/* * Serial Attached SCSI (SAS) Expander discovery and configuration * * Copyright (C) 2007 James E.J. Bottomley * <James.Bottomley@HansenPartnership.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; version 2 only. */ #include <linux/scatterlist.h> #include <linux/blkdev.h> #include <linux/slab.h> #include <linux/export.h> #include "sas_internal.h" #include <scsi/scsi_transport.h> #include <scsi/scsi_transport_sas.h> #include "../scsi_sas_internal.h" static void sas_host_smp_discover(struct sas_ha_struct *sas_ha, u8 *resp_data, u8 phy_id) { struct sas_phy *phy; struct sas_rphy *rphy; if (phy_id >= sas_ha->num_phys) { resp_data[2] = SMP_RESP_NO_PHY; return; } resp_data[2] = SMP_RESP_FUNC_ACC; phy = sas_ha->sas_phy[phy_id]->phy; resp_data[9] = phy_id; resp_data[13] = phy->negotiated_linkrate; memcpy(resp_data + 16, sas_ha->sas_addr, SAS_ADDR_SIZE); memcpy(resp_data + 24, sas_ha->sas_phy[phy_id]->attached_sas_addr, SAS_ADDR_SIZE); resp_data[40] = (phy->minimum_linkrate << 4) | phy->minimum_linkrate_hw; resp_data[41] = (phy->maximum_linkrate << 4) | phy->maximum_linkrate_hw; if (!sas_ha->sas_phy[phy_id]->port || !sas_ha->sas_phy[phy_id]->port->port_dev) return; rphy = sas_ha->sas_phy[phy_id]->port->port_dev->rphy; resp_data[12] = rphy->identify.device_type << 4; resp_data[14] = rphy->identify.initiator_port_protocols; resp_data[15] = rphy->identify.target_port_protocols; } /** * to_sas_gpio_gp_bit - given the gpio frame data find the byte/bit position of 'od' * @od: od bit to find * @data: incoming bitstream (from frame) * @index: requested data register index (from frame) * @count: total number of registers in the bitstream (from frame) * @bit: bit position of 'od' in the returned byte * * returns NULL if 'od' is not in 'data' * * From SFF-8485 v0.7: * "In GPIO_TX[1], bit 0 of byte 3 contains the first bit (i.e., OD0.0) * and bit 7 of byte 0 contains the 32nd bit (i.e., OD10.1). * * In GPIO_TX[2], bit 0 of byte 3 contains the 33rd bit (i.e., OD10.2) * and bit 7 of byte 0 contains the 64th bit (i.e., OD21.0)." * * The general-purpose (raw-bitstream) RX registers have the same layout * although 'od' is renamed 'id' for 'input data'. * * SFF-8489 defines the behavior of the LEDs in response to the 'od' values. */ static u8 *to_sas_gpio_gp_bit(unsigned int od, u8 *data, u8 index, u8 count, u8 *bit) { unsigned int reg; u8 byte; /* gp registers start at index 1 */ if (index == 0) return NULL; index--; /* make index 0-based */ if (od < index * 32) return NULL; od -= index * 32; reg = od >> 5; if (reg >= count) return NULL; od &= (1 << 5) - 1; byte = 3 - (od >> 3); *bit = od & ((1 << 3) - 1); return &data[reg * 4 + byte]; } int try_test_sas_gpio_gp_bit(unsigned int od, u8 *data, u8 index, u8 count) { u8 *byte; u8 bit; byte = to_sas_gpio_gp_bit(od, data, index, count, &bit); if (!byte) return -1; return (*byte >> bit) & 1; } EXPORT_SYMBOL(try_test_sas_gpio_gp_bit); static int sas_host_smp_write_gpio(struct sas_ha_struct *sas_ha, u8 *resp_data, u8 reg_type, u8 reg_index, u8 reg_count, u8 *req_data) { struct sas_internal *i = to_sas_internal(sas_ha->core.shost->transportt); int written; if (i->dft->lldd_write_gpio == NULL) { resp_data[2] = SMP_RESP_FUNC_UNK; return 0; } written = i->dft->lldd_write_gpio(sas_ha, reg_type, reg_index, reg_count, req_data); if (written < 0) { resp_data[2] = SMP_RESP_FUNC_FAILED; written = 0; } else resp_data[2] = SMP_RESP_FUNC_ACC; return written; } static void sas_report_phy_sata(struct sas_ha_struct *sas_ha, u8 *resp_data, u8 phy_id) { struct sas_rphy *rphy; struct dev_to_host_fis *fis; int i; if (phy_id >= sas_ha->num_phys) { resp_data[2] = SMP_RESP_NO_PHY; return; } resp_data[2] = SMP_RESP_PHY_NO_SATA; if (!sas_ha->sas_phy[phy_id]->port) return; rphy = sas_ha->sas_phy[phy_id]->port->port_dev->rphy; fis = (struct dev_to_host_fis *) sas_ha->sas_phy[phy_id]->port->port_dev->frame_rcvd; if (rphy->identify.target_port_protocols != SAS_PROTOCOL_SATA) return; resp_data[2] = SMP_RESP_FUNC_ACC; resp_data[9] = phy_id; memcpy(resp_data + 16, sas_ha->sas_phy[phy_id]->attached_sas_addr, SAS_ADDR_SIZE); /* check to see if we have a valid d2h fis */ if (fis->fis_type != 0x34) return; /* the d2h fis is required by the standard to be in LE format */ for (i = 0; i < 20; i += 4) { u8 *dst = resp_data + 24 + i, *src = &sas_ha->sas_phy[phy_id]->port->port_dev->frame_rcvd[i]; dst[0] = src[3]; dst[1] = src[2]; dst[2] = src[1]; dst[3] = src[0]; } } static void sas_phy_control(struct sas_ha_struct *sas_ha, u8 phy_id, u8 phy_op, enum sas_linkrate min, enum sas_linkrate max, u8 *resp_data) { struct sas_internal *i = to_sas_internal(sas_ha->core.shost->transportt); struct sas_phy_linkrates rates; struct asd_sas_phy *asd_phy; if (phy_id >= sas_ha->num_phys) { resp_data[2] = SMP_RESP_NO_PHY; return; } asd_phy = sas_ha->sas_phy[phy_id]; switch (phy_op) { case PHY_FUNC_NOP: case PHY_FUNC_LINK_RESET: case PHY_FUNC_HARD_RESET: case PHY_FUNC_DISABLE: case PHY_FUNC_CLEAR_ERROR_LOG: case PHY_FUNC_CLEAR_AFFIL: case PHY_FUNC_TX_SATA_PS_SIGNAL: break; default: resp_data[2] = SMP_RESP_PHY_UNK_OP; return; } rates.minimum_linkrate = min; rates.maximum_linkrate = max; /* filter reset requests through libata eh */ if (phy_op == PHY_FUNC_LINK_RESET && sas_try_ata_reset(asd_phy) == 0) { resp_data[2] = SMP_RESP_FUNC_ACC; return; } if (i->dft->lldd_control_phy(asd_phy, phy_op, &rates)) resp_data[2] = SMP_RESP_FUNC_FAILED; else resp_data[2] = SMP_RESP_FUNC_ACC; } int sas_smp_host_handler(struct Scsi_Host *shost, struct request *req, struct request *rsp) { u8 *req_data = NULL, *resp_data = NULL, *buf; struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost); int error = -EINVAL; /* eight is the minimum size for request and response frames */ if (blk_rq_bytes(req) < 8 || blk_rq_bytes(rsp) < 8) goto out; if (bio_offset(req->bio) + blk_rq_bytes(req) > PAGE_SIZE || bio_offset(rsp->bio) + blk_rq_bytes(rsp) > PAGE_SIZE) { shost_printk(KERN_ERR, shost, "SMP request/response frame crosses page boundary"); goto out; } req_data = kzalloc(blk_rq_bytes(req), GFP_KERNEL); /* make sure frame can always be built ... we copy * back only the requested length */ resp_data = kzalloc(max(blk_rq_bytes(rsp), 128U), GFP_KERNEL); if (!req_data || !resp_data) { error = -ENOMEM; goto out; } local_irq_disable(); buf = kmap_atomic(bio_page(req->bio)); memcpy(req_data, buf, blk_rq_bytes(req)); kunmap_atomic(buf - bio_offset(req->bio)); local_irq_enable(); if (req_data[0] != SMP_REQUEST) goto out; /* always succeeds ... even if we can't process the request * the result is in the response frame */ error = 0; /* set up default don't know response */ resp_data[0] = SMP_RESPONSE; resp_data[1] = req_data[1]; resp_data[2] = SMP_RESP_FUNC_UNK; switch (req_data[1]) { case SMP_REPORT_GENERAL: req->resid_len -= 8; rsp->resid_len -= 32; resp_data[2] = SMP_RESP_FUNC_ACC; resp_data[9] = sas_ha->num_phys; break; case SMP_REPORT_MANUF_INFO: req->resid_len -= 8; rsp->resid_len -= 64; resp_data[2] = SMP_RESP_FUNC_ACC; memcpy(resp_data + 12, shost->hostt->name, SAS_EXPANDER_VENDOR_ID_LEN); memcpy(resp_data + 20, "libsas virt phy", SAS_EXPANDER_PRODUCT_ID_LEN); break; case SMP_READ_GPIO_REG: /* FIXME: need GPIO support in the transport class */ break; case SMP_DISCOVER: req->resid_len -= 16; if ((int)req->resid_len < 0) { req->resid_len = 0; error = -EINVAL; goto out; } rsp->resid_len -= 56; sas_host_smp_discover(sas_ha, resp_data, req_data[9]); break; case SMP_REPORT_PHY_ERR_LOG: /* FIXME: could implement this with additional * libsas callbacks providing the HW supports it */ break; case SMP_REPORT_PHY_SATA: req->resid_len -= 16; if ((int)req->resid_len < 0) { req->resid_len = 0; error = -EINVAL; goto out; } rsp->resid_len -= 60; sas_report_phy_sata(sas_ha, resp_data, req_data[9]); break; case SMP_REPORT_ROUTE_INFO: /* Can't implement; hosts have no routes */ break; case SMP_WRITE_GPIO_REG: { /* SFF-8485 v0.7 */ const int base_frame_size = 11; int to_write = req_data[4]; if (blk_rq_bytes(req) < base_frame_size + to_write * 4 || req->resid_len < base_frame_size + to_write * 4) { resp_data[2] = SMP_RESP_INV_FRM_LEN; break; } to_write = sas_host_smp_write_gpio(sas_ha, resp_data, req_data[2], req_data[3], to_write, &req_data[8]); req->resid_len -= base_frame_size + to_write * 4; rsp->resid_len -= 8; break; } case SMP_CONF_ROUTE_INFO: /* Can't implement; hosts have no routes */ break; case SMP_PHY_CONTROL: req->resid_len -= 44; if ((int)req->resid_len < 0) { req->resid_len = 0; error = -EINVAL; goto out; } rsp->resid_len -= 8; sas_phy_control(sas_ha, req_data[9], req_data[10], req_data[32] >> 4, req_data[33] >> 4, resp_data); break; case SMP_PHY_TEST_FUNCTION: /* FIXME: should this be implemented? */ break; default: /* probably a 2.0 function */ break; } local_irq_disable(); buf = kmap_atomic(bio_page(rsp->bio)); memcpy(buf, resp_data, blk_rq_bytes(rsp)); flush_kernel_dcache_page(bio_page(rsp->bio)); kunmap_atomic(buf - bio_offset(rsp->bio)); local_irq_enable(); out: kfree(req_data); kfree(resp_data); return error; }