/* * SuperH MSIOF SPI Master Interface * * Copyright (c) 2009 Magnus Damm * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include <linux/bitmap.h> #include <linux/clk.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/gpio.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/spi/sh_msiof.h> #include <linux/spi/spi.h> #include <linux/spi/spi_bitbang.h> #include <asm/unaligned.h> struct sh_msiof_spi_priv { struct spi_bitbang bitbang; /* must be first for spi_bitbang.c */ void __iomem *mapbase; struct clk *clk; struct platform_device *pdev; struct sh_msiof_spi_info *info; struct completion done; unsigned long flags; int tx_fifo_size; int rx_fifo_size; }; #define TMDR1 0x00 #define TMDR2 0x04 #define TMDR3 0x08 #define RMDR1 0x10 #define RMDR2 0x14 #define RMDR3 0x18 #define TSCR 0x20 #define RSCR 0x22 #define CTR 0x28 #define FCTR 0x30 #define STR 0x40 #define IER 0x44 #define TDR1 0x48 #define TDR2 0x4c #define TFDR 0x50 #define RDR1 0x58 #define RDR2 0x5c #define RFDR 0x60 #define CTR_TSCKE (1 << 15) #define CTR_TFSE (1 << 14) #define CTR_TXE (1 << 9) #define CTR_RXE (1 << 8) #define STR_TEOF (1 << 23) #define STR_REOF (1 << 7) static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs) { switch (reg_offs) { case TSCR: case RSCR: return ioread16(p->mapbase + reg_offs); default: return ioread32(p->mapbase + reg_offs); } } static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs, u32 value) { switch (reg_offs) { case TSCR: case RSCR: iowrite16(value, p->mapbase + reg_offs); break; default: iowrite32(value, p->mapbase + reg_offs); break; } } static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p, u32 clr, u32 set) { u32 mask = clr | set; u32 data; int k; data = sh_msiof_read(p, CTR); data &= ~clr; data |= set; sh_msiof_write(p, CTR, data); for (k = 100; k > 0; k--) { if ((sh_msiof_read(p, CTR) & mask) == set) break; udelay(10); } return k > 0 ? 0 : -ETIMEDOUT; } static irqreturn_t sh_msiof_spi_irq(int irq, void *data) { struct sh_msiof_spi_priv *p = data; /* just disable the interrupt and wake up */ sh_msiof_write(p, IER, 0); complete(&p->done); return IRQ_HANDLED; } static struct { unsigned short div; unsigned short scr; } const sh_msiof_spi_clk_table[] = { { 1, 0x0007 }, { 2, 0x0000 }, { 4, 0x0001 }, { 8, 0x0002 }, { 16, 0x0003 }, { 32, 0x0004 }, { 64, 0x1f00 }, { 128, 0x1f01 }, { 256, 0x1f02 }, { 512, 0x1f03 }, { 1024, 0x1f04 }, }; static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p, unsigned long parent_rate, unsigned long spi_hz) { unsigned long div = 1024; size_t k; if (!WARN_ON(!spi_hz || !parent_rate)) div = parent_rate / spi_hz; /* TODO: make more fine grained */ for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_clk_table); k++) { if (sh_msiof_spi_clk_table[k].div >= div) break; } k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_clk_table) - 1); sh_msiof_write(p, TSCR, sh_msiof_spi_clk_table[k].scr); sh_msiof_write(p, RSCR, sh_msiof_spi_clk_table[k].scr); } static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 cpol, u32 cpha, u32 tx_hi_z, u32 lsb_first) { u32 tmp; int edge; /* * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG * 0 0 10 10 1 1 * 0 1 10 10 0 0 * 1 0 11 11 0 0 * 1 1 11 11 1 1 */ sh_msiof_write(p, FCTR, 0); sh_msiof_write(p, TMDR1, 0xe2000005 | (lsb_first << 24)); sh_msiof_write(p, RMDR1, 0x22000005 | (lsb_first << 24)); tmp = 0xa0000000; tmp |= cpol << 30; /* TSCKIZ */ tmp |= cpol << 28; /* RSCKIZ */ edge = cpol ^ !cpha; tmp |= edge << 27; /* TEDG */ tmp |= edge << 26; /* REDG */ tmp |= (tx_hi_z ? 2 : 0) << 22; /* TXDIZ */ sh_msiof_write(p, CTR, tmp); } static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p, const void *tx_buf, void *rx_buf, u32 bits, u32 words) { u32 dr2 = ((bits - 1) << 24) | ((words - 1) << 16); if (tx_buf) sh_msiof_write(p, TMDR2, dr2); else sh_msiof_write(p, TMDR2, dr2 | 1); if (rx_buf) sh_msiof_write(p, RMDR2, dr2); sh_msiof_write(p, IER, STR_TEOF | STR_REOF); } static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p) { sh_msiof_write(p, STR, sh_msiof_read(p, STR)); } static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p, const void *tx_buf, int words, int fs) { const u8 *buf_8 = tx_buf; int k; for (k = 0; k < words; k++) sh_msiof_write(p, TFDR, buf_8[k] << fs); } static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p, const void *tx_buf, int words, int fs) { const u16 *buf_16 = tx_buf; int k; for (k = 0; k < words; k++) sh_msiof_write(p, TFDR, buf_16[k] << fs); } static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p, const void *tx_buf, int words, int fs) { const u16 *buf_16 = tx_buf; int k; for (k = 0; k < words; k++) sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs); } static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p, const void *tx_buf, int words, int fs) { const u32 *buf_32 = tx_buf; int k; for (k = 0; k < words; k++) sh_msiof_write(p, TFDR, buf_32[k] << fs); } static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p, const void *tx_buf, int words, int fs) { const u32 *buf_32 = tx_buf; int k; for (k = 0; k < words; k++) sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs); } static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p, const void *tx_buf, int words, int fs) { const u32 *buf_32 = tx_buf; int k; for (k = 0; k < words; k++) sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs)); } static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p, const void *tx_buf, int words, int fs) { const u32 *buf_32 = tx_buf; int k; for (k = 0; k < words; k++) sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs)); } static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p, void *rx_buf, int words, int fs) { u8 *buf_8 = rx_buf; int k; for (k = 0; k < words; k++) buf_8[k] = sh_msiof_read(p, RFDR) >> fs; } static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p, void *rx_buf, int words, int fs) { u16 *buf_16 = rx_buf; int k; for (k = 0; k < words; k++) buf_16[k] = sh_msiof_read(p, RFDR) >> fs; } static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p, void *rx_buf, int words, int fs) { u16 *buf_16 = rx_buf; int k; for (k = 0; k < words; k++) put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]); } static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p, void *rx_buf, int words, int fs) { u32 *buf_32 = rx_buf; int k; for (k = 0; k < words; k++) buf_32[k] = sh_msiof_read(p, RFDR) >> fs; } static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p, void *rx_buf, int words, int fs) { u32 *buf_32 = rx_buf; int k; for (k = 0; k < words; k++) put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]); } static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p, void *rx_buf, int words, int fs) { u32 *buf_32 = rx_buf; int k; for (k = 0; k < words; k++) buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs); } static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p, void *rx_buf, int words, int fs) { u32 *buf_32 = rx_buf; int k; for (k = 0; k < words; k++) put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]); } static int sh_msiof_spi_bits(struct spi_device *spi, struct spi_transfer *t) { int bits; bits = t ? t->bits_per_word : 0; if (!bits) bits = spi->bits_per_word; return bits; } static unsigned long sh_msiof_spi_hz(struct spi_device *spi, struct spi_transfer *t) { unsigned long hz; hz = t ? t->speed_hz : 0; if (!hz) hz = spi->max_speed_hz; return hz; } static int sh_msiof_spi_setup_transfer(struct spi_device *spi, struct spi_transfer *t) { int bits; /* noting to check hz values against since parent clock is disabled */ bits = sh_msiof_spi_bits(spi, t); if (bits < 8) return -EINVAL; if (bits > 32) return -EINVAL; return spi_bitbang_setup_transfer(spi, t); } static void sh_msiof_spi_chipselect(struct spi_device *spi, int is_on) { struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master); int value; /* chip select is active low unless SPI_CS_HIGH is set */ if (spi->mode & SPI_CS_HIGH) value = (is_on == BITBANG_CS_ACTIVE) ? 1 : 0; else value = (is_on == BITBANG_CS_ACTIVE) ? 0 : 1; if (is_on == BITBANG_CS_ACTIVE) { if (!test_and_set_bit(0, &p->flags)) { pm_runtime_get_sync(&p->pdev->dev); clk_enable(p->clk); } /* Configure pins before asserting CS */ sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL), !!(spi->mode & SPI_CPHA), !!(spi->mode & SPI_3WIRE), !!(spi->mode & SPI_LSB_FIRST)); } /* use spi->controller data for CS (same strategy as spi_gpio) */ gpio_set_value((unsigned)spi->controller_data, value); if (is_on == BITBANG_CS_INACTIVE) { if (test_and_clear_bit(0, &p->flags)) { clk_disable(p->clk); pm_runtime_put(&p->pdev->dev); } } } static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p, void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int), void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int), const void *tx_buf, void *rx_buf, int words, int bits) { int fifo_shift; int ret; /* limit maximum word transfer to rx/tx fifo size */ if (tx_buf) words = min_t(int, words, p->tx_fifo_size); if (rx_buf) words = min_t(int, words, p->rx_fifo_size); /* the fifo contents need shifting */ fifo_shift = 32 - bits; /* setup msiof transfer mode registers */ sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words); /* write tx fifo */ if (tx_buf) tx_fifo(p, tx_buf, words, fifo_shift); /* setup clock and rx/tx signals */ ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE); if (rx_buf) ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_RXE); ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_TXE); /* start by setting frame bit */ INIT_COMPLETION(p->done); ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE); if (ret) { dev_err(&p->pdev->dev, "failed to start hardware\n"); goto err; } /* wait for tx fifo to be emptied / rx fifo to be filled */ wait_for_completion(&p->done); /* read rx fifo */ if (rx_buf) rx_fifo(p, rx_buf, words, fifo_shift); /* clear status bits */ sh_msiof_reset_str(p); /* shut down frame, tx/tx and clock signals */ ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0); ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_TXE, 0); if (rx_buf) ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_RXE, 0); ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0); if (ret) { dev_err(&p->pdev->dev, "failed to shut down hardware\n"); goto err; } return words; err: sh_msiof_write(p, IER, 0); return ret; } static int sh_msiof_spi_txrx(struct spi_device *spi, struct spi_transfer *t) { struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master); void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int); void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int); int bits; int bytes_per_word; int bytes_done; int words; int n; bool swab; bits = sh_msiof_spi_bits(spi, t); if (bits <= 8 && t->len > 15 && !(t->len & 3)) { bits = 32; swab = true; } else { swab = false; } /* setup bytes per word and fifo read/write functions */ if (bits <= 8) { bytes_per_word = 1; tx_fifo = sh_msiof_spi_write_fifo_8; rx_fifo = sh_msiof_spi_read_fifo_8; } else if (bits <= 16) { bytes_per_word = 2; if ((unsigned long)t->tx_buf & 0x01) tx_fifo = sh_msiof_spi_write_fifo_16u; else tx_fifo = sh_msiof_spi_write_fifo_16; if ((unsigned long)t->rx_buf & 0x01) rx_fifo = sh_msiof_spi_read_fifo_16u; else rx_fifo = sh_msiof_spi_read_fifo_16; } else if (swab) { bytes_per_word = 4; if ((unsigned long)t->tx_buf & 0x03) tx_fifo = sh_msiof_spi_write_fifo_s32u; else tx_fifo = sh_msiof_spi_write_fifo_s32; if ((unsigned long)t->rx_buf & 0x03) rx_fifo = sh_msiof_spi_read_fifo_s32u; else rx_fifo = sh_msiof_spi_read_fifo_s32; } else { bytes_per_word = 4; if ((unsigned long)t->tx_buf & 0x03) tx_fifo = sh_msiof_spi_write_fifo_32u; else tx_fifo = sh_msiof_spi_write_fifo_32; if ((unsigned long)t->rx_buf & 0x03) rx_fifo = sh_msiof_spi_read_fifo_32u; else rx_fifo = sh_msiof_spi_read_fifo_32; } /* setup clocks (clock already enabled in chipselect()) */ sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), sh_msiof_spi_hz(spi, t)); /* transfer in fifo sized chunks */ words = t->len / bytes_per_word; bytes_done = 0; while (bytes_done < t->len) { void *rx_buf = t->rx_buf ? t->rx_buf + bytes_done : NULL; const void *tx_buf = t->tx_buf ? t->tx_buf + bytes_done : NULL; n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf, words, bits); if (n < 0) break; bytes_done += n * bytes_per_word; words -= n; } return bytes_done; } static u32 sh_msiof_spi_txrx_word(struct spi_device *spi, unsigned nsecs, u32 word, u8 bits) { BUG(); /* unused but needed by bitbang code */ return 0; } #ifdef CONFIG_OF static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) { struct sh_msiof_spi_info *info; struct device_node *np = dev->of_node; u32 num_cs = 0; info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL); if (!info) { dev_err(dev, "failed to allocate setup data\n"); return NULL; } /* Parse the MSIOF properties */ of_property_read_u32(np, "num-cs", &num_cs); of_property_read_u32(np, "renesas,tx-fifo-size", &info->tx_fifo_override); of_property_read_u32(np, "renesas,rx-fifo-size", &info->rx_fifo_override); info->num_chipselect = num_cs; return info; } #else static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) { return NULL; } #endif static int sh_msiof_spi_probe(struct platform_device *pdev) { struct resource *r; struct spi_master *master; struct sh_msiof_spi_priv *p; int i; int ret; master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv)); if (master == NULL) { dev_err(&pdev->dev, "failed to allocate spi master\n"); ret = -ENOMEM; goto err0; } p = spi_master_get_devdata(master); platform_set_drvdata(pdev, p); if (pdev->dev.of_node) p->info = sh_msiof_spi_parse_dt(&pdev->dev); else p->info = pdev->dev.platform_data; if (!p->info) { dev_err(&pdev->dev, "failed to obtain device info\n"); ret = -ENXIO; goto err1; } init_completion(&p->done); p->clk = clk_get(&pdev->dev, NULL); if (IS_ERR(p->clk)) { dev_err(&pdev->dev, "cannot get clock\n"); ret = PTR_ERR(p->clk); goto err1; } r = platform_get_resource(pdev, IORESOURCE_MEM, 0); i = platform_get_irq(pdev, 0); if (!r || i < 0) { dev_err(&pdev->dev, "cannot get platform resources\n"); ret = -ENOENT; goto err2; } p->mapbase = ioremap_nocache(r->start, resource_size(r)); if (!p->mapbase) { dev_err(&pdev->dev, "unable to ioremap\n"); ret = -ENXIO; goto err2; } ret = request_irq(i, sh_msiof_spi_irq, 0, dev_name(&pdev->dev), p); if (ret) { dev_err(&pdev->dev, "unable to request irq\n"); goto err3; } p->pdev = pdev; pm_runtime_enable(&pdev->dev); /* The standard version of MSIOF use 64 word FIFOs */ p->tx_fifo_size = 64; p->rx_fifo_size = 64; /* Platform data may override FIFO sizes */ if (p->info->tx_fifo_override) p->tx_fifo_size = p->info->tx_fifo_override; if (p->info->rx_fifo_override) p->rx_fifo_size = p->info->rx_fifo_override; /* init master and bitbang code */ master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE; master->flags = 0; master->bus_num = pdev->id; master->num_chipselect = p->info->num_chipselect; master->setup = spi_bitbang_setup; master->cleanup = spi_bitbang_cleanup; p->bitbang.master = master; p->bitbang.chipselect = sh_msiof_spi_chipselect; p->bitbang.setup_transfer = sh_msiof_spi_setup_transfer; p->bitbang.txrx_bufs = sh_msiof_spi_txrx; p->bitbang.txrx_word[SPI_MODE_0] = sh_msiof_spi_txrx_word; p->bitbang.txrx_word[SPI_MODE_1] = sh_msiof_spi_txrx_word; p->bitbang.txrx_word[SPI_MODE_2] = sh_msiof_spi_txrx_word; p->bitbang.txrx_word[SPI_MODE_3] = sh_msiof_spi_txrx_word; ret = spi_bitbang_start(&p->bitbang); if (ret == 0) return 0; pm_runtime_disable(&pdev->dev); err3: iounmap(p->mapbase); err2: clk_put(p->clk); err1: spi_master_put(master); err0: return ret; } static int sh_msiof_spi_remove(struct platform_device *pdev) { struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev); int ret; ret = spi_bitbang_stop(&p->bitbang); if (!ret) { pm_runtime_disable(&pdev->dev); free_irq(platform_get_irq(pdev, 0), p); iounmap(p->mapbase); clk_put(p->clk); spi_master_put(p->bitbang.master); } return ret; } static int sh_msiof_spi_runtime_nop(struct device *dev) { /* Runtime PM callback shared between ->runtime_suspend() * and ->runtime_resume(). Simply returns success. * * This driver re-initializes all registers after * pm_runtime_get_sync() anyway so there is no need * to save and restore registers here. */ return 0; } #ifdef CONFIG_OF static const struct of_device_id sh_msiof_match[] = { { .compatible = "renesas,sh-msiof", }, { .compatible = "renesas,sh-mobile-msiof", }, {}, }; MODULE_DEVICE_TABLE(of, sh_msiof_match); #endif static struct dev_pm_ops sh_msiof_spi_dev_pm_ops = { .runtime_suspend = sh_msiof_spi_runtime_nop, .runtime_resume = sh_msiof_spi_runtime_nop, }; static struct platform_driver sh_msiof_spi_drv = { .probe = sh_msiof_spi_probe, .remove = sh_msiof_spi_remove, .driver = { .name = "spi_sh_msiof", .owner = THIS_MODULE, .pm = &sh_msiof_spi_dev_pm_ops, .of_match_table = of_match_ptr(sh_msiof_match), }, }; module_platform_driver(sh_msiof_spi_drv); MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver"); MODULE_AUTHOR("Magnus Damm"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:spi_sh_msiof");