicitly tell the ABORTED event that * the original I/O was returned to driver by FW. * We dont really care if the I/O was returned with success by * FW (because the ABORT and completion of the I/O crossed each * other), or any other return value. Once we are in aborting * state, the success or failure of the I/O is unimportant to * us. */ req->drv_status = -ECANCELED; break; case CSIO_SCSIE_ABORT: CSIO_INC_STATS(scm, n_abrt_dups); break; case CSIO_SCSIE_ABORTED: csio_dbg(hw, "abort of %p return status:0x%x drv_status:%x\n", req, req->wr_status, req->drv_status); /* * Check if original I/O WR completed before the Abort * completion. */ if (req->drv_status != -ECANCELED) { csio_warn(hw, "Abort completed before original I/O," " req:%p\n", req); CSIO_DB_ASSERT(0); } /* * There are the following possible scenarios: * 1. The abort completed successfully, FW returned FW_SUCCESS. * 2. The completion of an I/O and the receipt of * abort for that I/O by the FW crossed each other. * The FW returned FW_EINVAL. The original I/O would have * returned with FW_SUCCESS or any other SCSI error. * 3. The FW couldnt sent the abort out on the wire, as there * was an I-T nexus loss (link down, remote device logged * out etc). FW sent back an appropriate IT nexus loss status * for the abort. * 4. FW sent an abort, but abort timed out (remote device * didnt respond). FW replied back with * FW_SCSI_ABORT_TIMEDOUT. * 5. FW couldnt genuinely abort the request for some reason, * and sent us an error. * * The first 3 scenarios are treated as succesful abort * operations by the host, while the last 2 are failed attempts * to abort. Manipulate the return value of the request * appropriately, so that host can convey these results * back to the upper layer. */ if ((req->wr_status == FW_SUCCESS) || (req->wr_status == FW_EINVAL) || csio_scsi_itnexus_loss_error(req->wr_status)) req->wr_status = FW_SCSI_ABORT_REQUESTED; CSIO_DEC_STATS(scm, n_active); list_del_init(&req->sm.sm_list); csio_set_state(&req->sm, csio_scsis_uninit); break; case CSIO_SCSIE_DRVCLEANUP: req->wr_status = FW_HOSTERROR; CSIO_DEC_STATS(scm, n_active); csio_set_state(&req->sm, csio_scsis_uninit); break; case CSIO_SCSIE_CLOSE: /* * We can receive this event from the module * cleanup paths, if the FW forgot to reply to the ABORT WR * and left this ioreq in this state. For now, just ignore * the event. The CLOSE event is sent to this state, as * the LINK may have already gone down. */ break; default: csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req); CSIO_DB_ASSERT(0); } } static void csio_scsis_closing(struct csio_ioreq *req, enum csio_scsi_ev evt) { struct csio_hw *hw = req->lnode->hwp; struct csio_scsim *scm = csio_hw_to_scsim(hw); switch (evt) { case CSIO_SCSIE_COMPLETED: csio_dbg(hw, "ioreq %p recvd cmpltd (wr_status:%d) " "in closing st\n", req, req->wr_status); /* * Use -ECANCELED to explicitly tell the CLOSED event that * the original I/O was returned to driver by FW. * We dont really care if the I/O was returned with success by * FW (because the CLOSE and completion of the I/O crossed each * other), or any other return value. Once we are in aborting * state, the success or failure of the I/O is unimportant to * us. */ req->drv_status = -ECANCELED; break; case CSIO_SCSIE_CLOSED: /* * Check if original I/O WR completed before the Close * completion. */ if (req->drv_status != -ECANCELED) { csio_fatal(hw, "Close completed before original I/O," " req:%p\n", req); CSIO_DB_ASSERT(0); } /* * Either close succeeded, or we issued close to FW at the * same time FW compelted it to us. Either way, the I/O * is closed. */ CSIO_DB_ASSERT((req->wr_status == FW_SUCCESS) || (req->wr_status == FW_EINVAL)); req->wr_status = FW_SCSI_CLOSE_REQUESTED; CSIO_DEC_STATS(scm, n_active); list_del_init(&req->sm.sm_list); csio_set_state(&req->sm, csio_scsis_uninit); break; case CSIO_SCSIE_CLOSE: break; case CSIO_SCSIE_DRVCLEANUP: req->wr_status = FW_HOSTERROR; CSIO_DEC_STATS(scm, n_active); csio_set_state(&req->sm, csio_scsis_uninit); break; default: csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req); CSIO_DB_ASSERT(0); } } static void csio_scsis_shost_cmpl_await(struct csio_ioreq *req, enum csio_scsi_ev evt) { switch (evt) { case CSIO_SCSIE_ABORT: case CSIO_SCSIE_CLOSE: /* * Just succeed the abort request, and hope that * the remote device unregister path will cleanup * this I/O to the upper layer within a sane * amount of time. */ /* * A close can come in during a LINK DOWN. The FW would have * returned us the I/O back, but not the remote device lost * FW event. In this interval, if the I/O times out at the upper * layer, a close can come in. Take the same action as abort: * return success, and hope that the remote device unregister * path will cleanup this I/O. If the FW still doesnt send * the msg, the close times out, and the upper layer resorts * to the next level of error recovery. */ req->drv_status = 0; break; case CSIO_SCSIE_DRVCLEANUP: csio_set_state(&req->sm, csio_scsis_uninit); break; default: csio_dbg(req->lnode->hwp, "Unhandled event:%d sent to req:%p\n", evt, req); CSIO_DB_ASSERT(0); } } /* * csio_scsi_cmpl_handler - WR completion handler for SCSI. * @hw: HW module. * @wr: The completed WR from the ingress queue. * @len: Length of the WR. * @flb: Freelist buffer array. * @priv: Private object * @scsiwr: Pointer to SCSI WR. * * This is the WR completion handler called per completion from the * ISR. It is called with lock held. It walks past the RSS and CPL message * header where the actual WR is present. * It then gets the status, WR handle (ioreq pointer) and the len of * the WR, based on WR opcode. Only on a non-good status is the entire * WR copied into the WR cache (ioreq->fw_wr). * The ioreq corresponding to the WR is returned to the caller. * NOTE: The SCSI queue doesnt allocate a freelist today, hence * no freelist buffer is expected. */ struct csio_ioreq * csio_scsi_cmpl_handler(struct csio_hw *hw, void *wr, uint32_t len, struct csio_fl_dma_buf *flb, void *priv, uint8_t **scsiwr) { struct csio_ioreq *ioreq = NULL; struct cpl_fw6_msg *cpl; uint8_t *tempwr; uint8_t status; struct csio_scsim *scm = csio_hw_to_scsim(hw); /* skip RSS header */ cpl = (struct cpl_fw6_msg *)((uintptr_t)wr + sizeof(__be64)); if (unlikely(cpl->opcode != CPL_FW6_MSG)) { csio_warn(hw, "Error: Invalid CPL msg %x recvd on SCSI q\n", cpl->opcode); CSIO_INC_STATS(scm, n_inval_cplop); return NULL; } tempwr = (uint8_t *)(cpl->data); status = csio_wr_status(tempwr); *scsiwr = tempwr; if (likely((*tempwr == FW_SCSI_READ_WR) || (*tempwr == FW_SCSI_WRITE_WR) || (*tempwr == FW_SCSI_CMD_WR))) { ioreq = (struct csio_ioreq *)((uintptr_t) (((struct fw_scsi_read_wr *)tempwr)->cookie)); CSIO_DB_ASSERT(virt_addr_valid(ioreq)); ioreq->wr_status = status; return ioreq; } if (*tempwr == FW_SCSI_ABRT_CLS_WR) { ioreq = (struct csio_ioreq *)((uintptr_t) (((struct fw_scsi_abrt_cls_wr *)tempwr)->cookie)); CSIO_DB_ASSERT(virt_addr_valid(ioreq)); ioreq->wr_status = status; return ioreq; } csio_warn(hw, "WR with invalid opcode in SCSI IQ: %x\n", *tempwr); CSIO_INC_STATS(scm, n_inval_scsiop); return NULL; } /* * csio_scsi_cleanup_io_q - Cleanup the given queue. * @scm: SCSI module. * @q: Queue to be cleaned up. * * Called with lock held. Has to exit with lock held. */ void csio_scsi_cleanup_io_q(struct csio_scsim *scm, struct list_head *q) { struct csio_hw *hw = scm->hw; struct csio_ioreq *ioreq; struct list_head *tmp, *next; struct scsi_cmnd *scmnd; /* Call back the completion routines of the active_q */ list_for_each_safe(tmp, next, q) { ioreq = (struct csio_ioreq *)tmp; csio_scsi_drvcleanup(ioreq); list_del_init(&ioreq->sm.sm_list); scmnd = csio_scsi_cmnd(ioreq); spin_unlock_irq(&hw->lock); /* * Upper layers may have cleared this command, hence this * check to avoid accessing stale references. */ if (scmnd != NULL) ioreq->io_cbfn(hw, ioreq); spin_lock_irq(&scm->freelist_lock); csio_put_scsi_ioreq(scm, ioreq); spin_unlock_irq(&scm->freelist_lock); spin_lock_irq(&hw->lock); } } #define CSIO_SCSI_ABORT_Q_POLL_MS 2000 static void csio_abrt_cls(struct csio_ioreq *ioreq, struct scsi_cmnd *scmnd) { struct csio_lnode *ln = ioreq->lnode; struct csio_hw *hw = ln->hwp; int ready = 0; struct csio_scsim *scsim = csio_hw_to_scsim(hw); int rv; if (csio_scsi_cmnd(ioreq) != scmnd) { CSIO_INC_STATS(scsim, n_abrt_race_comp); return; } ready = csio_is_lnode_ready(ln); rv = csio_do_abrt_cls(hw, ioreq, (ready ? SCSI_ABORT : SCSI_CLOSE)); if (rv != 0) { if (ready) CSIO_INC_STATS(scsim, n_abrt_busy_error); else CSIO_INC_STATS(scsim, n_cls_busy_error); } } /* * csio_scsi_abort_io_q - Abort all I/Os on given queue * @scm: SCSI module. * @q: Queue to abort. * @tmo: Timeout in ms * * Attempt to abort all I/Os on given queue, and wait for a max * of tmo milliseconds for them to complete. Returns success * if all I/Os are aborted. Else returns -ETIMEDOUT. * Should be entered with lock held. Exits with lock held. * NOTE: * Lock has to be held across the loop that aborts I/Os, since dropping the lock * in between can cause the list to be corrupted. As a result, the caller * of this function has to ensure that the number of I/os to be aborted * is finite enough to not cause lock-held-for-too-long issues. */ static int csio_scsi_abort_io_q(struct csio_scsim *scm, struct list_head *q, uint32_t tmo) { struct csio_hw *hw = scm->hw; struct list_head *tmp, *next; int count = DIV_ROUND_UP(tmo, CSIO_SCSI_ABORT_Q_POLL_MS); struct scsi_cmnd *scmnd; if (list_empty(q)) return 0; csio_dbg(hw, "Aborting SCSI I/Os\n"); /* Now abort/close I/Os in the queue passed */ list_for_each_safe(tmp, next, q) { scmnd = csio_scsi_cmnd((struct csio_ioreq *)tmp); csio_abrt_cls((struct csio_ioreq *)tmp, scmnd); } /* Wait till all active I/Os are completed/aborted/closed */ while (!list_empty(q) && count--) { spin_unlock_irq(&hw->lock); msleep(CSIO_SCSI_ABORT_Q_POLL_MS); spin_lock_irq(&hw->lock); } /* all aborts completed */ if (list_empty(q)) return 0; return -ETIMEDOUT; } /* * csio_scsim_cleanup_io - Cleanup all I/Os in SCSI module. * @scm: SCSI module. * @abort: abort required. * Called with lock held, should exit with lock held. * Can sleep when waiting for I/Os to complete. */ int csio_scsim_cleanup_io(struct csio_scsim *scm, bool abort) { struct csio_hw *hw = scm->hw; int rv = 0; int count = DIV_ROUND_UP(60 * 1000, CSIO_SCSI_ABORT_Q_POLL_MS); /* No I/Os pending */ if (list_empty(&scm->active_q)) return 0; /* Wait until all active I/Os are completed */ while (!list_empty(&scm->active_q) && count--) { spin_unlock_irq(&hw->lock); msleep(CSIO_SCSI_ABORT_Q_POLL_MS); spin_lock_irq(&hw->lock); } /* all I/Os completed */ if (list_empty(&scm->active_q)) return 0; /* Else abort */ if (abort) { rv = csio_scsi_abort_io_q(scm, &scm->active_q, 30000); if (rv == 0) return rv; csio_dbg(hw, "Some I/O aborts timed out, cleaning up..\n"); } csio_scsi_cleanup_io_q(scm, &scm->active_q); CSIO_DB_ASSERT(list_empty(&scm->active_q)); return rv; } /* * csio_scsim_cleanup_io_lnode - Cleanup all I/Os of given lnode. * @scm: SCSI module. * @lnode: lnode * * Called with lock held, should exit with lock held. * Can sleep (with dropped lock) when waiting for I/Os to complete. */ int csio_scsim_cleanup_io_lnode(struct csio_scsim *scm, struct csio_lnode *ln) { struct csio_hw *hw = scm->hw; struct csio_scsi_level_data sld; int rv; int count = DIV_ROUND_UP(60 * 1000, CSIO_SCSI_ABORT_Q_POLL_MS); csio_dbg(hw, "Gathering all SCSI I/Os on lnode %p\n", ln); sld.level = CSIO_LEV_LNODE; sld.lnode = ln; INIT_LIST_HEAD(&ln->cmpl_q); csio_scsi_gather_active_ios(scm, &sld, &ln->cmpl_q); /* No I/Os pending on this lnode */ if (list_empty(&ln->cmpl_q)) return 0; /* Wait until all active I/Os on this lnode are completed */ while (!list_empty(&ln->cmpl_q) && count--) { spin_unlock_irq(&hw->lock); msleep(CSIO_SCSI_ABORT_Q_POLL_MS); spin_lock_irq(&hw->lock); } /* all I/Os completed */ if (list_empty(&ln->cmpl_q)) return 0; csio_dbg(hw, "Some I/Os pending on ln:%p, aborting them..\n", ln); /* I/Os are pending, abort them */ rv = csio_scsi_abort_io_q(scm, &ln->cmpl_q, 30000); if (rv != 0) { csio_dbg(hw, "Some I/O aborts timed out, cleaning up..\n"); csio_scsi_cleanup_io_q(scm, &ln->cmpl_q); } CSIO_DB_ASSERT(list_empty(&ln->cmpl_q)); return rv; } static ssize_t csio_show_hw_state(struct device *dev, struct device_attribute *attr, char *buf) { struct csio_lnode *ln = shost_priv(class_to_shost(dev)); struct csio_hw *hw = csio_lnode_to_hw(ln); if (csio_is_hw_ready(hw)) return snprintf(buf, PAGE_SIZE, "ready\n"); else return snprintf(buf, PAGE_SIZE, "not ready\n"); } /* Device reset */ static ssize_t csio_device_reset(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct csio_lnode *ln = shost_priv(class_to_shost(dev)); struct csio_hw *hw = csio_lnode_to_hw(ln); if (*buf != '1') return -EINVAL; /* Delete NPIV lnodes */ csio_lnodes_exit(hw, 1); /* Block upper IOs */ csio_lnodes_block_request(hw); spin_lock_irq(&hw->lock); csio_hw_reset(hw); spin_unlock_irq(&hw->lock); /* Unblock upper IOs */ csio_lnodes_unblock_request(hw); return count; } /* disable port */ static ssize_t csio_disable_port(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct csio_lnode *ln = shost_priv(class_to_shost(dev)); struct csio_hw *hw = csio_lnode_to_hw(ln); bool disable; if (*buf == '1' || *buf == '0') disable = (*buf == '1') ? true : false; else return -EINVAL; /* Block upper IOs */ csio_lnodes_block_by_port(hw, ln->portid); spin_lock_irq(&hw->lock); csio_disable_lnodes(hw, ln->portid, disable); spin_unlock_irq(&hw->lock); /* Unblock upper IOs */ csio_lnodes_unblock_by_port(hw, ln->portid); return count; } /* Show debug level */ static ssize_t csio_show_dbg_level(struct device *dev, struct device_attribute *attr, char *buf) { struct csio_lnode *ln = shost_priv(class_to_shost(dev)); return snprintf(buf, PAGE_SIZE, "%x\n", ln->params.log_level); } /* Store debug level */ static ssize_t csio_store_dbg_level(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct csio_lnode *ln = shost_priv(class_to_shost(dev)); struct csio_hw *hw = csio_lnode_to_hw(ln); uint32_t dbg_level = 0; if (!isdigit(buf[0])) return -EINVAL; if (sscanf(buf, "%i", &dbg_level)) return -EINVAL; ln->params.log_level = dbg_level; hw->params.log_level = dbg_level; return 0; } static DEVICE_ATTR(hw_state, S_IRUGO, csio_show_hw_state, NULL); static DEVICE_ATTR(device_reset, S_IRUGO | S_IWUSR, NULL, csio_device_reset); static DEVICE_ATTR(disable_port, S_IRUGO | S_IWUSR, NULL, csio_disable_port); static DEVICE_ATTR(dbg_level, S_IRUGO | S_IWUSR, csio_show_dbg_level, csio_store_dbg_level); static struct device_attribute *csio_fcoe_lport_attrs[] = { &dev_attr_hw_state, &dev_attr_device_reset, &dev_attr_disable_port, &dev_attr_dbg_level, NULL, }; static ssize_t csio_show_num_reg_rnodes(struct device *dev, struct device_attribute *attr, char *buf) { struct csio_lnode *ln = shost_priv(class_to_shost(dev)); return snprintf(buf, PAGE_SIZE, "%d\n", ln->num_reg_rnodes); } static DEVICE_ATTR(num_reg_rnodes, S_IRUGO, csio_show_num_reg_rnodes, NULL); static struct device_attribute *csio_fcoe_vport_attrs[] = { &dev_attr_num_reg_rnodes, &dev_attr_dbg_level, NULL, }; static inline uint32_t csio_scsi_copy_to_sgl(struct csio_hw *hw, struct csio_ioreq *req) { struct scsi_cmnd *scmnd = (struct scsi_cmnd *)csio_scsi_cmnd(req); struct scatterlist *sg; uint32_t bytes_left; uint32_t bytes_copy; uint32_t buf_off = 0; uint32_t start_off = 0; uint32_t sg_off = 0; void *sg_addr; void *buf_addr; struct csio_dma_buf *dma_buf; bytes_left = scsi_bufflen(scmnd); sg = scsi_sglist(scmnd); dma_buf = (struct csio_dma_buf *)csio_list_next(&req->gen_list); /* Copy data from driver buffer to SGs of SCSI CMD */ while (bytes_left > 0 && sg && dma_buf) { if (buf_off >= dma_buf->len) { buf_off = 0; dma_buf = (struct csio_dma_buf *) csio_list_next(dma_buf); continue; } if (start_off >= sg->length) { start_off -= sg->length; sg = sg_next(sg); continue; } buf_addr = dma_buf->vaddr + buf_off; sg_off = sg->offset + start_off; bytes_copy = min((dma_buf->len - buf_off), sg->length - start_off); bytes_copy = min((uint32_t)(PAGE_SIZE - (sg_off & ~PAGE_MASK)), bytes_copy); sg_addr = kmap_atomic(sg_page(sg) + (sg_off >> PAGE_SHIFT)); if (!sg_addr) { csio_err(hw, "failed to kmap sg:%p of ioreq:%p\n", sg, req); break; } csio_dbg(hw, "copy_to_sgl:sg_addr %p sg_off %d buf %p len %d\n", sg_addr, sg_off, buf_addr, bytes_copy); memcpy(sg_addr + (sg_off & ~PAGE_MASK), buf_addr, bytes_copy); kunmap_atomic(sg_addr); start_off += bytes_copy; buf_off += bytes_copy; bytes_left -= bytes_copy; } if (bytes_left > 0) return DID_ERROR; else return DID_OK; } /* * csio_scsi_err_handler - SCSI error handler. * @hw: HW module. * @req: IO request. * */ static inline void csio_scsi_err_handler(struct csio_hw *hw, struct csio_ioreq *req) { struct scsi_cmnd *cmnd = (struct scsi_cmnd *)csio_scsi_cmnd(req); struct csio_scsim *scm = csio_hw_to_scsim(hw); struct fcp_resp_with_ext *fcp_resp; struct fcp_resp_rsp_info *rsp_info; struct csio_dma_buf *dma_buf; uint8_t flags, scsi_status = 0; uint32_t host_status = DID_OK; uint32_t rsp_len = 0, sns_len = 0; struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata); switch (req->wr_status) { case FW_HOSTERROR: if (unlikely(!csio_is_hw_ready(hw))) return; host_status = DID_ERROR; CSIO_INC_STATS(scm, n_hosterror); break; case FW_SCSI_RSP_ERR: dma_buf = &req->dma_buf; fcp_resp = (struct fcp_resp_with_ext *)dma_buf->vaddr; rsp_info = (struct fcp_resp_rsp_info *)(fcp_resp + 1); flags = fcp_resp->resp.fr_flags; scsi_status = fcp_resp->resp.fr_status; if (flags & FCP_RSP_LEN_VAL) { rsp_len = be32_to_cpu(fcp_resp->ext.fr_rsp_len); if ((rsp_len != 0 && rsp_len != 4 && rsp_len != 8) || (rsp_info->rsp_code != FCP_TMF_CMPL)) { host_status = DID_ERROR; goto out; } } if ((flags & FCP_SNS_LEN_VAL) && fcp_resp->ext.fr_sns_len) { sns_len = be32_to_cpu(fcp_resp->ext.fr_sns_len); if (sns_len > SCSI_SENSE_BUFFERSIZE) sns_len = SCSI_SENSE_BUFFERSIZE; memcpy(cmnd->sense_buffer, &rsp_info->_fr_resvd[0] + rsp_len, sns_len); CSIO_INC_STATS(scm, n_autosense); } scsi_set_resid(cmnd, 0); /* Under run */ if (flags & FCP_RESID_UNDER) { scsi_set_resid(cmnd, be32_to_cpu(fcp_resp->ext.fr_resid)); if (!(flags & FCP_SNS_LEN_VAL) && (scsi_status == SAM_STAT_GOOD) && ((scsi_bufflen(cmnd) - scsi_get_resid(cmnd)) < cmnd->underflow)) host_status = DID_ERROR; } else if (flags & FCP_RESID_OVER) host_status = DID_ERROR; CSIO_INC_STATS(scm, n_rsperror); break; case FW_SCSI_OVER_FLOW_ERR: csio_warn(hw, "Over-flow error,cmnd:0x%x expected len:0x%x" " resid:0x%x\n", cmnd->cmnd[0], scsi_bufflen(cmnd), scsi_get_resid(cmnd)); host_status = DID_ERROR; CSIO_INC_STATS(scm, n_ovflerror); break; case FW_SCSI_UNDER_FLOW_ERR: csio_warn(hw, "Under-flow error,cmnd:0x%x expected" " len:0x%x resid:0x%x lun:0x%x ssn:0x%x\n", cmnd->cmnd[0], scsi_bufflen(cmnd), scsi_get_resid(cmnd), cmnd->device->lun, rn->flowid); host_status = DID_ERROR; CSIO_INC_STATS(scm, n_unflerror); break; case FW_SCSI_ABORT_REQUESTED: case FW_SCSI_ABORTED: case FW_SCSI_CLOSE_REQUESTED: csio_dbg(hw, "Req %p cmd:%p op:%x %s\n", req, cmnd, cmnd->cmnd[0], (req->wr_status == FW_SCSI_CLOSE_REQUESTED) ? "closed" : "aborted"); /* * csio_eh_abort_handler checks this value to * succeed or fail the abort request. */ host_status = DID_REQUEUE; if (req->wr_status == FW_SCSI_CLOSE_REQUESTED) CSIO_INC_STATS(scm, n_closed); else CSIO_INC_STATS(scm, n_aborted); break; case FW_SCSI_ABORT_TIMEDOUT: /* FW timed out the abort itself */ csio_dbg(hw, "FW timed out abort req:%p cmnd:%p status:%x\n", req, cmnd, req->wr_status); host_status = DID_ERROR; CSIO_INC_STATS(scm, n_abrt_timedout); break; case FW_RDEV_NOT_READY: /* * In firmware, a RDEV can get into this state * temporarily, before moving into dissapeared/lost * state. So, the driver should complete the request equivalent * to device-disappeared! */ CSIO_INC_STATS(scm, n_rdev_nr_error); host_status = DID_ERROR; break; case FW_ERR_RDEV_LOST: CSIO_INC_STATS(scm, n_rdev_lost_error); host_status = DID_ERROR; break; case FW_ERR_RDEV_LOGO: CSIO_INC_STATS(scm, n_rdev_logo_error); host_status = DID_ERROR; break; case FW_ERR_RDEV_IMPL_LOGO: host_status = DID_ERROR; break; case FW_ERR_LINK_DOWN: CSIO_INC_STATS(scm, n_link_down_error); host_status = DID_ERROR; break; case FW_FCOE_NO_XCHG: CSIO_INC_STATS(scm, n_no_xchg_error); host_status = DID_ERROR; break; default: csio_err(hw, "Unknown SCSI FW WR status:%d req:%p cmnd:%p\n", req->wr_status, req, cmnd); CSIO_DB_ASSERT(0); CSIO_INC_STATS(scm, n_unknown_error); host_status = DID_ERROR; break; } out: if (req->nsge > 0) scsi_dma_unmap(cmnd); cmnd->result = (((host_status) << 16) | scsi_status); cmnd->scsi_done(cmnd); /* Wake up waiting threads */ csio_scsi_cmnd(req) = NULL; complete_all(&req->cmplobj); } /* * csio_scsi_cbfn - SCSI callback function. * @hw: HW module. * @req: IO request. * */ static void csio_scsi_cbfn(struct csio_hw *hw, struct csio_ioreq *req) { struct scsi_cmnd *cmnd = (struct scsi_cmnd *)csio_scsi_cmnd(req); uint8_t scsi_status = SAM_STAT_GOOD; uint32_t host_status = DID_OK; if (likely(req->wr_status == FW_SUCCESS)) { if (req->nsge > 0) { scsi_dma_unmap(cmnd); if (req->dcopy) host_status = csio_scsi_copy_to_sgl(hw, req); } cmnd->result = (((host_status) << 16) | scsi_status); cmnd->scsi_done(cmnd); csio_scsi_cmnd(req) = NULL; CSIO_INC_STATS(csio_hw_to_scsim(hw), n_tot_success); } else { /* Error handling */ csio_scsi_err_handler(hw, req); } } /** * csio_queuecommand - Entry point to kickstart an I/O request. * @host: The scsi_host pointer. * @cmnd: The I/O request from ML. * * This routine does the following: * - Checks for HW and Rnode module readiness. * - Gets a free ioreq structure (which is already initialized * to uninit during its allocation). * - Maps SG elements. * - Initializes ioreq members. * - Kicks off the SCSI state machine for this IO. * - Returns busy status on error. */ static int csio_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmnd) { struct csio_lnode *ln = shost_priv(host); struct csio_hw *hw = csio_lnode_to_hw(ln); struct csio_scsim *scsim = csio_hw_to_scsim(hw); struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata); struct csio_ioreq *ioreq = NULL; unsigned long flags; int nsge = 0; int rv = SCSI_MLQUEUE_HOST_BUSY, nr; int retval; int cpu; struct csio_scsi_qset *sqset; struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device)); if (!blk_rq_cpu_valid(cmnd->request)) cpu = smp_processor_id(); else cpu = cmnd->request->cpu; sqset = &hw->sqset[ln->portid][cpu]; nr = fc_remote_port_chkready(rport); if (nr) { cmnd->result = nr; CSIO_INC_STATS(scsim, n_rn_nr_error); goto err_done; } if (unlikely(!csio_is_hw_ready(hw))) { cmnd->result = (DID_REQUEUE << 16); CSIO_INC_STATS(scsim, n_hw_nr_error); goto err_done; } /* Get req->nsge, if there are SG elements to be mapped */ nsge = scsi_dma_map(cmnd); if (unlikely(nsge < 0)) { CSIO_INC_STATS(scsim, n_dmamap_error); goto err; } /* Do we support so many mappings? */ if (unlikely(nsge > scsim->max_sge)) { csio_warn(hw, "More SGEs than can be supported." " SGEs: %d, Max SGEs: %d\n", nsge, scsim->max_sge); CSIO_INC_STATS(scsim, n_unsupp_sge_error); goto err_dma_unmap; } /* Get a free ioreq structure - SM is already set to uninit */ ioreq = csio_get_scsi_ioreq_lock(hw, scsim); if (!ioreq) { csio_err(hw, "Out of I/O request elements. Active #:%d\n", scsim->stats.n_active); CSIO_INC_STATS(scsim, n_no_req_error); goto err_dma_unmap; } ioreq->nsge = nsge; ioreq->lnode = ln; ioreq->rnode = rn; ioreq->iq_idx = sqset->iq_idx; ioreq->eq_idx = sqset->eq_idx; ioreq->wr_status = 0; ioreq->drv_status = 0; csio_scsi_cmnd(ioreq) = (void *)cmnd; ioreq->tmo = 0; ioreq->datadir = cmnd->sc_data_direction; if (cmnd->sc_data_direction == DMA_TO_DEVICE) { CSIO_INC_STATS(ln, n_output_requests); ln->stats.n_output_bytes += scsi_bufflen(cmnd); } else if (cmnd->sc_data_direction == DMA_FROM_DEVICE) { CSIO_INC_STATS(ln, n_input_requests); ln->stats.n_input_bytes += scsi_bufflen(cmnd); } else CSIO_INC_STATS(ln, n_control_requests); /* Set cbfn */ ioreq->io_cbfn = csio_scsi_cbfn; /* Needed during abort */ cmnd->host_scribble = (unsigned char *)ioreq; cmnd->SCp.Message = 0; /* Kick off SCSI IO SM on the ioreq */ spin_lock_irqsave(&hw->lock, flags); retval = csio_scsi_start_io(ioreq); spin_unlock_irqrestore(&hw->lock, flags); if (retval != 0) { csio_err(hw, "ioreq: %p couldnt be started, status:%d\n", ioreq, retval); CSIO_INC_STATS(scsim, n_busy_error); goto err_put_req; } return 0; err_put_req: csio_put_scsi_ioreq_lock(hw, scsim, ioreq); err_dma_unmap: if (nsge > 0) scsi_dma_unmap(cmnd); err: return rv; err_done: cmnd->scsi_done(cmnd); return 0; } static int csio_do_abrt_cls(struct csio_hw *hw, struct csio_ioreq *ioreq, bool abort) { int rv; int cpu = smp_processor_id(); struct csio_lnode *ln = ioreq->lnode; struct csio_scsi_qset *sqset = &hw->sqset[ln->portid][cpu]; ioreq->tmo = CSIO_SCSI_ABRT_TMO_MS; /* * Use current processor queue for posting the abort/close, but retain * the ingress queue ID of the original I/O being aborted/closed - we * need the abort/close completion to be received on the same queue * as the original I/O. */ ioreq->eq_idx = sqset->eq_idx; if (abort == SCSI_ABORT) rv = csio_scsi_abort(ioreq); else rv = csio_scsi_close(ioreq); return rv; } static int csio_eh_abort_handler(struct scsi_cmnd *cmnd) { struct csio_ioreq *ioreq; struct csio_lnode *ln = shost_priv(cmnd->device->host); struct csio_hw *hw = csio_lnode_to_hw(ln); struct csio_scsim *scsim = csio_hw_to_scsim(hw); int ready = 0, ret; unsigned long tmo = 0; int rv; struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata); ret = fc_block_scsi_eh(cmnd); if (ret) return ret; ioreq = (struct csio_ioreq *)cmnd->host_scribble; if (!ioreq) return SUCCESS; if (!rn) return FAILED; csio_dbg(hw, "Request to abort ioreq:%p cmd:%p cdb:%08llx" " ssni:0x%x lun:%d iq:0x%x\n", ioreq, cmnd, *((uint64_t *)cmnd->cmnd), rn->flowid, cmnd->device->lun, csio_q_physiqid(hw, ioreq->iq_idx)); if (((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) != cmnd) { CSIO_INC_STATS(scsim, n_abrt_race_comp); return SUCCESS; } ready = csio_is_lnode_ready(ln); tmo = CSIO_SCSI_ABRT_TMO_MS; spin_lock_irq(&hw->lock); rv = csio_do_abrt_cls(hw, ioreq, (ready ? SCSI_ABORT : SCSI_CLOSE)); spin_unlock_irq(&hw->lock); if (rv != 0) { if (rv == -EINVAL) { /* Return success, if abort/close request issued on * already completed IO */ return SUCCESS; } if (ready) CSIO_INC_STATS(scsim, n_abrt_busy_error); else CSIO_INC_STATS(scsim, n_cls_busy_error); goto inval_scmnd; } /* Wait for completion */ init_completion(&ioreq->cmplobj); wait_for_completion_timeout(&ioreq->cmplobj, msecs_to_jiffies(tmo)); /* FW didnt respond to abort within our timeout */ if (((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) == cmnd) { csio_err(hw, "Abort timed out -- req: %p\n", ioreq); CSIO_INC_STATS(scsim, n_abrt_timedout); inval_scmnd: if (ioreq->nsge > 0) scsi_dma_unmap(cmnd); spin_lock_irq(&hw->lock); csio_scsi_cmnd(ioreq) = NULL; spin_unlock_irq(&hw->lock); cmnd->result = (DID_ERROR << 16); cmnd->scsi_done(cmnd); return FAILED; } /* FW successfully aborted the request */ if (host_byte(cmnd->result) == DID_REQUEUE) { csio_info(hw, "Aborted SCSI command to (%d:%d) serial#:0x%lx\n", cmnd->device->id, cmnd->device->lun, cmnd->serial_number); return SUCCESS; } else { csio_info(hw, "Failed to abort SCSI command, (%d:%d) serial#:0x%lx\n", cmnd->device->id, cmnd->device->lun, cmnd->serial_number); return FAILED; } } /* * csio_tm_cbfn - TM callback function. * @hw: HW module. * @req: IO request. * * Cache the result in 'cmnd', since ioreq will be freed soon * after we return from here, and the waiting thread shouldnt trust * the ioreq contents. */ static void csio_tm_cbfn(struct csio_hw *hw, struct csio_ioreq *req) { struct scsi_cmnd *cmnd = (struct scsi_cmnd *)csio_scsi_cmnd(req); struct csio_dma_buf *dma_buf; uint8_t flags = 0; struct fcp_resp_with_ext *fcp_resp; struct fcp_resp_rsp_info *rsp_info; csio_dbg(hw, "req: %p in csio_tm_cbfn status: %d\n", req, req->wr_status); /* Cache FW return status */ cmnd->SCp.Status = req->wr_status; /* Special handling based on FCP response */ /* * FW returns us this error, if flags were set. FCP4 says * FCP_RSP_LEN_VAL in flags shall be set for TM completions. * So if a target were to set this bit, we expect that the * rsp_code is set to FCP_TMF_CMPL for a successful TM * completion. Any other rsp_code means TM operation failed. * If a target were to just ignore setting flags, we treat * the TM operation as success, and FW returns FW_SUCCESS. */ if (req->wr_status == FW_SCSI_RSP_ERR) { dma_buf = &req->dma_buf; fcp_resp = (struct fcp_resp_with_ext *)dma_buf->vaddr; rsp_info = (struct fcp_resp_rsp_info *)(fcp_resp + 1); flags = fcp_resp->resp.fr_flags; /* Modify return status if flags indicate success */ if (flags & FCP_RSP_LEN_VAL) if (rsp_info->rsp_code == FCP_TMF_CMPL) cmnd->SCp.Status = FW_SUCCESS; csio_dbg(hw, "TM FCP rsp code: %d\n", rsp_info->rsp_code); } /* Wake up the TM handler thread */ csio_scsi_cmnd(req) = NULL; } static int csio_eh_lun_reset_handler(struct scsi_cmnd *cmnd) { struct csio_lnode *ln = shost_priv(cmnd->device->host); struct csio_hw *hw = csio_lnode_to_hw(ln); struct csio_scsim *scsim = csio_hw_to_scsim(hw); struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata); struct csio_ioreq *ioreq = NULL; struct csio_scsi_qset *sqset; unsigned long flags; int retval; int count, ret; LIST_HEAD(local_q); struct csio_scsi_level_data sld; if (!rn) goto fail; csio_dbg(hw, "Request to reset LUN:%d (ssni:0x%x tgtid:%d)\n", cmnd->device->lun, rn->flowid, rn->scsi_id); if (!csio_is_lnode_ready(ln)) { csio_err(hw, "LUN reset cannot be issued on non-ready" " local node vnpi:0x%x (LUN:%d)\n", ln->vnp_flowid, cmnd->device->lun); goto fail; } /* Lnode is ready, now wait on rport node readiness */ ret = fc_block_scsi_eh(cmnd); if (ret) return ret; /* * If we have blocked in the previous call, at this point, either the * remote node has come back online, or device loss timer has fired * and the remote node is destroyed. Allow the LUN reset only for * the former case, since LUN reset is a TMF I/O on the wire, and we * need a valid session to issue it. */ if (fc_remote_port_chkready(rn->rport)) { csio_err(hw, "LUN reset cannot be issued on non-ready" " remote node ssni:0x%x (LUN:%d)\n", rn->flowid, cmnd->device->lun); goto fail; } /* Get a free ioreq structure - SM is already set to uninit */ ioreq = csio_get_scsi_ioreq_lock(hw, scsim); if (!ioreq) { csio_err(hw, "Out of IO request elements. Active # :%d\n", scsim->stats.n_active); goto fail; } sqset = &hw->sqset[ln->portid][smp_processor_id()]; ioreq->nsge = 0; ioreq->lnode = ln; ioreq->rnode = rn; ioreq->iq_idx = sqset->iq_idx; ioreq->eq_idx = sqset->eq_idx; csio_scsi_cmnd(ioreq) = cmnd; cmnd->host_scribble = (unsigned char *)ioreq; cmnd->SCp.Status = 0; cmnd->SCp.Message = FCP_TMF_LUN_RESET; ioreq->tmo = CSIO_SCSI_LUNRST_TMO_MS / 1000; /* * FW times the LUN reset for ioreq->tmo, so we got to wait a little * longer (10s for now) than that to allow FW to return the timed * out command. */ count = DIV_ROUND_UP((ioreq->tmo + 10) * 1000, CSIO_SCSI_TM_POLL_MS); /* Set cbfn */ ioreq->io_cbfn = csio_tm_cbfn; /* Save of the ioreq info for later use */ sld.level = CSIO_LEV_LUN; sld.lnode = ioreq->lnode; sld.rnode = ioreq->rnode; sld.oslun = (uint64_t)cmnd->device->lun; spin_lock_irqsave(&hw->lock, flags); /* Kick off TM SM on the ioreq */ retval = csio_scsi_start_tm(ioreq); spin_unlock_irqrestore(&hw->lock, flags); if (retval != 0) { csio_err(hw, "Failed to issue LUN reset, req:%p, status:%d\n", ioreq, retval); goto fail_ret_ioreq; } csio_dbg(hw, "Waiting max %d secs for LUN reset completion\n", count * (CSIO_SCSI_TM_POLL_MS / 1000)); /* Wait for completion */ while ((((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) == cmnd) && count--) msleep(CSIO_SCSI_TM_POLL_MS); /* LUN reset timed-out */ if (((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) == cmnd) { csio_err(hw, "LUN reset (%d:%d) timed out\n", cmnd->device->id, cmnd->device->lun); spin_lock_irq(&hw->lock); csio_scsi_drvcleanup(ioreq); list_del_init(&ioreq->sm.sm_list); spin_unlock_irq(&hw->lock); goto fail_ret_ioreq; } /* LUN reset returned, check cached status */ if (cmnd->SCp.Status != FW_SUCCESS) { csio_err(hw, "LUN reset failed (%d:%d), status: %d\n", cmnd->device->id, cmnd->device->lun, cmnd->SCp.Status); goto fail; } /* LUN reset succeeded, Start aborting affected I/Os */ /* * Since the host guarantees during LUN reset that there * will not be any more I/Os to that LUN, until the LUN reset * completes, we gather pending I/Os after the LUN reset. */ spin_lock_irq(&hw->lock); csio_scsi_gather_active_ios(scsim, &sld, &local_q); retval = csio_scsi_abort_io_q(scsim, &local_q, 30000); spin_unlock_irq(&hw->lock); /* Aborts may have timed out */ if (retval != 0) { csio_err(hw, "Attempt to abort I/Os during LUN reset of %d" " returned %d\n", cmnd->device->lun, retval); /* Return I/Os back to active_q */ spin_lock_irq(&hw->lock); list_splice_tail_init(&local_q, &scsim->active_q); spin_unlock_irq(&hw->lock); goto fail; } CSIO_INC_STATS(rn, n_lun_rst); csio_info(hw, "LUN reset occurred (%d:%d)\n", cmnd->device->id, cmnd->device->lun); return SUCCESS; fail_ret_ioreq: csio_put_scsi_ioreq_lock(hw, scsim, ioreq); fail: CSIO_INC_STATS(rn, n_lun_rst_fail); return FAILED; } static int csio_slave_alloc(struct scsi_device *sdev) { struct fc_rport *rport = starget_to_rport(scsi_target(sdev)); if (!rport || fc_remote_port_chkready(rport)) return -ENXIO; sdev->hostdata = *((struct csio_lnode **)(rport->dd_data)); return 0; } static int csio_slave_configure(struct scsi_device *sdev) { if (sdev->tagged_supported) scsi_activate_tcq(sdev, csio_lun_qdepth); else scsi_deactivate_tcq(sdev, csio_lun_qdepth); return 0; } static void csio_slave_destroy(struct scsi_device *sdev) { sdev->hostdata = NULL; } static int csio_scan_finished(struct Scsi_Host *shost, unsigned long time) { struct csio_lnode *ln = shost_priv(shost); int rv = 1; spin_lock_irq(shost->host_lock); if (!ln->hwp || csio_list_deleted(&ln->sm.sm_list)) goto out; rv = csio_scan_done(ln, jiffies, time, csio_max_scan_tmo * HZ, csio_delta_scan_tmo * HZ); out: spin_unlock_irq(shost->host_lock); return rv; } struct scsi_host_template csio_fcoe_shost_template = { .module = THIS_MODULE, .name = CSIO_DRV_DESC, .proc_name = KBUILD_MODNAME, .queuecommand = csio_queuecommand, .eh_abort_handler = csio_eh_abort_handler, .eh_device_reset_handler = csio_eh_lun_reset_handler, .slave_alloc = csio_slave_alloc, .slave_configure = csio_slave_configure, .slave_destroy = csio_slave_destroy, .scan_finished = csio_scan_finished, .this_id = -1, .sg_tablesize = CSIO_SCSI_MAX_SGE, .cmd_per_lun = CSIO_MAX_CMD_PER_LUN, .use_clustering = ENABLE_CLUSTERING, .shost_attrs = csio_fcoe_lport_attrs, .max_sectors = CSIO_MAX_SECTOR_SIZE, }; struct scsi_host_template csio_fcoe_shost_vport_template = { .module = THIS_MODULE, .name = CSIO_DRV_DESC, .proc_name = KBUILD_MODNAME, .queuecommand = csio_queuecommand, .eh_abort_handler = csio_eh_abort_handler, .eh_device_reset_handler = csio_eh_lun_reset_handler, .slave_alloc = csio_slave_alloc, .slave_configure = csio_slave_configure, .slave_destroy = csio_slave_destroy, .scan_finished = csio_scan_finished, .this_id = -1, .sg_tablesize = CSIO_SCSI_MAX_SGE, .cmd_per_lun = CSIO_MAX_CMD_PER_LUN, .use_clustering = ENABLE_CLUSTERING, .shost_attrs = csio_fcoe_vport_attrs, .max_sectors = CSIO_MAX_SECTOR_SIZE, }; /* * csio_scsi_alloc_ddp_bufs - Allocate buffers for DDP of unaligned SGLs. * @scm: SCSI Module * @hw: HW device. * @buf_size: buffer size * @num_buf : Number of buffers. * * This routine allocates DMA buffers required for SCSI Data xfer, if * each SGL buffer for a SCSI Read request posted by SCSI midlayer are * not virtually contiguous. */ static int csio_scsi_alloc_ddp_bufs(struct csio_scsim *scm, struct csio_hw *hw, int buf_size, int num_buf) { int n = 0; struct list_head *tmp; struct csio_dma_buf *ddp_desc = NULL; uint32_t unit_size = 0; if (!num_buf) return 0; if (!buf_size) return -EINVAL; INIT_LIST_HEAD(&scm->ddp_freelist); /* Align buf size to page size */ buf_size = (buf_size + PAGE_SIZE - 1) & PAGE_MASK; /* Initialize dma descriptors */ for (n = 0; n < num_buf; n++) { /* Set unit size to request size */ unit_size = buf_size; ddp_desc = kzalloc(sizeof(struct csio_dma_buf), GFP_KERNEL); if (!ddp_desc) { csio_err(hw, "Failed to allocate ddp descriptors," " Num allocated = %d.\n", scm->stats.n_free_ddp); goto no_mem; } /* Allocate Dma buffers for DDP */ ddp_desc->vaddr = pci_alloc_consistent(hw->pdev, unit_size, &ddp_desc->paddr); if (!ddp_desc->vaddr) { csio_err(hw, "SCSI response DMA buffer (ddp) allocation" " failed!\n"); kfree(ddp_desc); goto no_mem; } ddp_desc->len = unit_size; /* Added it to scsi ddp freelist */ list_add_tail(&ddp_desc->list, &scm->ddp_freelist); CSIO_INC_STATS(scm, n_free_ddp); } return 0; no_mem: /* release dma descs back to freelist and free dma memory */ list_for_each(tmp, &scm->ddp_freelist) { ddp_desc = (struct csio_dma_buf *) tmp; tmp = csio_list_prev(tmp); pci_free_consistent(hw->pdev, ddp_desc->len, ddp_desc->vaddr, ddp_desc->paddr); list_del_init(&ddp_desc->list); kfree(ddp_desc); } scm->stats.n_free_ddp = 0; return -ENOMEM; } /* * csio_scsi_free_ddp_bufs - free DDP buffers of unaligned SGLs. * @scm: SCSI Module * @hw: HW device. * * This routine frees ddp buffers. */ static void csio_scsi_free_ddp_bufs(struct csio_scsim *scm, struct csio_hw *hw) { struct list_head *tmp; struct csio_dma_buf *ddp_desc; /* release dma descs back to freelist and free dma memory */ list_for_each(tmp, &scm->ddp_freelist) { ddp_desc = (struct csio_dma_buf *) tmp; tmp = csio_list_prev(tmp); pci_free_consistent(hw->pdev, ddp_desc->len, ddp_desc->vaddr, ddp_desc->paddr); list_del_init(&ddp_desc->list); kfree(ddp_desc); } scm->stats.n_free_ddp = 0; } /** * csio_scsim_init - Initialize SCSI Module * @scm: SCSI Module * @hw: HW module * */ int csio_scsim_init(struct csio_scsim *scm, struct csio_hw *hw) { int i; struct csio_ioreq *ioreq; struct csio_dma_buf *dma_buf; INIT_LIST_HEAD(&scm->active_q); scm->hw = hw; scm->proto_cmd_len = sizeof(struct fcp_cmnd); scm->proto_rsp_len = CSIO_SCSI_RSP_LEN; scm->max_sge = CSIO_SCSI_MAX_SGE; spin_lock_init(&scm->freelist_lock); /* Pre-allocate ioreqs and initialize them */ INIT_LIST_HEAD(&scm->ioreq_freelist); for (i = 0; i < csio_scsi_ioreqs; i++) { ioreq = kzalloc(sizeof(struct csio_ioreq), GFP_KERNEL); if (!ioreq) { csio_err(hw, "I/O request element allocation failed, " " Num allocated = %d.\n", scm->stats.n_free_ioreq); goto free_ioreq; } /* Allocate Dma buffers for Response Payload */ dma_buf = &ioreq->dma_buf; dma_buf->vaddr = pci_pool_alloc(hw->scsi_pci_pool, GFP_KERNEL, &dma_buf->paddr); if (!dma_buf->vaddr) { csio_err(hw, "SCSI response DMA buffer allocation" " failed!\n"); kfree(ioreq); goto free_ioreq; } dma_buf->len = scm->proto_rsp_len; /* Set state to uninit */ csio_init_state(&ioreq->sm, csio_scsis_uninit); INIT_LIST_HEAD(&ioreq->gen_list); init_completion(&ioreq->cmplobj); list_add_tail(&ioreq->sm.sm_list, &scm->ioreq_freelist); CSIO_INC_STATS(scm, n_free_ioreq); } if (csio_scsi_alloc_ddp_bufs(scm, hw, PAGE_SIZE, csio_ddp_descs)) goto free_ioreq; return 0; free_ioreq: /* * Free up existing allocations, since an error * from here means we are returning for good */ while (!list_empty(&scm->ioreq_freelist)) { struct csio_sm *tmp; tmp = list_first_entry(&scm->ioreq_freelist, struct csio_sm, sm_list); list_del_init(&tmp->sm_list); ioreq = (struct csio_ioreq *)tmp; dma_buf = &ioreq->dma_buf; pci_pool_free(hw->scsi_pci_pool, dma_buf->vaddr, dma_buf->paddr); kfree(ioreq); } scm->stats.n_free_ioreq = 0; return -ENOMEM; } /** * csio_scsim_exit: Uninitialize SCSI Module * @scm: SCSI Module * */ void csio_scsim_exit(struct csio_scsim *scm) { struct csio_ioreq *ioreq; struct csio_dma_buf *dma_buf; while (!list_empty(&scm->ioreq_freelist)) { struct csio_sm *tmp; tmp = list_first_entry(&scm->ioreq_freelist, struct csio_sm, sm_list); list_del_init(&tmp->sm_list); ioreq = (struct csio_ioreq *)tmp; dma_buf = &ioreq->dma_buf; pci_pool_free(scm->hw->scsi_pci_pool, dma_buf->vaddr, dma_buf->paddr); kfree(ioreq); } scm->stats.n_free_ioreq = 0; csio_scsi_free_ddp_bufs(scm, scm->hw); }