/* * --------------------------------------------------------------------------- * FILE: drv.c * * PURPOSE: * Conventional device interface for debugging/monitoring of the * driver and h/w using unicli. This interface is also being used * by the SME linux implementation and the helper apps. * * Copyright (C) 2005-2009 by Cambridge Silicon Radio Ltd. * * Refer to LICENSE.txt included with this source code for details on * the license terms. * * --------------------------------------------------------------------------- */ /* * Porting Notes: * Part of this file contains an example for how to glue the OS layer * with the HIP core lib, the SDIO glue layer, and the SME. * * When the unifi_sdio.ko modules loads, the linux kernel calls unifi_load(). * unifi_load() calls uf_sdio_load() which is exported by the SDIO glue * layer. uf_sdio_load() registers this driver with the underlying SDIO driver. * When a card is detected, the SDIO glue layer calls register_unifi_sdio() * to pass the SDIO function context and ask the OS layer to initialise * the card. register_unifi_sdio() allocates all the private data of the OS * layer and calls uf_run_unifihelper() to start the SME. The SME calls * unifi_sys_wifi_on_req() which uses the HIP core lib to initialise the card. */ #include <linux/init.h> #include <linux/slab.h> #include <linux/poll.h> #include <asm/uaccess.h> #include <linux/jiffies.h> #include <linux/version.h> #include "csr_wifi_hip_unifiversion.h" #include "unifi_priv.h" #include "csr_wifi_hip_conversions.h" #include "unifi_native.h" /* Module parameter variables */ int buswidth = 0; /* 0 means use default, values 1,4 */ int sdio_clock = 50000; /* kHz */ int unifi_debug = 0; /* fw_init prevents f/w initialisation on error. */ int fw_init[MAX_UNIFI_DEVS] = {-1, -1}; int use_5g = 0; int led_mask = 0; /* 0x0c00 for dev-pc-1503c, dev-pc-1528a */ int disable_hw_reset = 0; int disable_power_control = 0; int enable_wol = UNIFI_WOL_OFF; /* 0 for none, 1 for SDIO IRQ, 2 for PIO */ #if (defined CSR_SUPPORT_SME) && (defined CSR_SUPPORT_WEXT) int tl_80211d = (int)CSR_WIFI_SME_80211D_TRUST_LEVEL_MIB; #endif int sdio_block_size = -1; /* Override SDIO block size */ int sdio_byte_mode = 0; /* 0 for block mode + padding, 1 for byte mode */ int coredump_max = CSR_WIFI_HIP_NUM_COREDUMP_BUFFERS; int run_bh_once = -1; /* Set for scheduled interrupt mode, -1 = default */ int bh_priority = -1; #ifdef CSR_WIFI_HIP_DEBUG_OFFLINE #define UNIFI_LOG_HIP_SIGNALS_FILTER_BULKDATA (1 << 1) #define UNIFI_LOG_HIP_SIGNALS_FILTER_TIMESTAMP (1 << 2) int log_hip_signals = 0; #endif MODULE_DESCRIPTION("CSR UniFi (SDIO)"); module_param(buswidth, int, S_IRUGO|S_IWUSR); module_param(sdio_clock, int, S_IRUGO|S_IWUSR); module_param(unifi_debug, int, S_IRUGO|S_IWUSR); module_param_array(fw_init, int, NULL, S_IRUGO|S_IWUSR); module_param(use_5g, int, S_IRUGO|S_IWUSR); module_param(led_mask, int, S_IRUGO|S_IWUSR); module_param(disable_hw_reset, int, S_IRUGO|S_IWUSR); module_param(disable_power_control, int, S_IRUGO|S_IWUSR); module_param(enable_wol, int, S_IRUGO|S_IWUSR); #if (defined CSR_SUPPORT_SME) && (defined CSR_SUPPORT_WEXT) module_param(tl_80211d, int, S_IRUGO|S_IWUSR); #endif module_param(sdio_block_size, int, S_IRUGO|S_IWUSR); module_param(sdio_byte_mode, int, S_IRUGO|S_IWUSR); module_param(coredump_max, int, S_IRUGO|S_IWUSR); module_param(run_bh_once, int, S_IRUGO|S_IWUSR); module_param(bh_priority, int, S_IRUGO|S_IWUSR); #ifdef CSR_WIFI_HIP_DEBUG_OFFLINE module_param(log_hip_signals, int, S_IRUGO|S_IWUSR); #endif MODULE_PARM_DESC(buswidth, "SDIO bus width (0=default), set 1 for 1-bit or 4 for 4-bit mode"); MODULE_PARM_DESC(sdio_clock, "SDIO bus frequency in kHz, (default = 50 MHz)"); MODULE_PARM_DESC(unifi_debug, "Diagnostic reporting level"); MODULE_PARM_DESC(fw_init, "Set to 0 to prevent f/w initialization on error"); MODULE_PARM_DESC(use_5g, "Use the 5G (802.11a) radio band"); MODULE_PARM_DESC(led_mask, "LED mask flags"); MODULE_PARM_DESC(disable_hw_reset, "Set to 1 to disable hardware reset"); MODULE_PARM_DESC(disable_power_control, "Set to 1 to disable SDIO power control"); MODULE_PARM_DESC(enable_wol, "Enable wake-on-wlan function 0=off, 1=SDIO, 2=PIO"); #if (defined CSR_SUPPORT_SME) && (defined CSR_SUPPORT_WEXT) MODULE_PARM_DESC(tl_80211d, "802.11d Trust Level (1-6, default = 5)"); #endif MODULE_PARM_DESC(sdio_block_size, "Set to override SDIO block size"); MODULE_PARM_DESC(sdio_byte_mode, "Set to 1 for byte mode SDIO"); MODULE_PARM_DESC(coredump_max, "Number of chip mini-coredump buffers to allocate"); MODULE_PARM_DESC(run_bh_once, "Run BH only when firmware interrupts"); MODULE_PARM_DESC(bh_priority, "Modify the BH thread priority"); #ifdef CSR_WIFI_HIP_DEBUG_OFFLINE MODULE_PARM_DESC(log_hip_signals, "Set to 1 to enable HIP signal offline logging"); #endif /* Callback for event logging to UDI clients */ static void udi_log_event(ul_client_t *client, const u8 *signal, int signal_len, const bulk_data_param_t *bulkdata, int dir); static void udi_set_log_filter(ul_client_t *pcli, unifiio_filter_t *udi_filter); /* Mutex to protect access to priv->sme_cli */ DEFINE_SEMAPHORE(udi_mutex); s32 CsrHipResultToStatus(CsrResult csrResult) { s32 r = -EIO; switch (csrResult) { case CSR_RESULT_SUCCESS: r = 0; break; case CSR_WIFI_HIP_RESULT_RANGE: r = -ERANGE; break; case CSR_WIFI_HIP_RESULT_NO_DEVICE: r = -ENODEV; break; case CSR_WIFI_HIP_RESULT_INVALID_VALUE: r = -EINVAL; break; case CSR_WIFI_HIP_RESULT_NOT_FOUND: r = -ENOENT; break; case CSR_WIFI_HIP_RESULT_NO_SPACE: r = -ENOSPC; break; case CSR_WIFI_HIP_RESULT_NO_MEMORY: r = -ENOMEM; break; case CSR_RESULT_FAILURE: r = -EIO; break; default: /*unifi_warning(card->ospriv, "CsrHipResultToStatus: Unrecognised csrResult error code: %d\n", csrResult);*/ r = -EIO; } return r; } static const char* trace_putest_cmdid(unifi_putest_command_t putest_cmd) { switch (putest_cmd) { case UNIFI_PUTEST_START: return "START"; case UNIFI_PUTEST_STOP: return "STOP"; case UNIFI_PUTEST_SET_SDIO_CLOCK: return "SET CLOCK"; case UNIFI_PUTEST_CMD52_READ: return "CMD52R"; case UNIFI_PUTEST_CMD52_BLOCK_READ: return "CMD52BR"; case UNIFI_PUTEST_CMD52_WRITE: return "CMD52W"; case UNIFI_PUTEST_DL_FW: return "D/L FW"; case UNIFI_PUTEST_DL_FW_BUFF: return "D/L FW BUFFER"; case UNIFI_PUTEST_COREDUMP_PREPARE: return "PREPARE COREDUMP"; case UNIFI_PUTEST_GP_READ16: return "GP16R"; case UNIFI_PUTEST_GP_WRITE16: return "GP16W"; default: return "ERROR: unrecognised command"; } } #ifdef CSR_WIFI_HIP_DEBUG_OFFLINE int uf_register_hip_offline_debug(unifi_priv_t *priv) { ul_client_t *udi_cli; int i; udi_cli = ul_register_client(priv, CLI_USING_WIRE_FORMAT, udi_log_event); if (udi_cli == NULL) { /* Too many clients already using this device */ unifi_error(priv, "Too many UDI clients already open\n"); return -ENOSPC; } unifi_trace(priv, UDBG1, "Offline HIP client is registered\n"); down(&priv->udi_logging_mutex); udi_cli->event_hook = udi_log_event; unifi_set_udi_hook(priv->card, logging_handler); /* Log all signals by default */ for (i = 0; i < SIG_FILTER_SIZE; i++) { udi_cli->signal_filter[i] = 0xFFFF; } priv->logging_client = udi_cli; up(&priv->udi_logging_mutex); return 0; } int uf_unregister_hip_offline_debug(unifi_priv_t *priv) { ul_client_t *udi_cli = priv->logging_client; if (udi_cli == NULL) { unifi_error(priv, "Unknown HIP client unregister request\n"); return -ERANGE; } unifi_trace(priv, UDBG1, "Offline HIP client is unregistered\n"); down(&priv->udi_logging_mutex); priv->logging_client = NULL; udi_cli->event_hook = NULL; up(&priv->udi_logging_mutex); ul_deregister_client(udi_cli); return 0; } #endif /* * --------------------------------------------------------------------------- * unifi_open * unifi_release * * Open and release entry points for the UniFi debug driver. * * Arguments: * Normal linux driver args. * * Returns: * Linux error code. * --------------------------------------------------------------------------- */ static int unifi_open(struct inode *inode, struct file *file) { int devno; unifi_priv_t *priv; ul_client_t *udi_cli; devno = MINOR(inode->i_rdev) >> 1; /* * Increase the ref_count for the char device clients. * Make sure you call uf_put_instance() to decreace it if * unifi_open returns an error. */ priv = uf_get_instance(devno); if (priv == NULL) { unifi_error(NULL, "unifi_open: No device present\n"); return -ENODEV; } /* Register this instance in the client's list. */ /* The minor number determines the nature of the client (Unicli or SME). */ if (MINOR(inode->i_rdev) & 0x1) { udi_cli = ul_register_client(priv, CLI_USING_WIRE_FORMAT, udi_log_event); if (udi_cli == NULL) { /* Too many clients already using this device */ unifi_error(priv, "Too many clients already open\n"); uf_put_instance(devno); return -ENOSPC; } unifi_trace(priv, UDBG1, "Client is registered to /dev/unifiudi%d\n", devno); } else { /* * Even-numbered device nodes are the control application. * This is the userspace helper containing SME or * unifi_manager. */ down(&udi_mutex); #ifdef CSR_SME_USERSPACE /* Check if a config client is already attached */ if (priv->sme_cli) { up(&udi_mutex); uf_put_instance(devno); unifi_info(priv, "There is already a configuration client using the character device\n"); return -EBUSY; } #endif /* CSR_SME_USERSPACE */ #ifdef CSR_SUPPORT_SME udi_cli = ul_register_client(priv, CLI_USING_WIRE_FORMAT | CLI_SME_USERSPACE, sme_log_event); #else /* Config client for native driver */ udi_cli = ul_register_client(priv, 0, sme_native_log_event); #endif if (udi_cli == NULL) { /* Too many clients already using this device */ up(&udi_mutex); uf_put_instance(devno); unifi_error(priv, "Too many clients already open\n"); return -ENOSPC; } /* * Fill-in the pointer to the configuration client. * This is the SME userspace helper or unifi_manager. * Not used in the SME embedded version. */ unifi_trace(priv, UDBG1, "SME client (id:%d s:0x%X) is registered\n", udi_cli->client_id, udi_cli->sender_id); /* Store the SME UniFi Linux Client */ if (priv->sme_cli == NULL) { priv->sme_cli = udi_cli; } up(&udi_mutex); } /* * Store the pointer to the client. * All char driver's entry points will pass this pointer. */ file->private_data = udi_cli; return 0; } /* unifi_open() */ static int unifi_release(struct inode *inode, struct file *filp) { ul_client_t *udi_cli = (void*)filp->private_data; int devno; unifi_priv_t *priv; priv = uf_find_instance(udi_cli->instance); if (!priv) { unifi_error(priv, "unifi_close: instance for device not found\n"); return -ENODEV; } devno = MINOR(inode->i_rdev) >> 1; /* Even device nodes are the config client (i.e. SME or unifi_manager) */ if ((MINOR(inode->i_rdev) & 0x1) == 0) { if (priv->sme_cli != udi_cli) { unifi_notice(priv, "Surprise closing config device: not the sme client\n"); } unifi_notice(priv, "SME client close (unifi%d)\n", devno); /* * Clear sme_cli before calling unifi_sys_... so it doesn't try to * queue a reply to the (now gone) SME. */ down(&udi_mutex); priv->sme_cli = NULL; up(&udi_mutex); #ifdef CSR_SME_USERSPACE /* Power-down when config client closes */ { CsrWifiRouterCtrlWifiOffReq req = {{CSR_WIFI_ROUTER_CTRL_HIP_REQ, 0, 0, 0, NULL}}; CsrWifiRouterCtrlWifiOffReqHandler(priv, &req.common); } uf_sme_deinit(priv); /* It is possible that a blocking SME request was made from another process * which did not get read by the SME before the WifiOffReq. * So check for a pending request which will go unanswered and cancel * the wait for event. As only one blocking request can be in progress at * a time, up to one event should be completed. */ uf_sme_cancel_request(priv, 0); #endif /* CSR_SME_USERSPACE */ } else { unifi_trace(priv, UDBG2, "UDI client close (unifiudi%d)\n", devno); /* If the pointer matches the logging client, stop logging. */ down(&priv->udi_logging_mutex); if (udi_cli == priv->logging_client) { priv->logging_client = NULL; } up(&priv->udi_logging_mutex); if (udi_cli == priv->amp_client) { priv->amp_client = NULL; } } /* Deregister this instance from the client's list. */ ul_deregister_client(udi_cli); uf_put_instance(devno); return 0; } /* unifi_release() */ /* * --------------------------------------------------------------------------- * unifi_read * * The read() driver entry point. * * Arguments: * filp The file descriptor returned by unifi_open() * p The user space buffer to copy the read data * len The size of the p buffer * poff * * Returns: * number of bytes read or an error code on failure * --------------------------------------------------------------------------- */ static ssize_t unifi_read(struct file *filp, char *p, size_t len, loff_t *poff) { ul_client_t *pcli = (void*)filp->private_data; unifi_priv_t *priv; udi_log_t *logptr = NULL; udi_msg_t *msgptr; struct list_head *l; int msglen; priv = uf_find_instance(pcli->instance); if (!priv) { unifi_error(priv, "invalid priv\n"); return -ENODEV; } if (!pcli->udi_enabled) { unifi_error(priv, "unifi_read: unknown client."); return -EINVAL; } if (list_empty(&pcli->udi_log)) { if (filp->f_flags & O_NONBLOCK) { /* Non-blocking - just return if the udi_log is empty */ return 0; } else { /* Blocking - wait on the UDI wait queue */ if (wait_event_interruptible(pcli->udi_wq, !list_empty(&pcli->udi_log))) { unifi_error(priv, "unifi_read: wait_event_interruptible failed."); return -ERESTARTSYS; } } } /* Read entry from list head and remove it from the list */ if (down_interruptible(&pcli->udi_sem)) { return -ERESTARTSYS; } l = pcli->udi_log.next; list_del(l); up(&pcli->udi_sem); /* Get a pointer to whole struct */ logptr = list_entry(l, udi_log_t, q); if (logptr == NULL) { unifi_error(priv, "unifi_read: failed to get event.\n"); return -EINVAL; } /* Get the real message */ msgptr = &logptr->msg; msglen = msgptr->length; if (msglen > len) { printk(KERN_WARNING "truncated read to %d actual msg len is %lu\n", msglen, (long unsigned int)len); msglen = len; } /* and pass it to the client (SME or Unicli). */ if (copy_to_user(p, msgptr, msglen)) { printk(KERN_ERR "Failed to copy UDI log to user\n"); kfree(logptr); return -EFAULT; } /* It is our resposibility to free the message buffer. */ kfree(logptr); return msglen; } /* unifi_read() */ /* * --------------------------------------------------------------------------- * udi_send_signal_unpacked * * Sends an unpacked signal to UniFi. * * Arguments: * priv Pointer to private context struct * data Pointer to request structure and data to send * data_len Length of data in data pointer. * * Returns: * Number of bytes written, error otherwise. * * Notes: * All clients that use this function to send a signal to the unifi * must use the host formatted structures. * --------------------------------------------------------------------------- */ static int udi_send_signal_unpacked(unifi_priv_t *priv, unsigned char* data, uint data_len) { CSR_SIGNAL *sigptr = (CSR_SIGNAL*)data; CSR_DATAREF *datarefptr; bulk_data_param_t bulk_data; uint signal_size, i; uint bulk_data_offset = 0; int bytecount, r; CsrResult csrResult; /* Number of bytes in the signal */ signal_size = SigGetSize(sigptr); if (!signal_size || (signal_size > data_len)) { unifi_error(priv, "unifi_sme_mlme_req - Invalid signal 0x%x size should be %d bytes\n", sigptr->SignalPrimitiveHeader.SignalId, signal_size); return -EINVAL; } bytecount = signal_size; /* Get a pointer to the information of the first data reference */ datarefptr = (CSR_DATAREF*)&sigptr->u; /* Initialize the offset in the data buffer, bulk data is right after the signal. */ bulk_data_offset = signal_size; /* store the references and the size of the bulk data to the bulkdata structure */ for (i = 0; i < UNIFI_MAX_DATA_REFERENCES; i++) { /* the length of the bulk data is in the signal */ if ((datarefptr+i)->DataLength) { void *dest; csrResult = unifi_net_data_malloc(priv, &bulk_data.d[i], (datarefptr+i)->DataLength); if (csrResult != CSR_RESULT_SUCCESS) { unifi_error(priv, "udi_send_signal_unpacked: failed to allocate request_data.\n"); return -EIO; } dest = (void*)bulk_data.d[i].os_data_ptr; memcpy(dest, data + bulk_data_offset, bulk_data.d[i].data_length); } else { bulk_data.d[i].data_length = 0; } bytecount += bulk_data.d[i].data_length; /* advance the offset, to point the next bulk data */ bulk_data_offset += bulk_data.d[i].data_length; } unifi_trace(priv, UDBG3, "SME Send: signal 0x%.4X\n", sigptr->SignalPrimitiveHeader.SignalId); /* Send the signal. */ r = ul_send_signal_unpacked(priv, sigptr, &bulk_data); if (r < 0) { unifi_error(priv, "udi_send_signal_unpacked: send failed (%d)\n", r); for(i=0;i<UNIFI_MAX_DATA_REFERENCES;i++) { if(bulk_data.d[i].data_length != 0) { unifi_net_data_free(priv, &bulk_data.d[i]); } } return -EIO; } return bytecount; } /* udi_send_signal_unpacked() */ /* * --------------------------------------------------------------------------- * udi_send_signal_raw * * Sends a packed signal to UniFi. * * Arguments: * priv Pointer to private context struct * buf Pointer to request structure and data to send * buflen Length of data in data pointer. * * Returns: * Number of bytes written, error otherwise. * * Notes: * All clients that use this function to send a signal to the unifi * must use the wire formatted structures. * --------------------------------------------------------------------------- */ static int udi_send_signal_raw(unifi_priv_t *priv, unsigned char *buf, int buflen) { int signal_size; int sig_id; bulk_data_param_t data_ptrs; int i, r; unsigned int num_data_refs; int bytecount; CsrResult csrResult; /* * The signal is the first thing in buf, the signal id is the * first 16 bits of the signal. */ /* Number of bytes in the signal */ sig_id = GET_SIGNAL_ID(buf); signal_size = buflen; signal_size -= GET_PACKED_DATAREF_LEN(buf, 0); signal_size -= GET_PACKED_DATAREF_LEN(buf, 1); if ((signal_size <= 0) || (signal_size > buflen)) { unifi_error(priv, "udi_send_signal_raw - Couldn't find length of signal 0x%x\n", sig_id); return -EINVAL; } unifi_trace(priv, UDBG2, "udi_send_signal_raw: signal 0x%.4X len:%d\n", sig_id, signal_size); /* Zero the data ref arrays */ memset(&data_ptrs, 0, sizeof(data_ptrs)); /* * Find the number of associated bulk data packets. Scan through * the data refs to check that we have enough data and pick out * pointers to appended bulk data. */ num_data_refs = 0; bytecount = signal_size; for (i = 0; i < UNIFI_MAX_DATA_REFERENCES; ++i) { unsigned int len = GET_PACKED_DATAREF_LEN(buf, i); unifi_trace(priv, UDBG3, "udi_send_signal_raw: data_ref length = %d\n", len); if (len != 0) { void *dest; csrResult = unifi_net_data_malloc(priv, &data_ptrs.d[i], len); if (csrResult != CSR_RESULT_SUCCESS) { unifi_error(priv, "udi_send_signal_raw: failed to allocate request_data.\n"); return -EIO; } dest = (void*)data_ptrs.d[i].os_data_ptr; memcpy(dest, buf + bytecount, len); bytecount += len; num_data_refs++; } data_ptrs.d[i].data_length = len; } unifi_trace(priv, UDBG3, "Queueing signal 0x%.4X from UDI with %u data refs\n", sig_id, num_data_refs); if (bytecount > buflen) { unifi_error(priv, "udi_send_signal_raw: Not enough data (%d instead of %d)\n", buflen, bytecount); return -EINVAL; } /* Send the signal calling the function that uses the wire-formatted signals. */ r = ul_send_signal_raw(priv, buf, signal_size, &data_ptrs); if (r < 0) { unifi_error(priv, "udi_send_signal_raw: send failed (%d)\n", r); return -EIO; } #ifdef CSR_NATIVE_LINUX if (sig_id == CSR_MLME_POWERMGT_REQUEST_ID) { int power_mode = CSR_GET_UINT16_FROM_LITTLE_ENDIAN((buf + SIZEOF_SIGNAL_HEADER + (UNIFI_MAX_DATA_REFERENCES*SIZEOF_DATAREF))); #ifdef CSR_SUPPORT_WEXT /* Overide the wext power mode to the new value */ priv->wext_conf.power_mode = power_mode; #endif /* Configure deep sleep signaling */ if (power_mode || (priv->interfacePriv[0]->connected == UnifiNotConnected)) { csrResult = unifi_configure_low_power_mode(priv->card, UNIFI_LOW_POWER_ENABLED, UNIFI_PERIODIC_WAKE_HOST_DISABLED); } else { csrResult = unifi_configure_low_power_mode(priv->card, UNIFI_LOW_POWER_DISABLED, UNIFI_PERIODIC_WAKE_HOST_DISABLED); } } #endif return bytecount; } /* udi_send_signal_raw */ /* * --------------------------------------------------------------------------- * unifi_write * * The write() driver entry point. * A UniFi Debug Interface client such as unicli can write a signal * plus bulk data to the driver for sending to the UniFi chip. * * Only one signal may be sent per write operation. * * Arguments: * filp The file descriptor returned by unifi_open() * p The user space buffer to get the data from * len The size of the p buffer * poff * * Returns: * number of bytes written or an error code on failure * --------------------------------------------------------------------------- */ static ssize_t unifi_write(struct file *filp, const char *p, size_t len, loff_t *poff) { ul_client_t *pcli = (ul_client_t*)filp->private_data; unifi_priv_t *priv; unsigned char *buf; unsigned char *bufptr; int remaining; int bytes_written; int r; bulk_data_param_t bulkdata; CsrResult csrResult; priv = uf_find_instance(pcli->instance); if (!priv) { unifi_error(priv, "invalid priv\n"); return -ENODEV; } unifi_trace(priv, UDBG5, "unifi_write: len = %d\n", len); if (!pcli->udi_enabled) { unifi_error(priv, "udi disabled\n"); return -EINVAL; } /* * AMP client sends only one signal at a time, so we can use * unifi_net_data_malloc to save the extra copy. */ if (pcli == priv->amp_client) { int signal_size; int sig_id; unsigned char *signal_buf; char *user_data_buf; csrResult = unifi_net_data_malloc(priv, &bulkdata.d[0], len); if (csrResult != CSR_RESULT_SUCCESS) { unifi_error(priv, "unifi_write: failed to allocate request_data.\n"); return -ENOMEM; } user_data_buf = (char*)bulkdata.d[0].os_data_ptr; /* Get the data from the AMP client. */ if (copy_from_user((void*)user_data_buf, p, len)) { unifi_error(priv, "unifi_write: copy from user failed\n"); unifi_net_data_free(priv, &bulkdata.d[0]); return -EFAULT; } bulkdata.d[1].os_data_ptr = NULL; bulkdata.d[1].data_length = 0; /* Number of bytes in the signal */ sig_id = GET_SIGNAL_ID(bulkdata.d[0].os_data_ptr); signal_size = len; signal_size -= GET_PACKED_DATAREF_LEN(bulkdata.d[0].os_data_ptr, 0); signal_size -= GET_PACKED_DATAREF_LEN(bulkdata.d[0].os_data_ptr, 1); if ((signal_size <= 0) || (signal_size > len)) { unifi_error(priv, "unifi_write - Couldn't find length of signal 0x%x\n", sig_id); unifi_net_data_free(priv, &bulkdata.d[0]); return -EINVAL; } unifi_trace(priv, UDBG2, "unifi_write: signal 0x%.4X len:%d\n", sig_id, signal_size); /* Allocate a buffer for the signal */ signal_buf = kmemdup(bulkdata.d[0].os_data_ptr, signal_size, GFP_KERNEL); if (!signal_buf) { unifi_net_data_free(priv, &bulkdata.d[0]); return -ENOMEM; } /* Get the signal from the os_data_ptr */ signal_buf[5] = (pcli->sender_id >> 8) & 0xff; if (signal_size < len) { /* Remove the signal from the os_data_ptr */ bulkdata.d[0].data_length -= signal_size; bulkdata.d[0].os_data_ptr += signal_size; } else { bulkdata.d[0].data_length = 0; bulkdata.d[0].os_data_ptr = NULL; } /* Send the signal calling the function that uses the wire-formatted signals. */ r = ul_send_signal_raw(priv, signal_buf, signal_size, &bulkdata); if (r < 0) { unifi_error(priv, "unifi_write: send failed (%d)\n", r); if (bulkdata.d[0].os_data_ptr != NULL) { unifi_net_data_free(priv, &bulkdata.d[0]); } } /* Free the signal buffer and return */ kfree(signal_buf); return len; } buf = kmalloc(len, GFP_KERNEL); if (!buf) { return -ENOMEM; } /* Get the data from the client (SME or Unicli). */ if (copy_from_user((void*)buf, p, len)) { unifi_error(priv, "copy from user failed\n"); kfree(buf); return -EFAULT; } /* * In SME userspace build read() contains a SYS or MGT message. * Note that even though the SME sends one signal at a time, we can not * use unifi_net_data_malloc because in the early stages, before having * initialised the core, it will fail since the I/O block size is unknown. */ #ifdef CSR_SME_USERSPACE if (pcli->configuration & CLI_SME_USERSPACE) { CsrWifiRouterTransportRecv(priv, buf, len); kfree(buf); return len; } #endif /* ul_send_signal_raw will do a sanity check of len against signal content */ /* * udi_send_signal_raw() and udi_send_signal_unpacked() return the number of bytes consumed. * A write call can pass multiple signal concatenated together. */ bytes_written = 0; remaining = len; bufptr = buf; while (remaining > 0) { int r; /* * Set the SenderProcessId. * The SignalPrimitiveHeader is the first 3 16-bit words of the signal, * the SenderProcessId is bytes 4,5. * The MSB of the sender ID needs to be set to the client ID. * The LSB is controlled by the SME. */ bufptr[5] = (pcli->sender_id >> 8) & 0xff; /* use the appropriate interface, depending on the clients' configuration */ if (pcli->configuration & CLI_USING_WIRE_FORMAT) { unifi_trace(priv, UDBG1, "unifi_write: call udi_send_signal().\n"); r = udi_send_signal_raw(priv, bufptr, remaining); } else { r = udi_send_signal_unpacked(priv, bufptr, remaining); } if (r < 0) { /* Set the return value to the error code */ unifi_error(priv, "unifi_write: (udi or sme)_send_signal() returns %d\n", r); bytes_written = r; break; } bufptr += r; remaining -= r; bytes_written += r; } kfree(buf); return bytes_written; } /* unifi_write() */ static const char* build_type_to_string(unsigned char build_type) { switch (build_type) { case UNIFI_BUILD_NME: return "NME"; case UNIFI_BUILD_WEXT: return "WEXT"; case UNIFI_BUILD_AP: return "AP"; } return "unknown"; } /* * ---------------------------------------------------------------- * unifi_ioctl * * Ioctl handler for unifi driver. * * Arguments: * inodep Pointer to inode structure. * filp Pointer to file structure. * cmd Ioctl cmd passed by user. * arg Ioctl arg passed by user. * * Returns: * 0 on success, -ve error code on error. * ---------------------------------------------------------------- */ static long unifi_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { ul_client_t *pcli = (ul_client_t*)filp->private_data; unifi_priv_t *priv; struct net_device *dev; int r = 0; int int_param, i; u8* buf; CsrResult csrResult; #if (defined CSR_SUPPORT_SME) unifi_cfg_command_t cfg_cmd; #if (defined CSR_SUPPORT_WEXT) CsrWifiSmeCoexConfig coex_config; unsigned char uchar_param; unsigned char varbind[MAX_VARBIND_LENGTH]; int vblen; #endif #endif unifi_putest_command_t putest_cmd; priv = uf_find_instance(pcli->instance); if (!priv) { unifi_error(priv, "ioctl error: unknown instance=%d\n", pcli->instance); r = -ENODEV; goto out; } unifi_trace(priv, UDBG5, "unifi_ioctl: cmd=0x%X, arg=0x%lX\n", cmd, arg); switch (cmd) { case UNIFI_GET_UDI_ENABLE: unifi_trace(priv, UDBG4, "UniFi Get UDI Enable\n"); down(&priv->udi_logging_mutex); int_param = (priv->logging_client == NULL) ? 0 : 1; up(&priv->udi_logging_mutex); if (put_user(int_param, (int*)arg)) { unifi_error(priv, "UNIFI_GET_UDI_ENABLE: Failed to copy to user\n"); r = -EFAULT; goto out; } break; case UNIFI_SET_UDI_ENABLE: unifi_trace(priv, UDBG4, "UniFi Set UDI Enable\n"); if (get_user(int_param, (int*)arg)) { unifi_error(priv, "UNIFI_SET_UDI_ENABLE: Failed to copy from user\n"); r = -EFAULT; goto out; } #ifdef CSR_WIFI_HIP_DEBUG_OFFLINE if (log_hip_signals) { unifi_error(priv, "omnicli cannot be used when log_hip_signals is used\n"); r = -EFAULT; goto out; } #endif down(&priv->udi_logging_mutex); if (int_param) { pcli->event_hook = udi_log_event; unifi_set_udi_hook(priv->card, logging_handler); /* Log all signals by default */ for (i = 0; i < SIG_FILTER_SIZE; i++) { pcli->signal_filter[i] = 0xFFFF; } priv->logging_client = pcli; } else { priv->logging_client = NULL; pcli->event_hook = NULL; } up(&priv->udi_logging_mutex); break; case UNIFI_SET_MIB: unifi_trace(priv, UDBG4, "UniFi Set MIB\n"); #if (defined CSR_SUPPORT_SME) && (defined CSR_SUPPORT_WEXT) /* Read first 2 bytes and check length */ if (copy_from_user((void*)varbind, (void*)arg, 2)) { unifi_error(priv, "UNIFI_SET_MIB: Failed to copy in varbind header\n"); r = -EFAULT; goto out; } vblen = varbind[1]; if ((vblen + 2) > MAX_VARBIND_LENGTH) { unifi_error(priv, "UNIFI_SET_MIB: Varbind too long (%d, limit %d)\n", (vblen+2), MAX_VARBIND_LENGTH); r = -EINVAL; goto out; } /* Read rest of varbind */ if (copy_from_user((void*)(varbind+2), (void*)(arg+2), vblen)) { unifi_error(priv, "UNIFI_SET_MIB: Failed to copy in varbind\n"); r = -EFAULT; goto out; } /* send to SME */ vblen += 2; r = sme_mgt_mib_set(priv, varbind, vblen); if (r) { goto out; } #else unifi_notice(priv, "UNIFI_SET_MIB: Unsupported.\n"); #endif /* CSR_SUPPORT_WEXT */ break; case UNIFI_GET_MIB: unifi_trace(priv, UDBG4, "UniFi Get MIB\n"); #if (defined CSR_SUPPORT_SME) && (defined CSR_SUPPORT_WEXT) /* Read first 2 bytes and check length */ if (copy_from_user((void*)varbind, (void*)arg, 2)) { unifi_error(priv, "UNIFI_GET_MIB: Failed to copy in varbind header\n"); r = -EFAULT; goto out; } vblen = varbind[1]; if ((vblen+2) > MAX_VARBIND_LENGTH) { unifi_error(priv, "UNIFI_GET_MIB: Varbind too long (%d, limit %d)\n", (vblen+2), MAX_VARBIND_LENGTH); r = -EINVAL; goto out; } /* Read rest of varbind */ if (copy_from_user((void*)(varbind+2), (void*)(arg+2), vblen)) { unifi_error(priv, "UNIFI_GET_MIB: Failed to copy in varbind\n"); r = -EFAULT; goto out; } vblen += 2; r = sme_mgt_mib_get(priv, varbind, &vblen); if (r) { goto out; } /* copy out varbind */ if (vblen > MAX_VARBIND_LENGTH) { unifi_error(priv, "UNIFI_GET_MIB: Varbind result too long (%d, limit %d)\n", vblen, MAX_VARBIND_LENGTH); r = -EINVAL; goto out; } if (copy_to_user((void*)arg, varbind, vblen)) { r = -EFAULT; goto out; } #else unifi_notice(priv, "UNIFI_GET_MIB: Unsupported.\n"); #endif /* CSR_SUPPORT_WEXT */ break; case UNIFI_CFG: #if (defined CSR_SUPPORT_SME) if (get_user(cfg_cmd, (unifi_cfg_command_t*)arg)) { unifi_error(priv, "UNIFI_CFG: Failed to get the command\n"); r = -EFAULT; goto out; } unifi_trace(priv, UDBG1, "UNIFI_CFG: Command is %d (t=%u) sz=%d\n", cfg_cmd, jiffies_to_msecs(jiffies), sizeof(unifi_cfg_command_t)); switch (cfg_cmd) { case UNIFI_CFG_POWER: r = unifi_cfg_power(priv, (unsigned char*)arg); break; case UNIFI_CFG_POWERSAVE: r = unifi_cfg_power_save(priv, (unsigned char*)arg); break; case UNIFI_CFG_POWERSUPPLY: r = unifi_cfg_power_supply(priv, (unsigned char*)arg); break; case UNIFI_CFG_FILTER: r = unifi_cfg_packet_filters(priv, (unsigned char*)arg); break; case UNIFI_CFG_GET: r = unifi_cfg_get_info(priv, (unsigned char*)arg); break; case UNIFI_CFG_WMM_QOSINFO: r = unifi_cfg_wmm_qos_info(priv, (unsigned char*)arg); break; case UNIFI_CFG_WMM_ADDTS: r = unifi_cfg_wmm_addts(priv, (unsigned char*)arg); break; case UNIFI_CFG_WMM_DELTS: r = unifi_cfg_wmm_delts(priv, (unsigned char*)arg); break; case UNIFI_CFG_STRICT_DRAFT_N: r = unifi_cfg_strict_draft_n(priv, (unsigned char*)arg); break; case UNIFI_CFG_ENABLE_OKC: r = unifi_cfg_enable_okc(priv, (unsigned char*)arg); break; #ifdef CSR_SUPPORT_SME case UNIFI_CFG_CORE_DUMP: CsrWifiRouterCtrlWifiOffIndSend(priv->CSR_WIFI_SME_IFACEQUEUE,0,CSR_WIFI_SME_CONTROL_INDICATION_ERROR); unifi_trace(priv, UDBG2, "UNIFI_CFG_CORE_DUMP: sent wifi off indication\n"); break; #endif #ifdef CSR_SUPPORT_WEXT_AP case UNIFI_CFG_SET_AP_CONFIG: r= unifi_cfg_set_ap_config(priv,(unsigned char*)arg); break; #endif default: unifi_error(priv, "UNIFI_CFG: Unknown Command (%d)\n", cfg_cmd); r = -EINVAL; goto out; } #endif break; case UNIFI_PUTEST: if (get_user(putest_cmd, (unifi_putest_command_t*)arg)) { unifi_error(priv, "UNIFI_PUTEST: Failed to get the command\n"); r = -EFAULT; goto out; } unifi_trace(priv, UDBG1, "UNIFI_PUTEST: Command is %s\n", trace_putest_cmdid(putest_cmd)); switch (putest_cmd) { case UNIFI_PUTEST_START: r = unifi_putest_start(priv, (unsigned char*)arg); break; case UNIFI_PUTEST_STOP: r = unifi_putest_stop(priv, (unsigned char*)arg); break; case UNIFI_PUTEST_SET_SDIO_CLOCK: r = unifi_putest_set_sdio_clock(priv, (unsigned char*)arg); break; case UNIFI_PUTEST_CMD52_READ: r = unifi_putest_cmd52_read(priv, (unsigned char*)arg); break; case UNIFI_PUTEST_CMD52_BLOCK_READ: r = unifi_putest_cmd52_block_read(priv, (unsigned char*)arg); break; case UNIFI_PUTEST_CMD52_WRITE: r = unifi_putest_cmd52_write(priv, (unsigned char*)arg); break; case UNIFI_PUTEST_DL_FW: r = unifi_putest_dl_fw(priv, (unsigned char*)arg); break; case UNIFI_PUTEST_DL_FW_BUFF: r = unifi_putest_dl_fw_buff(priv, (unsigned char*)arg); break; case UNIFI_PUTEST_COREDUMP_PREPARE: r = unifi_putest_coredump_prepare(priv, (unsigned char*)arg); break; case UNIFI_PUTEST_GP_READ16: r = unifi_putest_gp_read16(priv, (unsigned char*)arg); break; case UNIFI_PUTEST_GP_WRITE16: r = unifi_putest_gp_write16(priv, (unsigned char*)arg); break; default: unifi_error(priv, "UNIFI_PUTEST: Unknown Command (%d)\n", putest_cmd); r = -EINVAL; goto out; } break; case UNIFI_BUILD_TYPE: unifi_trace(priv, UDBG2, "UNIFI_BUILD_TYPE userspace=%s\n", build_type_to_string(*(unsigned char*)arg)); #ifndef CSR_SUPPORT_WEXT_AP if (UNIFI_BUILD_AP == *(unsigned char*)arg) { unifi_error(priv, "Userspace has AP support, which is incompatible\n"); } #endif #ifndef CSR_SUPPORT_WEXT if (UNIFI_BUILD_WEXT == *(unsigned char*)arg) { unifi_error(priv, "Userspace has WEXT support, which is incompatible\n"); } #endif break; case UNIFI_INIT_HW: unifi_trace(priv, UDBG2, "UNIFI_INIT_HW.\n"); priv->init_progress = UNIFI_INIT_NONE; #if defined(CSR_SUPPORT_WEXT) || defined (CSR_NATIVE_LINUX) /* At this point we are ready to start the SME. */ r = sme_mgt_wifi_on(priv); if (r) { goto out; } #endif break; case UNIFI_INIT_NETDEV: { /* get the proper interfaceTagId */ u16 interfaceTag=0; netInterface_priv_t *interfacePriv = priv->interfacePriv[interfaceTag]; dev = priv->netdev[interfaceTag]; unifi_trace(priv, UDBG2, "UNIFI_INIT_NETDEV.\n"); if (copy_from_user((void*)dev->dev_addr, (void*)arg, 6)) { r = -EFAULT; goto out; } /* Attach the network device to the stack */ if (!interfacePriv->netdev_registered) { r = uf_register_netdev(priv,interfaceTag); if (r) { unifi_error(priv, "Failed to register the network device.\n"); goto out; } } /* Apply scheduled interrupt mode, if requested by module param */ if (run_bh_once != -1) { unifi_set_interrupt_mode(priv->card, (u32)run_bh_once); } priv->init_progress = UNIFI_INIT_COMPLETED; /* Firmware initialisation is complete, so let the SDIO bus * clock be raised when convienent to the core. */ unifi_request_max_sdio_clock(priv->card); #ifdef CSR_SUPPORT_WEXT /* Notify the Android wpa_supplicant that we are ready */ wext_send_started_event(priv); #endif unifi_info(priv, "UniFi ready\n"); #ifdef ANDROID_BUILD /* Release the wakelock */ unifi_trace(priv, UDBG1, "netdev_init: release wake lock\n"); wake_unlock(&unifi_sdio_wake_lock); #endif #ifdef CSR_NATIVE_SOFTMAC /* For softmac dev, force-enable the network interface rather than wait for a connected-ind */ { struct net_device *dev = priv->netdev[interfaceTag]; #ifdef CSR_SUPPORT_WEXT interfacePriv->wait_netdev_change = TRUE; #endif netif_carrier_on(dev); } #endif } break; case UNIFI_GET_INIT_STATUS: unifi_trace(priv, UDBG2, "UNIFI_GET_INIT_STATUS.\n"); if (put_user(priv->init_progress, (int*)arg)) { printk(KERN_ERR "UNIFI_GET_INIT_STATUS: Failed to copy to user\n"); r = -EFAULT; goto out; } break; case UNIFI_KICK: unifi_trace(priv, UDBG4, "Kick UniFi\n"); unifi_sdio_interrupt_handler(priv->card); break; case UNIFI_SET_DEBUG: unifi_debug = arg; unifi_trace(priv, UDBG4, "unifi_debug set to %d\n", unifi_debug); break; case UNIFI_SET_TRACE: /* no longer supported */ r = -EINVAL; break; case UNIFI_SET_UDI_LOG_MASK: { unifiio_filter_t udi_filter; uint16_t *sig_ids_addr; #define UF_MAX_SIG_IDS 128 /* Impose a sensible limit */ if (copy_from_user((void*)(&udi_filter), (void*)arg, sizeof(udi_filter))) { r = -EFAULT; goto out; } if ((udi_filter.action < UfSigFil_AllOn) || (udi_filter.action > UfSigFil_SelectOff)) { printk(KERN_WARNING "UNIFI_SET_UDI_LOG_MASK: Bad action value: %d\n", udi_filter.action); r = -EINVAL; goto out; } /* No signal list for "All" actions */ if ((udi_filter.action == UfSigFil_AllOn) || (udi_filter.action == UfSigFil_AllOff)) { udi_filter.num_sig_ids = 0; } if (udi_filter.num_sig_ids > UF_MAX_SIG_IDS) { printk(KERN_WARNING "UNIFI_SET_UDI_LOG_MASK: too many signal ids (%d, max %d)\n", udi_filter.num_sig_ids, UF_MAX_SIG_IDS); r = -EINVAL; goto out; } /* Copy in signal id list if given */ if (udi_filter.num_sig_ids > 0) { /* Preserve userspace address of sig_ids array */ sig_ids_addr = udi_filter.sig_ids; /* Allocate kernel memory for sig_ids and copy to it */ udi_filter.sig_ids = kmalloc(udi_filter.num_sig_ids * sizeof(uint16_t), GFP_KERNEL); if (!udi_filter.sig_ids) { r = -ENOMEM; goto out; } if (copy_from_user((void*)udi_filter.sig_ids, (void*)sig_ids_addr, udi_filter.num_sig_ids * sizeof(uint16_t))) { kfree(udi_filter.sig_ids); r = -EFAULT; goto out; } } udi_set_log_filter(pcli, &udi_filter); if (udi_filter.num_sig_ids > 0) { kfree(udi_filter.sig_ids); } } break; case UNIFI_SET_AMP_ENABLE: unifi_trace(priv, UDBG4, "UniFi Set AMP Enable\n"); if (get_user(int_param, (int*)arg)) { unifi_error(priv, "UNIFI_SET_AMP_ENABLE: Failed to copy from user\n"); r = -EFAULT; goto out; } if (int_param) { priv->amp_client = pcli; } else { priv->amp_client = NULL; } int_param = 0; buf = (u8*)&int_param; buf[0] = UNIFI_SOFT_COMMAND_Q_LENGTH - 1; buf[1] = UNIFI_SOFT_TRAFFIC_Q_LENGTH - 1; if (copy_to_user((void*)arg, &int_param, sizeof(int))) { r = -EFAULT; goto out; } break; case UNIFI_SET_UDI_SNAP_MASK: { unifiio_snap_filter_t snap_filter; if (copy_from_user((void*)(&snap_filter), (void*)arg, sizeof(snap_filter))) { r = -EFAULT; goto out; } if (pcli->snap_filter.count) { pcli->snap_filter.count = 0; kfree(pcli->snap_filter.protocols); } if (snap_filter.count == 0) { break; } pcli->snap_filter.protocols = kmalloc(snap_filter.count * sizeof(u16), GFP_KERNEL); if (!pcli->snap_filter.protocols) { r = -ENOMEM; goto out; } if (copy_from_user((void*)pcli->snap_filter.protocols, (void*)snap_filter.protocols, snap_filter.count * sizeof(u16))) { kfree(pcli->snap_filter.protocols); r = -EFAULT; goto out; } pcli->snap_filter.count = snap_filter.count; } break; case UNIFI_SME_PRESENT: { u8 ind; unifi_trace(priv, UDBG4, "UniFi SME Present IOCTL.\n"); if (copy_from_user((void*)(&int_param), (void*)arg, sizeof(int))) { printk(KERN_ERR "UNIFI_SME_PRESENT: Failed to copy from user\n"); r = -EFAULT; goto out; } priv->sme_is_present = int_param; if (priv->sme_is_present == 1) { ind = CONFIG_SME_PRESENT; } else { ind = CONFIG_SME_NOT_PRESENT; } /* Send an indication to the helper app. */ ul_log_config_ind(priv, &ind, sizeof(u8)); } break; case UNIFI_CFG_PERIOD_TRAFFIC: { #if (defined CSR_SUPPORT_SME) && (defined CSR_SUPPORT_WEXT) CsrWifiSmeCoexConfig coexConfig; #endif /* CSR_SUPPORT_SME && CSR_SUPPORT_WEXT */ unifi_trace(priv, UDBG4, "UniFi Configure Periodic Traffic.\n"); #if (defined CSR_SUPPORT_SME) && (defined CSR_SUPPORT_WEXT) if (copy_from_user((void*)(&uchar_param), (void*)arg, sizeof(unsigned char))) { unifi_error(priv, "UNIFI_CFG_PERIOD_TRAFFIC: Failed to copy from user\n"); r = -EFAULT; goto out; } if (uchar_param == 0) { r = sme_mgt_coex_config_get(priv, &coexConfig); if (r) { unifi_error(priv, "UNIFI_CFG_PERIOD_TRAFFIC: Get unifi_CoexInfoValue failed.\n"); goto out; } if (copy_to_user((void*)(arg + 1), (void*)&coexConfig, sizeof(CsrWifiSmeCoexConfig))) { r = -EFAULT; goto out; } goto out; } if (copy_from_user((void*)(&coex_config), (void*)(arg + 1), sizeof(CsrWifiSmeCoexConfig))) { unifi_error(priv, "UNIFI_CFG_PERIOD_TRAFFIC: Failed to copy from user\n"); r = -EFAULT; goto out; } coexConfig = coex_config; r = sme_mgt_coex_config_set(priv, &coexConfig); if (r) { unifi_error(priv, "UNIFI_CFG_PERIOD_TRAFFIC: Set unifi_CoexInfoValue failed.\n"); goto out; } #endif /* CSR_SUPPORT_SME && CSR_SUPPORT_WEXT */ break; } case UNIFI_CFG_UAPSD_TRAFFIC: unifi_trace(priv, UDBG4, "UniFi Configure U-APSD Mask.\n"); #if (defined CSR_SUPPORT_SME) && (defined CSR_SUPPORT_WEXT) if (copy_from_user((void*)(&uchar_param), (void*)arg, sizeof(unsigned char))) { unifi_error(priv, "UNIFI_CFG_UAPSD_TRAFFIC: Failed to copy from user\n"); r = -EFAULT; goto out; } unifi_trace(priv, UDBG4, "New U-APSD Mask: 0x%x\n", uchar_param); #endif /* CSR_SUPPORT_SME && CSR_SUPPORT_WEXT */ break; #ifndef UNIFI_DISABLE_COREDUMP case UNIFI_COREDUMP_GET_REG: unifi_trace(priv, UDBG4, "Mini-coredump data request\n"); { unifiio_coredump_req_t dump_req; /* Public OS layer structure */ unifi_coredump_req_t priv_req; /* Private HIP structure */ if (copy_from_user((void*)(&dump_req), (void*)arg, sizeof(dump_req))) { r = -EFAULT; goto out; } memset(&priv_req, 0, sizeof(priv_req)); priv_req.index = dump_req.index; priv_req.offset = dump_req.offset; /* Convert OS-layer's XAP memory space ID to HIP's ID in case they differ */ switch (dump_req.space) { case UNIFIIO_COREDUMP_MAC_REG: priv_req.space = UNIFI_COREDUMP_MAC_REG; break; case UNIFIIO_COREDUMP_PHY_REG: priv_req.space = UNIFI_COREDUMP_PHY_REG; break; case UNIFIIO_COREDUMP_SH_DMEM: priv_req.space = UNIFI_COREDUMP_SH_DMEM; break; case UNIFIIO_COREDUMP_MAC_DMEM: priv_req.space = UNIFI_COREDUMP_MAC_DMEM; break; case UNIFIIO_COREDUMP_PHY_DMEM: priv_req.space = UNIFI_COREDUMP_PHY_DMEM; break; case UNIFIIO_COREDUMP_TRIGGER_MAGIC: priv_req.space = UNIFI_COREDUMP_TRIGGER_MAGIC; break; default: r = -EINVAL; goto out; } if (priv_req.space == UNIFI_COREDUMP_TRIGGER_MAGIC) { /* Force a coredump grab now */ unifi_trace(priv, UDBG2, "UNIFI_COREDUMP_GET_REG: Force capture\n"); csrResult = unifi_coredump_capture(priv->card, &priv_req); r = CsrHipResultToStatus(csrResult); unifi_trace(priv, UDBG5, "UNIFI_COREDUMP_GET_REG: status %d\n", r); } else { /* Retrieve the appropriate register entry */ csrResult = unifi_coredump_get_value(priv->card, &priv_req); r = CsrHipResultToStatus(csrResult); if (r) { unifi_trace(priv, UDBG5, "UNIFI_COREDUMP_GET_REG: Status %d\n", r); goto out; } /* Update the OS-layer structure with values returned in the private */ dump_req.value = priv_req.value; dump_req.timestamp = priv_req.timestamp; dump_req.requestor = priv_req.requestor; dump_req.serial = priv_req.serial; dump_req.chip_ver = priv_req.chip_ver; dump_req.fw_ver = priv_req.fw_ver; dump_req.drv_build = 0; unifi_trace(priv, UDBG6, "Dump: %d (seq %d): V:0x%04x (%d) @0x%02x:%04x = 0x%04x\n", dump_req.index, dump_req.serial, dump_req.chip_ver, dump_req.drv_build, dump_req.space, dump_req.offset, dump_req.value); } if (copy_to_user((void*)arg, (void*)&dump_req, sizeof(dump_req))) { r = -EFAULT; goto out; } } break; #endif default: r = -EINVAL; } out: return (long)r; } /* unifi_ioctl() */ static unsigned int unifi_poll(struct file *filp, poll_table *wait) { ul_client_t *pcli = (ul_client_t*)filp->private_data; unsigned int mask = 0; int ready; ready = !list_empty(&pcli->udi_log); poll_wait(filp, &pcli->udi_wq, wait); if (ready) { mask |= POLLIN | POLLRDNORM; /* readable */ } return mask; } /* unifi_poll() */ /* * --------------------------------------------------------------------------- * udi_set_log_filter * * Configure the bit mask that determines which signal primitives are * passed to the logging process. * * Arguments: * pcli Pointer to the client to configure. * udi_filter Pointer to a unifiio_filter_t containing instructions. * * Returns: * None. * * Notes: * SigGetFilterPos() returns a 32-bit value that contains an index and a * mask for accessing a signal_filter array. The top 16 bits specify an * index into a signal_filter, the bottom 16 bits specify a mask to * apply. * --------------------------------------------------------------------------- */ static void udi_set_log_filter(ul_client_t *pcli, unifiio_filter_t *udi_filter) { u32 filter_pos; int i; if (udi_filter->action == UfSigFil_AllOn) { for (i = 0; i < SIG_FILTER_SIZE; i++) { pcli->signal_filter[i] = 0xFFFF; } } else if (udi_filter->action == UfSigFil_AllOff) { for (i = 0; i < SIG_FILTER_SIZE; i++) { pcli->signal_filter[i] = 0; } } else if (udi_filter->action == UfSigFil_SelectOn) { for (i = 0; i < udi_filter->num_sig_ids; i++) { filter_pos = SigGetFilterPos(udi_filter->sig_ids[i]); if (filter_pos == 0xFFFFFFFF) { printk(KERN_WARNING "Unrecognised signal id (0x%X) specifed in logging filter\n", udi_filter->sig_ids[i]); } else { pcli->signal_filter[filter_pos >> 16] |= (filter_pos & 0xFFFF); } } } else if (udi_filter->action == UfSigFil_SelectOff) { for (i = 0; i < udi_filter->num_sig_ids; i++) { filter_pos = SigGetFilterPos(udi_filter->sig_ids[i]); if (filter_pos == 0xFFFFFFFF) { printk(KERN_WARNING "Unrecognised signal id (0x%X) specifed in logging filter\n", udi_filter->sig_ids[i]); } else { pcli->signal_filter[filter_pos >> 16] &= ~(filter_pos & 0xFFFF); } } } } /* udi_set_log_filter() */ /* * --------------------------------------------------------------------------- * udi_log_event * * Callback function to be registered as the UDI hook callback. * Copies the signal content into a new udi_log_t struct and adds * it to the read queue for this UDI client. * * Arguments: * pcli A pointer to the client instance. * signal Pointer to the received signal. * signal_len Size of the signal structure in bytes. * bulkdata Pointers to any associated bulk data. * dir Direction of the signal. Zero means from host, * non-zero means to host. * * Returns: * None. * --------------------------------------------------------------------------- */ void udi_log_event(ul_client_t *pcli, const u8 *signal, int signal_len, const bulk_data_param_t *bulkdata, int dir) { udi_log_t *logptr; u8 *p; int i; int total_len; udi_msg_t *msgptr; u32 filter_pos; #ifdef OMNICLI_LINUX_EXTRA_LOG static volatile unsigned int printk_cpu = UINT_MAX; unsigned long long t; unsigned long nanosec_rem; unsigned long n_1000; #endif /* Just a sanity check */ if ((signal == NULL) || (signal_len <= 0)) { return; } #ifdef CSR_WIFI_HIP_DEBUG_OFFLINE /* When HIP offline signal logging is enabled, omnicli cannot run */ if (log_hip_signals) { /* Add timestamp */ if (log_hip_signals & UNIFI_LOG_HIP_SIGNALS_FILTER_TIMESTAMP) { int timestamp = jiffies_to_msecs(jiffies); unifi_debug_log_to_buf("T:"); unifi_debug_log_to_buf("%04X%04X ", *(((u16*)×tamp) + 1), *(u16*)×tamp); } /* Add signal */ unifi_debug_log_to_buf("S%s:%04X R:%04X D:%04X ", dir ? "T" : "F", *(u16*)signal, *(u16*)(signal + 2), *(u16*)(signal + 4)); unifi_debug_hex_to_buf(signal + 6, signal_len - 6); /* Add bulk data (assume 1 bulk data per signal) */ if ((log_hip_signals & UNIFI_LOG_HIP_SIGNALS_FILTER_BULKDATA) && (bulkdata->d[0].data_length > 0)) { unifi_debug_log_to_buf("\nD:"); unifi_debug_hex_to_buf(bulkdata->d[0].os_data_ptr, bulkdata->d[0].data_length); } unifi_debug_log_to_buf("\n"); return; } #endif #ifdef CSR_NATIVE_LINUX uf_native_process_udi_signal(pcli, signal, signal_len, bulkdata, dir); #endif /* * Apply the logging filter - only report signals that have their * bit set in the filter mask. */ filter_pos = SigGetFilterPos(GET_SIGNAL_ID(signal)); if ((filter_pos != 0xFFFFFFFF) && ((pcli->signal_filter[filter_pos >> 16] & (filter_pos & 0xFFFF)) == 0)) { /* Signal is not wanted by client */ return; } /* Calculate the buffer we need to store signal plus bulk data */ total_len = signal_len; for (i = 0; i < UNIFI_MAX_DATA_REFERENCES; i++) { total_len += bulkdata->d[i].data_length; } /* Allocate log structure plus actual signal. */ logptr = kmalloc(sizeof(udi_log_t) + total_len, GFP_KERNEL); if (logptr == NULL) { printk(KERN_ERR "Failed to allocate %lu bytes for a UDI log record\n", (long unsigned int)(sizeof(udi_log_t) + total_len)); return; } /* Fill in udi_log struct */ INIT_LIST_HEAD(&logptr->q); msgptr = &logptr->msg; msgptr->length = sizeof(udi_msg_t) + total_len; #ifdef OMNICLI_LINUX_EXTRA_LOG t = cpu_clock(printk_cpu); nanosec_rem = do_div(t, 1000000000); n_1000 = nanosec_rem/1000; msgptr->timestamp = (t <<10 ) | ((unsigned long)(n_1000 >> 10) & 0x3ff); #else msgptr->timestamp = jiffies_to_msecs(jiffies); #endif msgptr->direction = dir; msgptr->signal_length = signal_len; /* Copy signal and bulk data to the log */ p = (u8 *)(msgptr + 1); memcpy(p, signal, signal_len); p += signal_len; /* Append any bulk data */ for (i = 0; i < UNIFI_MAX_DATA_REFERENCES; i++) { int len = bulkdata->d[i].data_length; /* * Len here might not be the same as the length in the bulk data slot. * The slot length will always be even, but len could be odd. */ if (len > 0) { if (bulkdata->d[i].os_data_ptr) { memcpy(p, bulkdata->d[i].os_data_ptr, len); } else { memset(p, 0, len); } p += len; } } /* Add to tail of log queue */ if (down_interruptible(&pcli->udi_sem)) { printk(KERN_WARNING "udi_log_event_q: Failed to get udi sem\n"); kfree(logptr); return; } list_add_tail(&logptr->q, &pcli->udi_log); up(&pcli->udi_sem); /* Wake any waiting user process */ wake_up_interruptible(&pcli->udi_wq); } /* udi_log_event() */ #ifdef CSR_SME_USERSPACE int uf_sme_queue_message(unifi_priv_t *priv, u8 *buffer, int length) { udi_log_t *logptr; udi_msg_t *msgptr; u8 *p; /* Just a sanity check */ if ((buffer == NULL) || (length <= 0)) { return -EINVAL; } /* Allocate log structure plus actual signal. */ logptr = kmalloc(sizeof(udi_log_t) + length, GFP_ATOMIC); if (logptr == NULL) { unifi_error(priv, "Failed to allocate %d bytes for an SME message\n", sizeof(udi_log_t) + length); kfree(buffer); return -ENOMEM; } /* Fill in udi_log struct */ INIT_LIST_HEAD(&logptr->q); msgptr = &logptr->msg; msgptr->length = sizeof(udi_msg_t) + length; msgptr->signal_length = length; /* Copy signal and bulk data to the log */ p = (u8 *)(msgptr + 1); memcpy(p, buffer, length); /* Add to tail of log queue */ down(&udi_mutex); if (priv->sme_cli == NULL) { kfree(logptr); kfree(buffer); up(&udi_mutex); unifi_info(priv, "Message for the SME dropped, SME has gone away\n"); return 0; } down(&priv->sme_cli->udi_sem); list_add_tail(&logptr->q, &priv->sme_cli->udi_log); up(&priv->sme_cli->udi_sem); /* Wake any waiting user process */ wake_up_interruptible(&priv->sme_cli->udi_wq); up(&udi_mutex); /* It is our responsibility to free the buffer allocated in build_packed_*() */ kfree(buffer); return 0; } /* uf_sme_queue_message() */ #endif /* **************************************************************************** * * Driver instantiation * **************************************************************************** */ static const struct file_operations unifi_fops = { .owner = THIS_MODULE, .open = unifi_open, .release = unifi_release, .read = unifi_read, .write = unifi_write, .unlocked_ioctl = unifi_ioctl, .poll = unifi_poll, }; static dev_t unifi_first_devno; static struct class *unifi_class; int uf_create_device_nodes(unifi_priv_t *priv, int bus_id) { dev_t devno; int r; cdev_init(&priv->unifi_cdev, &unifi_fops); /* cdev_init() should set the cdev owner, but it does not */ priv->unifi_cdev.owner = THIS_MODULE; devno = MKDEV(MAJOR(unifi_first_devno), MINOR(unifi_first_devno) + (bus_id * 2)); r = cdev_add(&priv->unifi_cdev, devno, 1); if (r) { return r; } #ifdef SDIO_EXPORTS_STRUCT_DEVICE if (!device_create(unifi_class, priv->unifi_device, devno, priv, "unifi%d", bus_id)) { #else priv->unifi_device = device_create(unifi_class, NULL, devno, priv, "unifi%d", bus_id); if (priv->unifi_device == NULL) { #endif /* SDIO_EXPORTS_STRUCT_DEVICE */ cdev_del(&priv->unifi_cdev); return -EINVAL; } cdev_init(&priv->unifiudi_cdev, &unifi_fops); /* cdev_init() should set the cdev owner, but it does not */ priv->unifiudi_cdev.owner = THIS_MODULE; devno = MKDEV(MAJOR(unifi_first_devno), MINOR(unifi_first_devno) + (bus_id * 2) + 1); r = cdev_add(&priv->unifiudi_cdev, devno, 1); if (r) { device_destroy(unifi_class, priv->unifi_cdev.dev); cdev_del(&priv->unifi_cdev); return r; } if (!device_create(unifi_class, #ifdef SDIO_EXPORTS_STRUCT_DEVICE priv->unifi_device, #else NULL, #endif /* SDIO_EXPORTS_STRUCT_DEVICE */ devno, priv, "unifiudi%d", bus_id)) { device_destroy(unifi_class, priv->unifi_cdev.dev); cdev_del(&priv->unifiudi_cdev); cdev_del(&priv->unifi_cdev); return -EINVAL; } return 0; } void uf_destroy_device_nodes(unifi_priv_t *priv) { device_destroy(unifi_class, priv->unifiudi_cdev.dev); device_destroy(unifi_class, priv->unifi_cdev.dev); cdev_del(&priv->unifiudi_cdev); cdev_del(&priv->unifi_cdev); } /* * ---------------------------------------------------------------- * uf_create_debug_device * * Allocates device numbers for unifi character device nodes * and creates a unifi class in sysfs * * Arguments: * fops Pointer to the char device operations structure. * * Returns: * 0 on success, -ve error code on error. * ---------------------------------------------------------------- */ static int uf_create_debug_device(const struct file_operations *fops) { int ret; /* Allocate two device numbers for each device. */ ret = alloc_chrdev_region(&unifi_first_devno, 0, MAX_UNIFI_DEVS*2, UNIFI_NAME); if (ret) { unifi_error(NULL, "Failed to add alloc dev numbers: %d\n", ret); return ret; } /* Create a UniFi class */ unifi_class = class_create(THIS_MODULE, UNIFI_NAME); if (IS_ERR(unifi_class)) { unifi_error(NULL, "Failed to create UniFi class\n"); /* Release device numbers */ unregister_chrdev_region(unifi_first_devno, MAX_UNIFI_DEVS*2); unifi_first_devno = 0; return -EINVAL; } return 0; } /* uf_create_debug_device() */ /* * ---------------------------------------------------------------- * uf_remove_debug_device * * Destroys the unifi class and releases the allocated * device numbers for unifi character device nodes. * * Arguments: * * Returns: * ---------------------------------------------------------------- */ static void uf_remove_debug_device(void) { /* Destroy the UniFi class */ class_destroy(unifi_class); /* Release device numbers */ unregister_chrdev_region(unifi_first_devno, MAX_UNIFI_DEVS*2); unifi_first_devno = 0; } /* uf_remove_debug_device() */ /* * --------------------------------------------------------------------------- * * Module loading. * * --------------------------------------------------------------------------- */ int __init unifi_load(void) { int r; printk("UniFi SDIO Driver: %s %s %s\n", CSR_WIFI_VERSION, __DATE__, __TIME__); #ifdef CSR_SME_USERSPACE #ifdef CSR_SUPPORT_WEXT printk("CSR SME with WEXT support\n"); #else printk("CSR SME no WEXT support\n"); #endif /* CSR_SUPPORT_WEXT */ #endif /* CSR_SME_USERSPACE */ #ifdef CSR_NATIVE_LINUX #ifdef CSR_SUPPORT_WEXT #error WEXT unsupported in the native driver #endif printk("CSR native no WEXT support\n"); #endif #ifdef CSR_WIFI_SPLIT_PATCH printk("Split patch support\n"); #endif printk("Kernel %d.%d.%d\n", ((LINUX_VERSION_CODE) >> 16) & 0xff, ((LINUX_VERSION_CODE) >> 8) & 0xff, (LINUX_VERSION_CODE) & 0xff); /* * Instantiate the /dev/unifi* device nodes. * We must do this before registering with the SDIO driver because it * will immediately call the "insert" callback if the card is * already present. */ r = uf_create_debug_device(&unifi_fops); if (r) { return r; } /* Now register with the SDIO driver */ r = uf_sdio_load(); if (r) { uf_remove_debug_device(); return r; } if (sdio_block_size > -1) { unifi_info(NULL, "sdio_block_size %d\n", sdio_block_size); } if (sdio_byte_mode) { unifi_info(NULL, "sdio_byte_mode\n"); } if (disable_power_control) { unifi_info(NULL, "disable_power_control\n"); } if (disable_hw_reset) { unifi_info(NULL, "disable_hw_reset\n"); } if (enable_wol) { unifi_info(NULL, "enable_wol %d\n", enable_wol); } if (run_bh_once != -1) { unifi_info(NULL, "run_bh_once %d\n", run_bh_once); } return 0; } /* unifi_load() */ void __exit unifi_unload(void) { /* The SDIO remove hook will call unifi_disconnect(). */ uf_sdio_unload(); uf_remove_debug_device(); } /* unifi_unload() */ module_init(unifi_load); module_exit(unifi_unload); MODULE_DESCRIPTION("UniFi Device driver"); MODULE_AUTHOR("Cambridge Silicon Radio Ltd."); MODULE_LICENSE("GPL and additional rights");