/* * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc. * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * File: device_main.c * * Purpose: driver entry for initial, open, close, tx and rx. * * Author: Lyndon Chen * * Date: Jan 8, 2003 * * Functions: * * vt6655_probe - module initial (insmod) driver entry * vt6655_remove - module remove entry * vt6655_init_info - device structure resource allocation function * device_free_info - device structure resource free function * device_get_pci_info - get allocated pci io/mem resource * device_print_info - print out resource * device_open - allocate dma/descripter resource & initial mac/bbp function * device_xmit - asynchrous data tx function * device_intr - interrupt handle function * device_set_multi - set mac filter * device_ioctl - ioctl entry * device_close - shutdown mac/bbp & free dma/descripter resource * device_rx_srv - rx service function * device_receive_frame - rx data function * device_alloc_rx_buf - rx buffer pre-allocated function * device_alloc_frag_buf - rx fragement pre-allocated function * device_free_tx_buf - free tx buffer function * device_free_frag_buf- free de-fragement buffer * device_dma0_tx_80211- tx 802.11 frame via dma0 * device_dma0_xmit- tx PS bufferred frame via dma0 * device_init_rd0_ring- initial rd dma0 ring * device_init_rd1_ring- initial rd dma1 ring * device_init_td0_ring- initial tx dma0 ring buffer * device_init_td1_ring- initial tx dma1 ring buffer * device_init_registers- initial MAC & BBP & RF internal registers. * device_init_rings- initial tx/rx ring buffer * device_init_defrag_cb- initial & allocate de-fragement buffer. * device_free_rings- free all allocated ring buffer * device_tx_srv- tx interrupt service function * * Revision History: */ #undef __NO_VERSION__ #include <linux/file.h> #include "device.h" #include "card.h" #include "channel.h" #include "baseband.h" #include "mac.h" #include "tether.h" #include "wmgr.h" #include "wctl.h" #include "power.h" #include "wcmd.h" #include "iocmd.h" #include "tcrc.h" #include "rxtx.h" #include "wroute.h" #include "bssdb.h" #include "hostap.h" #include "wpactl.h" #include "ioctl.h" #include "iwctl.h" #include "dpc.h" #include "datarate.h" #include "rf.h" #include "iowpa.h" #include <linux/delay.h> #include <linux/kthread.h> #include <linux/slab.h> /*--------------------- Static Definitions -------------------------*/ //static int msglevel =MSG_LEVEL_DEBUG; static int msglevel = MSG_LEVEL_INFO; // // Define module options // MODULE_AUTHOR("VIA Networking Technologies, Inc., <lyndonchen@vntek.com.tw>"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("VIA Networking Solomon-A/B/G Wireless LAN Adapter Driver"); static int mlme_kill; //static struct task_struct * mlme_task; #define DEVICE_PARAM(N, D) /* static const int N[MAX_UINTS]=OPTION_DEFAULT;\ MODULE_PARM(N, "1-" __MODULE_STRING(MAX_UINTS) "i");\ MODULE_PARM_DESC(N, D); */ #define RX_DESC_MIN0 16 #define RX_DESC_MAX0 128 #define RX_DESC_DEF0 32 DEVICE_PARAM(RxDescriptors0, "Number of receive descriptors0"); #define RX_DESC_MIN1 16 #define RX_DESC_MAX1 128 #define RX_DESC_DEF1 32 DEVICE_PARAM(RxDescriptors1, "Number of receive descriptors1"); #define TX_DESC_MIN0 16 #define TX_DESC_MAX0 128 #define TX_DESC_DEF0 32 DEVICE_PARAM(TxDescriptors0, "Number of transmit descriptors0"); #define TX_DESC_MIN1 16 #define TX_DESC_MAX1 128 #define TX_DESC_DEF1 64 DEVICE_PARAM(TxDescriptors1, "Number of transmit descriptors1"); #define IP_ALIG_DEF 0 /* IP_byte_align[] is used for IP header unsigned long byte aligned 0: indicate the IP header won't be unsigned long byte aligned.(Default) . 1: indicate the IP header will be unsigned long byte aligned. In some environment, the IP header should be unsigned long byte aligned, or the packet will be droped when we receive it. (eg: IPVS) */ DEVICE_PARAM(IP_byte_align, "Enable IP header dword aligned"); #define INT_WORKS_DEF 20 #define INT_WORKS_MIN 10 #define INT_WORKS_MAX 64 DEVICE_PARAM(int_works, "Number of packets per interrupt services"); #define CHANNEL_MIN 1 #define CHANNEL_MAX 14 #define CHANNEL_DEF 6 DEVICE_PARAM(Channel, "Channel number"); /* PreambleType[] is the preamble length used for transmit. 0: indicate allows long preamble type 1: indicate allows short preamble type */ #define PREAMBLE_TYPE_DEF 1 DEVICE_PARAM(PreambleType, "Preamble Type"); #define RTS_THRESH_MIN 512 #define RTS_THRESH_MAX 2347 #define RTS_THRESH_DEF 2347 DEVICE_PARAM(RTSThreshold, "RTS threshold"); #define FRAG_THRESH_MIN 256 #define FRAG_THRESH_MAX 2346 #define FRAG_THRESH_DEF 2346 DEVICE_PARAM(FragThreshold, "Fragmentation threshold"); #define DATA_RATE_MIN 0 #define DATA_RATE_MAX 13 #define DATA_RATE_DEF 13 /* datarate[] index 0: indicate 1 Mbps 0x02 1: indicate 2 Mbps 0x04 2: indicate 5.5 Mbps 0x0B 3: indicate 11 Mbps 0x16 4: indicate 6 Mbps 0x0c 5: indicate 9 Mbps 0x12 6: indicate 12 Mbps 0x18 7: indicate 18 Mbps 0x24 8: indicate 24 Mbps 0x30 9: indicate 36 Mbps 0x48 10: indicate 48 Mbps 0x60 11: indicate 54 Mbps 0x6c 12: indicate 72 Mbps 0x90 13: indicate auto rate */ DEVICE_PARAM(ConnectionRate, "Connection data rate"); #define OP_MODE_DEF 0 DEVICE_PARAM(OPMode, "Infrastruct, adhoc, AP mode "); /* OpMode[] is used for transmit. 0: indicate infrastruct mode used 1: indicate adhoc mode used 2: indicate AP mode used */ /* PSMode[] 0: indicate disable power saving mode 1: indicate enable power saving mode */ #define PS_MODE_DEF 0 DEVICE_PARAM(PSMode, "Power saving mode"); #define SHORT_RETRY_MIN 0 #define SHORT_RETRY_MAX 31 #define SHORT_RETRY_DEF 8 DEVICE_PARAM(ShortRetryLimit, "Short frame retry limits"); #define LONG_RETRY_MIN 0 #define LONG_RETRY_MAX 15 #define LONG_RETRY_DEF 4 DEVICE_PARAM(LongRetryLimit, "long frame retry limits"); /* BasebandType[] baseband type selected 0: indicate 802.11a type 1: indicate 802.11b type 2: indicate 802.11g type */ #define BBP_TYPE_MIN 0 #define BBP_TYPE_MAX 2 #define BBP_TYPE_DEF 2 DEVICE_PARAM(BasebandType, "baseband type"); /* 80211hEnable[] 0: indicate disable 802.11h 1: indicate enable 802.11h */ #define X80211h_MODE_DEF 0 DEVICE_PARAM(b80211hEnable, "802.11h mode"); /* 80211hEnable[] 0: indicate disable 802.11h 1: indicate enable 802.11h */ #define DIVERSITY_ANT_DEF 0 DEVICE_PARAM(bDiversityANTEnable, "ANT diversity mode"); // // Static vars definitions // static int device_nics = 0; static PSDevice pDevice_Infos = NULL; static struct net_device *root_device_dev = NULL; static CHIP_INFO chip_info_table[] = { { VT3253, "VIA Networking Solomon-A/B/G Wireless LAN Adapter ", 256, 1, DEVICE_FLAGS_IP_ALIGN|DEVICE_FLAGS_TX_ALIGN }, {0, NULL} }; DEFINE_PCI_DEVICE_TABLE(vt6655_pci_id_table) = { { PCI_VDEVICE(VIA, 0x3253), (kernel_ulong_t)chip_info_table}, { 0, } }; /*--------------------- Static Functions --------------------------*/ static int vt6655_probe(struct pci_dev *pcid, const struct pci_device_id *ent); static void vt6655_init_info(struct pci_dev *pcid, PSDevice *ppDevice, PCHIP_INFO); static void device_free_info(PSDevice pDevice); static bool device_get_pci_info(PSDevice, struct pci_dev *pcid); static void device_print_info(PSDevice pDevice); static struct net_device_stats *device_get_stats(struct net_device *dev); static void device_init_diversity_timer(PSDevice pDevice); static int device_open(struct net_device *dev); static int device_xmit(struct sk_buff *skb, struct net_device *dev); static irqreturn_t device_intr(int irq, void *dev_instance); static void device_set_multi(struct net_device *dev); static int device_close(struct net_device *dev); static int device_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); #ifdef CONFIG_PM static int device_notify_reboot(struct notifier_block *, unsigned long event, void *ptr); static int viawget_suspend(struct pci_dev *pcid, pm_message_t state); static int viawget_resume(struct pci_dev *pcid); struct notifier_block device_notifier = { .notifier_call = device_notify_reboot, .next = NULL, .priority = 0, }; #endif static void device_init_rd0_ring(PSDevice pDevice); static void device_init_rd1_ring(PSDevice pDevice); static void device_init_defrag_cb(PSDevice pDevice); static void device_init_td0_ring(PSDevice pDevice); static void device_init_td1_ring(PSDevice pDevice); static int device_dma0_tx_80211(struct sk_buff *skb, struct net_device *dev); //2008-0714<Add>by Mike Liu static bool device_release_WPADEV(PSDevice pDevice); static int ethtool_ioctl(struct net_device *dev, void *useraddr); static int device_rx_srv(PSDevice pDevice, unsigned int uIdx); static int device_tx_srv(PSDevice pDevice, unsigned int uIdx); static bool device_alloc_rx_buf(PSDevice pDevice, PSRxDesc pDesc); static void device_init_registers(PSDevice pDevice, DEVICE_INIT_TYPE InitType); static void device_free_tx_buf(PSDevice pDevice, PSTxDesc pDesc); static void device_free_td0_ring(PSDevice pDevice); static void device_free_td1_ring(PSDevice pDevice); static void device_free_rd0_ring(PSDevice pDevice); static void device_free_rd1_ring(PSDevice pDevice); static void device_free_rings(PSDevice pDevice); static void device_free_frag_buf(PSDevice pDevice); static int Config_FileGetParameter(unsigned char *string, unsigned char *dest, unsigned char *source); /*--------------------- Export Variables --------------------------*/ /*--------------------- Export Functions --------------------------*/ static char *get_chip_name(int chip_id) { int i; for (i = 0; chip_info_table[i].name != NULL; i++) if (chip_info_table[i].chip_id == chip_id) break; return chip_info_table[i].name; } static void vt6655_remove(struct pci_dev *pcid) { PSDevice pDevice = pci_get_drvdata(pcid); if (pDevice == NULL) return; device_free_info(pDevice); } /* static void device_set_int_opt(int *opt, int val, int min, int max, int def,char* name,char* devname) { if (val==-1) *opt=def; else if (val<min || val>max) { DBG_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n" , devname,name, min,max); *opt=def; } else { DBG_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n", devname, name, val); *opt=val; } } static void device_set_bool_opt(unsigned int *opt, int val,bool def,u32 flag, char* name,char* devname) { (*opt)&=(~flag); if (val==-1) *opt|=(def ? flag : 0); else if (val<0 || val>1) { DBG_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",devname,name); *opt|=(def ? flag : 0); } else { DBG_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: set parameter %s to %s\n", devname,name , val ? "true" : "false"); *opt|=(val ? flag : 0); } } */ static void device_get_options(PSDevice pDevice, int index, char *devname) { POPTIONS pOpts = &(pDevice->sOpts); pOpts->nRxDescs0 = RX_DESC_DEF0; pOpts->nRxDescs1 = RX_DESC_DEF1; pOpts->nTxDescs[0] = TX_DESC_DEF0; pOpts->nTxDescs[1] = TX_DESC_DEF1; pOpts->flags |= DEVICE_FLAGS_IP_ALIGN; pOpts->int_works = INT_WORKS_DEF; pOpts->rts_thresh = RTS_THRESH_DEF; pOpts->frag_thresh = FRAG_THRESH_DEF; pOpts->data_rate = DATA_RATE_DEF; pOpts->channel_num = CHANNEL_DEF; pOpts->flags |= DEVICE_FLAGS_PREAMBLE_TYPE; pOpts->flags |= DEVICE_FLAGS_OP_MODE; //pOpts->flags|=DEVICE_FLAGS_PS_MODE; pOpts->short_retry = SHORT_RETRY_DEF; pOpts->long_retry = LONG_RETRY_DEF; pOpts->bbp_type = BBP_TYPE_DEF; pOpts->flags |= DEVICE_FLAGS_80211h_MODE; pOpts->flags |= DEVICE_FLAGS_DiversityANT; } static void device_set_options(PSDevice pDevice) { unsigned char abyBroadcastAddr[ETH_ALEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; unsigned char abySNAP_RFC1042[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00}; unsigned char abySNAP_Bridgetunnel[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0xF8}; memcpy(pDevice->abyBroadcastAddr, abyBroadcastAddr, ETH_ALEN); memcpy(pDevice->abySNAP_RFC1042, abySNAP_RFC1042, ETH_ALEN); memcpy(pDevice->abySNAP_Bridgetunnel, abySNAP_Bridgetunnel, ETH_ALEN); pDevice->uChannel = pDevice->sOpts.channel_num; pDevice->wRTSThreshold = pDevice->sOpts.rts_thresh; pDevice->wFragmentationThreshold = pDevice->sOpts.frag_thresh; pDevice->byShortRetryLimit = pDevice->sOpts.short_retry; pDevice->byLongRetryLimit = pDevice->sOpts.long_retry; pDevice->wMaxTransmitMSDULifetime = DEFAULT_MSDU_LIFETIME; pDevice->byShortPreamble = (pDevice->sOpts.flags & DEVICE_FLAGS_PREAMBLE_TYPE) ? 1 : 0; pDevice->byOpMode = (pDevice->sOpts.flags & DEVICE_FLAGS_OP_MODE) ? 1 : 0; pDevice->ePSMode = (pDevice->sOpts.flags & DEVICE_FLAGS_PS_MODE) ? 1 : 0; pDevice->b11hEnable = (pDevice->sOpts.flags & DEVICE_FLAGS_80211h_MODE) ? 1 : 0; pDevice->bDiversityRegCtlON = (pDevice->sOpts.flags & DEVICE_FLAGS_DiversityANT) ? 1 : 0; pDevice->uConnectionRate = pDevice->sOpts.data_rate; if (pDevice->uConnectionRate < RATE_AUTO) pDevice->bFixRate = true; pDevice->byBBType = pDevice->sOpts.bbp_type; pDevice->byPacketType = pDevice->byBBType; //PLICE_DEBUG-> pDevice->byAutoFBCtrl = AUTO_FB_0; //pDevice->byAutoFBCtrl = AUTO_FB_1; //PLICE_DEBUG<- pDevice->bUpdateBBVGA = true; pDevice->byFOETuning = 0; pDevice->wCTSDuration = 0; pDevice->byPreambleType = 0; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " uChannel= %d\n", (int)pDevice->uChannel); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " byOpMode= %d\n", (int)pDevice->byOpMode); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " ePSMode= %d\n", (int)pDevice->ePSMode); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " wRTSThreshold= %d\n", (int)pDevice->wRTSThreshold); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " byShortRetryLimit= %d\n", (int)pDevice->byShortRetryLimit); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " byLongRetryLimit= %d\n", (int)pDevice->byLongRetryLimit); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " byPreambleType= %d\n", (int)pDevice->byPreambleType); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " byShortPreamble= %d\n", (int)pDevice->byShortPreamble); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " uConnectionRate= %d\n", (int)pDevice->uConnectionRate); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " byBBType= %d\n", (int)pDevice->byBBType); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " pDevice->b11hEnable= %d\n", (int)pDevice->b11hEnable); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " pDevice->bDiversityRegCtlON= %d\n", (int)pDevice->bDiversityRegCtlON); } static void s_vCompleteCurrentMeasure(PSDevice pDevice, unsigned char byResult) { unsigned int ii; unsigned long dwDuration = 0; unsigned char byRPI0 = 0; for (ii = 1; ii < 8; ii++) { pDevice->dwRPIs[ii] *= 255; dwDuration |= *((unsigned short *)(pDevice->pCurrMeasureEID->sReq.abyDuration)); dwDuration <<= 10; pDevice->dwRPIs[ii] /= dwDuration; pDevice->abyRPIs[ii] = (unsigned char)pDevice->dwRPIs[ii]; byRPI0 += pDevice->abyRPIs[ii]; } pDevice->abyRPIs[0] = (0xFF - byRPI0); if (pDevice->uNumOfMeasureEIDs == 0) { VNTWIFIbMeasureReport(pDevice->pMgmt, true, pDevice->pCurrMeasureEID, byResult, pDevice->byBasicMap, pDevice->byCCAFraction, pDevice->abyRPIs ); } else { VNTWIFIbMeasureReport(pDevice->pMgmt, false, pDevice->pCurrMeasureEID, byResult, pDevice->byBasicMap, pDevice->byCCAFraction, pDevice->abyRPIs ); CARDbStartMeasure(pDevice, pDevice->pCurrMeasureEID++, pDevice->uNumOfMeasureEIDs); } } // // Initialisation of MAC & BBP registers // static void device_init_registers(PSDevice pDevice, DEVICE_INIT_TYPE InitType) { unsigned int ii; unsigned char byValue; unsigned char byValue1; unsigned char byCCKPwrdBm = 0; unsigned char byOFDMPwrdBm = 0; int zonetype = 0; PSMgmtObject pMgmt = &(pDevice->sMgmtObj); MACbShutdown(pDevice->PortOffset); BBvSoftwareReset(pDevice->PortOffset); if ((InitType == DEVICE_INIT_COLD) || (InitType == DEVICE_INIT_DXPL)) { // Do MACbSoftwareReset in MACvInitialize MACbSoftwareReset(pDevice->PortOffset); // force CCK pDevice->bCCK = true; pDevice->bAES = false; pDevice->bProtectMode = false; //Only used in 11g type, sync with ERP IE pDevice->bNonERPPresent = false; pDevice->bBarkerPreambleMd = false; pDevice->wCurrentRate = RATE_1M; pDevice->byTopOFDMBasicRate = RATE_24M; pDevice->byTopCCKBasicRate = RATE_1M; pDevice->byRevId = 0; //Target to IF pin while programming to RF chip. // init MAC MACvInitialize(pDevice->PortOffset); // Get Local ID VNSvInPortB(pDevice->PortOffset + MAC_REG_LOCALID, &(pDevice->byLocalID)); spin_lock_irq(&pDevice->lock); SROMvReadAllContents(pDevice->PortOffset, pDevice->abyEEPROM); spin_unlock_irq(&pDevice->lock); // Get Channel range pDevice->byMinChannel = 1; pDevice->byMaxChannel = CB_MAX_CHANNEL; // Get Antena byValue = SROMbyReadEmbedded(pDevice->PortOffset, EEP_OFS_ANTENNA); if (byValue & EEP_ANTINV) pDevice->bTxRxAntInv = true; else pDevice->bTxRxAntInv = false; byValue &= (EEP_ANTENNA_AUX | EEP_ANTENNA_MAIN); if (byValue == 0) // if not set default is All byValue = (EEP_ANTENNA_AUX | EEP_ANTENNA_MAIN); pDevice->ulDiversityNValue = 100*260;//100*SROMbyReadEmbedded(pDevice->PortOffset, 0x51); pDevice->ulDiversityMValue = 100*16;//SROMbyReadEmbedded(pDevice->PortOffset, 0x52); pDevice->byTMax = 1;//SROMbyReadEmbedded(pDevice->PortOffset, 0x53); pDevice->byTMax2 = 4;//SROMbyReadEmbedded(pDevice->PortOffset, 0x54); pDevice->ulSQ3TH = 0;//(unsigned long) SROMbyReadEmbedded(pDevice->PortOffset, 0x55); pDevice->byTMax3 = 64;//SROMbyReadEmbedded(pDevice->PortOffset, 0x56); if (byValue == (EEP_ANTENNA_AUX | EEP_ANTENNA_MAIN)) { pDevice->byAntennaCount = 2; pDevice->byTxAntennaMode = ANT_B; pDevice->dwTxAntennaSel = 1; pDevice->dwRxAntennaSel = 1; if (pDevice->bTxRxAntInv == true) pDevice->byRxAntennaMode = ANT_A; else pDevice->byRxAntennaMode = ANT_B; // chester for antenna byValue1 = SROMbyReadEmbedded(pDevice->PortOffset, EEP_OFS_ANTENNA); if ((byValue1 & 0x08) == 0) pDevice->bDiversityEnable = false;//SROMbyReadEmbedded(pDevice->PortOffset, 0x50); else pDevice->bDiversityEnable = true; } else { pDevice->bDiversityEnable = false; pDevice->byAntennaCount = 1; pDevice->dwTxAntennaSel = 0; pDevice->dwRxAntennaSel = 0; if (byValue & EEP_ANTENNA_AUX) { pDevice->byTxAntennaMode = ANT_A; if (pDevice->bTxRxAntInv == true) pDevice->byRxAntennaMode = ANT_B; else pDevice->byRxAntennaMode = ANT_A; } else { pDevice->byTxAntennaMode = ANT_B; if (pDevice->bTxRxAntInv == true) pDevice->byRxAntennaMode = ANT_A; else pDevice->byRxAntennaMode = ANT_B; } } DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "bDiversityEnable=[%d],NValue=[%d],MValue=[%d],TMax=[%d],TMax2=[%d]\n", pDevice->bDiversityEnable, (int)pDevice->ulDiversityNValue, (int)pDevice->ulDiversityMValue, pDevice->byTMax, pDevice->byTMax2); //#ifdef ZoneType_DefaultSetting //2008-8-4 <add> by chester //zonetype initial pDevice->byOriginalZonetype = pDevice->abyEEPROM[EEP_OFS_ZONETYPE]; zonetype = Config_FileOperation(pDevice, false, NULL); if (zonetype >= 0) { //read zonetype file ok! if ((zonetype == 0) && (pDevice->abyEEPROM[EEP_OFS_ZONETYPE] != 0x00)) { //for USA pDevice->abyEEPROM[EEP_OFS_ZONETYPE] = 0; pDevice->abyEEPROM[EEP_OFS_MAXCHANNEL] = 0x0B; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Init Zone Type :USA\n"); } else if ((zonetype == 1) && (pDevice->abyEEPROM[EEP_OFS_ZONETYPE] != 0x01)) { //for Japan pDevice->abyEEPROM[EEP_OFS_ZONETYPE] = 0x01; pDevice->abyEEPROM[EEP_OFS_MAXCHANNEL] = 0x0D; } else if ((zonetype == 2) && (pDevice->abyEEPROM[EEP_OFS_ZONETYPE] != 0x02)) { //for Europe pDevice->abyEEPROM[EEP_OFS_ZONETYPE] = 0x02; pDevice->abyEEPROM[EEP_OFS_MAXCHANNEL] = 0x0D; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Init Zone Type :Europe\n"); } else { if (zonetype != pDevice->abyEEPROM[EEP_OFS_ZONETYPE]) printk("zonetype in file[%02x] mismatch with in EEPROM[%02x]\n", zonetype, pDevice->abyEEPROM[EEP_OFS_ZONETYPE]); else printk("Read Zonetype file success,use default zonetype setting[%02x]\n", zonetype); } } else printk("Read Zonetype file fail,use default zonetype setting[%02x]\n", SROMbyReadEmbedded(pDevice->PortOffset, EEP_OFS_ZONETYPE)); // Get RFType pDevice->byRFType = SROMbyReadEmbedded(pDevice->PortOffset, EEP_OFS_RFTYPE); if ((pDevice->byRFType & RF_EMU) != 0) { // force change RevID for VT3253 emu pDevice->byRevId = 0x80; } pDevice->byRFType &= RF_MASK; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "pDevice->byRFType = %x\n", pDevice->byRFType); if (pDevice->bZoneRegExist == false) { pDevice->byZoneType = pDevice->abyEEPROM[EEP_OFS_ZONETYPE]; } DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "pDevice->byZoneType = %x\n", pDevice->byZoneType); //Init RF module RFbInit(pDevice); //Get Desire Power Value pDevice->byCurPwr = 0xFF; pDevice->byCCKPwr = SROMbyReadEmbedded(pDevice->PortOffset, EEP_OFS_PWR_CCK); pDevice->byOFDMPwrG = SROMbyReadEmbedded(pDevice->PortOffset, EEP_OFS_PWR_OFDMG); //byCCKPwrdBm = SROMbyReadEmbedded(pDevice->PortOffset, EEP_OFS_CCK_PWR_dBm); //byOFDMPwrdBm = SROMbyReadEmbedded(pDevice->PortOffset, EEP_OFS_OFDM_PWR_dBm); // Load power Table for (ii = 0; ii < CB_MAX_CHANNEL_24G; ii++) { pDevice->abyCCKPwrTbl[ii + 1] = SROMbyReadEmbedded(pDevice->PortOffset, (unsigned char)(ii + EEP_OFS_CCK_PWR_TBL)); if (pDevice->abyCCKPwrTbl[ii + 1] == 0) { pDevice->abyCCKPwrTbl[ii+1] = pDevice->byCCKPwr; } pDevice->abyOFDMPwrTbl[ii + 1] = SROMbyReadEmbedded(pDevice->PortOffset, (unsigned char)(ii + EEP_OFS_OFDM_PWR_TBL)); if (pDevice->abyOFDMPwrTbl[ii + 1] == 0) { pDevice->abyOFDMPwrTbl[ii + 1] = pDevice->byOFDMPwrG; } pDevice->abyCCKDefaultPwr[ii + 1] = byCCKPwrdBm; pDevice->abyOFDMDefaultPwr[ii + 1] = byOFDMPwrdBm; } //2008-8-4 <add> by chester //recover 12,13 ,14channel for EUROPE by 11 channel if (((pDevice->abyEEPROM[EEP_OFS_ZONETYPE] == ZoneType_Japan) || (pDevice->abyEEPROM[EEP_OFS_ZONETYPE] == ZoneType_Europe)) && (pDevice->byOriginalZonetype == ZoneType_USA)) { for (ii = 11; ii < 14; ii++) { pDevice->abyCCKPwrTbl[ii] = pDevice->abyCCKPwrTbl[10]; pDevice->abyOFDMPwrTbl[ii] = pDevice->abyOFDMPwrTbl[10]; } } // Load OFDM A Power Table for (ii = 0; ii < CB_MAX_CHANNEL_5G; ii++) { //RobertYu:20041224, bug using CB_MAX_CHANNEL pDevice->abyOFDMPwrTbl[ii + CB_MAX_CHANNEL_24G + 1] = SROMbyReadEmbedded(pDevice->PortOffset, (unsigned char)(ii + EEP_OFS_OFDMA_PWR_TBL)); pDevice->abyOFDMDefaultPwr[ii + CB_MAX_CHANNEL_24G + 1] = SROMbyReadEmbedded(pDevice->PortOffset, (unsigned char)(ii + EEP_OFS_OFDMA_PWR_dBm)); } init_channel_table((void *)pDevice); if (pDevice->byLocalID > REV_ID_VT3253_B1) { MACvSelectPage1(pDevice->PortOffset); VNSvOutPortB(pDevice->PortOffset + MAC_REG_MSRCTL + 1, (MSRCTL1_TXPWR | MSRCTL1_CSAPAREN)); MACvSelectPage0(pDevice->PortOffset); } // use relative tx timeout and 802.11i D4 MACvWordRegBitsOn(pDevice->PortOffset, MAC_REG_CFG, (CFG_TKIPOPT | CFG_NOTXTIMEOUT)); // set performance parameter by registry MACvSetShortRetryLimit(pDevice->PortOffset, pDevice->byShortRetryLimit); MACvSetLongRetryLimit(pDevice->PortOffset, pDevice->byLongRetryLimit); // reset TSF counter VNSvOutPortB(pDevice->PortOffset + MAC_REG_TFTCTL, TFTCTL_TSFCNTRST); // enable TSF counter VNSvOutPortB(pDevice->PortOffset + MAC_REG_TFTCTL, TFTCTL_TSFCNTREN); // initialize BBP registers BBbVT3253Init(pDevice); if (pDevice->bUpdateBBVGA) { pDevice->byBBVGACurrent = pDevice->abyBBVGA[0]; pDevice->byBBVGANew = pDevice->byBBVGACurrent; BBvSetVGAGainOffset(pDevice, pDevice->abyBBVGA[0]); } BBvSetRxAntennaMode(pDevice->PortOffset, pDevice->byRxAntennaMode); BBvSetTxAntennaMode(pDevice->PortOffset, pDevice->byTxAntennaMode); pDevice->byCurrentCh = 0; //pDevice->NetworkType = Ndis802_11Automode; // Set BB and packet type at the same time. // Set Short Slot Time, xIFS, and RSPINF. if (pDevice->uConnectionRate == RATE_AUTO) { pDevice->wCurrentRate = RATE_54M; } else { pDevice->wCurrentRate = (unsigned short)pDevice->uConnectionRate; } // default G Mode VNTWIFIbConfigPhyMode(pDevice->pMgmt, PHY_TYPE_11G); VNTWIFIbConfigPhyMode(pDevice->pMgmt, PHY_TYPE_AUTO); pDevice->bRadioOff = false; pDevice->byRadioCtl = SROMbyReadEmbedded(pDevice->PortOffset, EEP_OFS_RADIOCTL); pDevice->bHWRadioOff = false; if (pDevice->byRadioCtl & EEP_RADIOCTL_ENABLE) { // Get GPIO MACvGPIOIn(pDevice->PortOffset, &pDevice->byGPIO); //2008-4-14 <add> by chester for led issue #ifdef FOR_LED_ON_NOTEBOOK if (pDevice->byGPIO & GPIO0_DATA) { pDevice->bHWRadioOff = true; } if (!(pDevice->byGPIO & GPIO0_DATA)) { pDevice->bHWRadioOff = false; } } if ((pDevice->bRadioControlOff == true)) { CARDbRadioPowerOff(pDevice); } else CARDbRadioPowerOn(pDevice); #else if (((pDevice->byGPIO & GPIO0_DATA) && !(pDevice->byRadioCtl & EEP_RADIOCTL_INV)) || (!(pDevice->byGPIO & GPIO0_DATA) && (pDevice->byRadioCtl & EEP_RADIOCTL_INV))) { pDevice->bHWRadioOff = true; } } if ((pDevice->bHWRadioOff == true) || (pDevice->bRadioControlOff == true)) { CARDbRadioPowerOff(pDevice); } #endif } pMgmt->eScanType = WMAC_SCAN_PASSIVE; // get Permanent network address SROMvReadEtherAddress(pDevice->PortOffset, pDevice->abyCurrentNetAddr); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Network address = %pM\n", pDevice->abyCurrentNetAddr); // reset Tx pointer CARDvSafeResetRx(pDevice); // reset Rx pointer CARDvSafeResetTx(pDevice); if (pDevice->byLocalID <= REV_ID_VT3253_A1) { MACvRegBitsOn(pDevice->PortOffset, MAC_REG_RCR, RCR_WPAERR); } pDevice->eEncryptionStatus = Ndis802_11EncryptionDisabled; // Turn On Rx DMA MACvReceive0(pDevice->PortOffset); MACvReceive1(pDevice->PortOffset); // start the adapter MACvStart(pDevice->PortOffset); netif_stop_queue(pDevice->dev); } static void device_init_diversity_timer(PSDevice pDevice) { init_timer(&pDevice->TimerSQ3Tmax1); pDevice->TimerSQ3Tmax1.data = (unsigned long) pDevice; pDevice->TimerSQ3Tmax1.function = (TimerFunction)TimerSQ3CallBack; pDevice->TimerSQ3Tmax1.expires = RUN_AT(HZ); init_timer(&pDevice->TimerSQ3Tmax2); pDevice->TimerSQ3Tmax2.data = (unsigned long) pDevice; pDevice->TimerSQ3Tmax2.function = (TimerFunction)TimerSQ3CallBack; pDevice->TimerSQ3Tmax2.expires = RUN_AT(HZ); init_timer(&pDevice->TimerSQ3Tmax3); pDevice->TimerSQ3Tmax3.data = (unsigned long) pDevice; pDevice->TimerSQ3Tmax3.function = (TimerFunction)TimerState1CallBack; pDevice->TimerSQ3Tmax3.expires = RUN_AT(HZ); return; } static bool device_release_WPADEV(PSDevice pDevice) { viawget_wpa_header *wpahdr; int ii = 0; // wait_queue_head_t Set_wait; //send device close to wpa_supplicnat layer if (pDevice->bWPADEVUp == true) { wpahdr = (viawget_wpa_header *)pDevice->skb->data; wpahdr->type = VIAWGET_DEVICECLOSE_MSG; wpahdr->resp_ie_len = 0; wpahdr->req_ie_len = 0; skb_put(pDevice->skb, sizeof(viawget_wpa_header)); pDevice->skb->dev = pDevice->wpadev; skb_reset_mac_header(pDevice->skb); pDevice->skb->pkt_type = PACKET_HOST; pDevice->skb->protocol = htons(ETH_P_802_2); memset(pDevice->skb->cb, 0, sizeof(pDevice->skb->cb)); netif_rx(pDevice->skb); pDevice->skb = dev_alloc_skb((int)pDevice->rx_buf_sz); //wait release WPADEV // init_waitqueue_head(&Set_wait); // wait_event_timeout(Set_wait, ((pDevice->wpadev==NULL)&&(pDevice->skb == NULL)),5*HZ); //1s wait while ((pDevice->bWPADEVUp == true)) { set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(HZ / 20); //wait 50ms ii++; if (ii > 20) break; } } return true; } static const struct net_device_ops device_netdev_ops = { .ndo_open = device_open, .ndo_stop = device_close, .ndo_do_ioctl = device_ioctl, .ndo_get_stats = device_get_stats, .ndo_start_xmit = device_xmit, .ndo_set_rx_mode = device_set_multi, }; static int vt6655_probe(struct pci_dev *pcid, const struct pci_device_id *ent) { static bool bFirst = true; struct net_device *dev = NULL; PCHIP_INFO pChip_info = (PCHIP_INFO)ent->driver_data; PSDevice pDevice; int rc; if (device_nics++ >= MAX_UINTS) { printk(KERN_NOTICE DEVICE_NAME ": already found %d NICs\n", device_nics); return -ENODEV; } dev = alloc_etherdev(sizeof(DEVICE_INFO)); pDevice = (PSDevice) netdev_priv(dev); if (dev == NULL) { printk(KERN_ERR DEVICE_NAME ": allocate net device failed \n"); return -ENOMEM; } // Chain it all together // SET_MODULE_OWNER(dev); SET_NETDEV_DEV(dev, &pcid->dev); if (bFirst) { printk(KERN_NOTICE "%s Ver. %s\n", DEVICE_FULL_DRV_NAM, DEVICE_VERSION); printk(KERN_NOTICE "Copyright (c) 2003 VIA Networking Technologies, Inc.\n"); bFirst = false; } vt6655_init_info(pcid, &pDevice, pChip_info); pDevice->dev = dev; pDevice->next_module = root_device_dev; root_device_dev = dev; if (pci_enable_device(pcid)) { device_free_info(pDevice); return -ENODEV; } dev->irq = pcid->irq; #ifdef DEBUG printk("Before get pci_info memaddr is %x\n", pDevice->memaddr); #endif if (device_get_pci_info(pDevice, pcid) == false) { printk(KERN_ERR DEVICE_NAME ": Failed to find PCI device.\n"); device_free_info(pDevice); return -ENODEV; } #if 1 #ifdef DEBUG //pci_read_config_byte(pcid, PCI_BASE_ADDRESS_0, &pDevice->byRevId); printk("after get pci_info memaddr is %x, io addr is %x,io_size is %d\n", pDevice->memaddr, pDevice->ioaddr, pDevice->io_size); { int i; u32 bar, len; u32 address[] = { PCI_BASE_ADDRESS_0, PCI_BASE_ADDRESS_1, PCI_BASE_ADDRESS_2, PCI_BASE_ADDRESS_3, PCI_BASE_ADDRESS_4, PCI_BASE_ADDRESS_5, 0}; for (i = 0; address[i]; i++) { //pci_write_config_dword(pcid,address[i], 0xFFFFFFFF); pci_read_config_dword(pcid, address[i], &bar); printk("bar %d is %x\n", i, bar); if (!bar) { printk("bar %d not implemented\n", i); continue; } if (bar & PCI_BASE_ADDRESS_SPACE_IO) { /* This is IO */ len = bar & (PCI_BASE_ADDRESS_IO_MASK & 0xFFFF); len = len & ~(len - 1); printk("IO space: len in IO %x, BAR %d\n", len, i); } else { len = bar & 0xFFFFFFF0; len = ~len + 1; printk("len in MEM %x, BAR %d\n", len, i); } } } #endif #endif #ifdef DEBUG //return 0; #endif pDevice->PortOffset = (unsigned long)ioremap(pDevice->memaddr & PCI_BASE_ADDRESS_MEM_MASK, pDevice->io_size); //pDevice->PortOffset = (unsigned long)ioremap(pDevice->ioaddr & PCI_BASE_ADDRESS_IO_MASK, pDevice->io_size); if (pDevice->PortOffset == 0) { printk(KERN_ERR DEVICE_NAME ": Failed to IO remapping ..\n"); device_free_info(pDevice); return -ENODEV; } rc = pci_request_regions(pcid, DEVICE_NAME); if (rc) { printk(KERN_ERR DEVICE_NAME ": Failed to find PCI device\n"); device_free_info(pDevice); return -ENODEV; } dev->base_addr = pDevice->ioaddr; #ifdef PLICE_DEBUG unsigned char value; VNSvInPortB(pDevice->PortOffset+0x4F, &value); printk("Before write: value is %x\n", value); //VNSvInPortB(pDevice->PortOffset+0x3F, 0x00); VNSvOutPortB(pDevice->PortOffset, value); VNSvInPortB(pDevice->PortOffset+0x4F, &value); printk("After write: value is %x\n", value); #endif #ifdef IO_MAP pDevice->PortOffset = pDevice->ioaddr; #endif // do reset if (!MACbSoftwareReset(pDevice->PortOffset)) { printk(KERN_ERR DEVICE_NAME ": Failed to access MAC hardware..\n"); device_free_info(pDevice); return -ENODEV; } // initial to reload eeprom MACvInitialize(pDevice->PortOffset); MACvReadEtherAddress(pDevice->PortOffset, dev->dev_addr); device_get_options(pDevice, device_nics-1, dev->name); device_set_options(pDevice); //Mask out the options cannot be set to the chip pDevice->sOpts.flags &= pChip_info->flags; //Enable the chip specified capabilities pDevice->flags = pDevice->sOpts.flags | (pChip_info->flags & 0xFF000000UL); pDevice->tx_80211 = device_dma0_tx_80211; pDevice->sMgmtObj.pAdapter = (void *)pDevice; pDevice->pMgmt = &(pDevice->sMgmtObj); dev->irq = pcid->irq; dev->netdev_ops = &device_netdev_ops; dev->wireless_handlers = (struct iw_handler_def *)&iwctl_handler_def; rc = register_netdev(dev); if (rc) { printk(KERN_ERR DEVICE_NAME " Failed to register netdev\n"); device_free_info(pDevice); return -ENODEV; } device_print_info(pDevice); pci_set_drvdata(pcid, pDevice); return 0; } static void device_print_info(PSDevice pDevice) { struct net_device *dev = pDevice->dev; DBG_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: %s\n", dev->name, get_chip_name(pDevice->chip_id)); DBG_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: MAC=%pM", dev->name, dev->dev_addr); #ifdef IO_MAP DBG_PRT(MSG_LEVEL_INFO, KERN_INFO " IO=0x%lx ", (unsigned long)pDevice->ioaddr); DBG_PRT(MSG_LEVEL_INFO, KERN_INFO " IRQ=%d \n", pDevice->dev->irq); #else DBG_PRT(MSG_LEVEL_INFO, KERN_INFO " IO=0x%lx Mem=0x%lx ", (unsigned long)pDevice->ioaddr, (unsigned long)pDevice->PortOffset); DBG_PRT(MSG_LEVEL_INFO, KERN_INFO " IRQ=%d \n", pDevice->dev->irq); #endif } static void vt6655_init_info(struct pci_dev *pcid, PSDevice *ppDevice, PCHIP_INFO pChip_info) { PSDevice p; memset(*ppDevice, 0, sizeof(DEVICE_INFO)); if (pDevice_Infos == NULL) { pDevice_Infos = *ppDevice; } else { for (p = pDevice_Infos; p->next != NULL; p = p->next) do {} while (0); p->next = *ppDevice; (*ppDevice)->prev = p; } (*ppDevice)->pcid = pcid; (*ppDevice)->chip_id = pChip_info->chip_id; (*ppDevice)->io_size = pChip_info->io_size; (*ppDevice)->nTxQueues = pChip_info->nTxQueue; (*ppDevice)->multicast_limit = 32; spin_lock_init(&((*ppDevice)->lock)); } static bool device_get_pci_info(PSDevice pDevice, struct pci_dev *pcid) { u16 pci_cmd; u8 b; unsigned int cis_addr; #ifdef PLICE_DEBUG unsigned char pci_config[256]; unsigned char value = 0x00; int ii, j; u16 max_lat = 0x0000; memset(pci_config, 0x00, 256); #endif pci_read_config_byte(pcid, PCI_REVISION_ID, &pDevice->byRevId); pci_read_config_word(pcid, PCI_SUBSYSTEM_ID, &pDevice->SubSystemID); pci_read_config_word(pcid, PCI_SUBSYSTEM_VENDOR_ID, &pDevice->SubVendorID); pci_read_config_word(pcid, PCI_COMMAND, (u16 *)&(pci_cmd)); pci_set_master(pcid); pDevice->memaddr = pci_resource_start(pcid, 0); pDevice->ioaddr = pci_resource_start(pcid, 1); #ifdef DEBUG // pDevice->ioaddr = pci_resource_start(pcid, 0); // pDevice->memaddr = pci_resource_start(pcid,1); #endif cis_addr = pci_resource_start(pcid, 2); pDevice->pcid = pcid; pci_read_config_byte(pcid, PCI_COMMAND, &b); pci_write_config_byte(pcid, PCI_COMMAND, (b|PCI_COMMAND_MASTER)); #ifdef PLICE_DEBUG //pci_read_config_word(pcid,PCI_MAX_LAT,&max_lat); //for (ii=0;ii<0xFF;ii++) //pci_read_config_word(pcid,PCI_MAX_LAT,&max_lat); //max_lat = 0x20; //pci_write_config_word(pcid,PCI_MAX_LAT,max_lat); //pci_read_config_word(pcid,PCI_MAX_LAT,&max_lat); for (ii = 0; ii < 0xFF; ii++) { pci_read_config_byte(pcid, ii, &value); pci_config[ii] = value; } for (ii = 0, j = 1; ii < 0x100; ii++, j++) { if (j % 16 == 0) { printk("%x:", pci_config[ii]); printk("\n"); } else { printk("%x:", pci_config[ii]); } } #endif return true; } static void device_free_info(PSDevice pDevice) { PSDevice ptr; struct net_device *dev = pDevice->dev; ASSERT(pDevice); //2008-0714-01<Add>by chester device_release_WPADEV(pDevice); //2008-07-21-01<Add>by MikeLiu //unregister wpadev if (wpa_set_wpadev(pDevice, 0) != 0) printk("unregister wpadev fail?\n"); if (pDevice_Infos == NULL) return; for (ptr = pDevice_Infos; ptr && (ptr != pDevice); ptr = ptr->next) do {} while (0); if (ptr == pDevice) { if (ptr == pDevice_Infos) pDevice_Infos = ptr->next; else ptr->prev->next = ptr->next; } else { DBG_PRT(MSG_LEVEL_ERR, KERN_ERR "info struct not found\n"); return; } #ifdef HOSTAP if (dev) vt6655_hostap_set_hostapd(pDevice, 0, 0); #endif if (dev) unregister_netdev(dev); if (pDevice->PortOffset) iounmap((void *)pDevice->PortOffset); if (pDevice->pcid) pci_release_regions(pDevice->pcid); if (dev) free_netdev(dev); if (pDevice->pcid) { pci_set_drvdata(pDevice->pcid, NULL); } } static bool device_init_rings(PSDevice pDevice) { void *vir_pool; /*allocate all RD/TD rings a single pool*/ vir_pool = pci_alloc_consistent(pDevice->pcid, pDevice->sOpts.nRxDescs0 * sizeof(SRxDesc) + pDevice->sOpts.nRxDescs1 * sizeof(SRxDesc) + pDevice->sOpts.nTxDescs[0] * sizeof(STxDesc) + pDevice->sOpts.nTxDescs[1] * sizeof(STxDesc), &pDevice->pool_dma); if (vir_pool == NULL) { DBG_PRT(MSG_LEVEL_ERR, KERN_ERR "%s : allocate desc dma memory failed\n", pDevice->dev->name); return false; } memset(vir_pool, 0, pDevice->sOpts.nRxDescs0 * sizeof(SRxDesc) + pDevice->sOpts.nRxDescs1 * sizeof(SRxDesc) + pDevice->sOpts.nTxDescs[0] * sizeof(STxDesc) + pDevice->sOpts.nTxDescs[1] * sizeof(STxDesc) ); pDevice->aRD0Ring = vir_pool; pDevice->aRD1Ring = vir_pool + pDevice->sOpts.nRxDescs0 * sizeof(SRxDesc); pDevice->rd0_pool_dma = pDevice->pool_dma; pDevice->rd1_pool_dma = pDevice->rd0_pool_dma + pDevice->sOpts.nRxDescs0 * sizeof(SRxDesc); pDevice->tx0_bufs = pci_alloc_consistent(pDevice->pcid, pDevice->sOpts.nTxDescs[0] * PKT_BUF_SZ + pDevice->sOpts.nTxDescs[1] * PKT_BUF_SZ + CB_BEACON_BUF_SIZE + CB_MAX_BUF_SIZE, &pDevice->tx_bufs_dma0); if (pDevice->tx0_bufs == NULL) { DBG_PRT(MSG_LEVEL_ERR, KERN_ERR "%s: allocate buf dma memory failed\n", pDevice->dev->name); pci_free_consistent(pDevice->pcid, pDevice->sOpts.nRxDescs0 * sizeof(SRxDesc) + pDevice->sOpts.nRxDescs1 * sizeof(SRxDesc) + pDevice->sOpts.nTxDescs[0] * sizeof(STxDesc) + pDevice->sOpts.nTxDescs[1] * sizeof(STxDesc), vir_pool, pDevice->pool_dma ); return false; } memset(pDevice->tx0_bufs, 0, pDevice->sOpts.nTxDescs[0] * PKT_BUF_SZ + pDevice->sOpts.nTxDescs[1] * PKT_BUF_SZ + CB_BEACON_BUF_SIZE + CB_MAX_BUF_SIZE ); pDevice->td0_pool_dma = pDevice->rd1_pool_dma + pDevice->sOpts.nRxDescs1 * sizeof(SRxDesc); pDevice->td1_pool_dma = pDevice->td0_pool_dma + pDevice->sOpts.nTxDescs[0] * sizeof(STxDesc); // vir_pool: pvoid type pDevice->apTD0Rings = vir_pool + pDevice->sOpts.nRxDescs0 * sizeof(SRxDesc) + pDevice->sOpts.nRxDescs1 * sizeof(SRxDesc); pDevice->apTD1Rings = vir_pool + pDevice->sOpts.nRxDescs0 * sizeof(SRxDesc) + pDevice->sOpts.nRxDescs1 * sizeof(SRxDesc) + pDevice->sOpts.nTxDescs[0] * sizeof(STxDesc); pDevice->tx1_bufs = pDevice->tx0_bufs + pDevice->sOpts.nTxDescs[0] * PKT_BUF_SZ; pDevice->tx_beacon_bufs = pDevice->tx1_bufs + pDevice->sOpts.nTxDescs[1] * PKT_BUF_SZ; pDevice->pbyTmpBuff = pDevice->tx_beacon_bufs + CB_BEACON_BUF_SIZE; pDevice->tx_bufs_dma1 = pDevice->tx_bufs_dma0 + pDevice->sOpts.nTxDescs[0] * PKT_BUF_SZ; pDevice->tx_beacon_dma = pDevice->tx_bufs_dma1 + pDevice->sOpts.nTxDescs[1] * PKT_BUF_SZ; return true; } static void device_free_rings(PSDevice pDevice) { pci_free_consistent(pDevice->pcid, pDevice->sOpts.nRxDescs0 * sizeof(SRxDesc) + pDevice->sOpts.nRxDescs1 * sizeof(SRxDesc) + pDevice->sOpts.nTxDescs[0] * sizeof(STxDesc) + pDevice->sOpts.nTxDescs[1] * sizeof(STxDesc) , pDevice->aRD0Ring, pDevice->pool_dma ); if (pDevice->tx0_bufs) pci_free_consistent(pDevice->pcid, pDevice->sOpts.nTxDescs[0] * PKT_BUF_SZ + pDevice->sOpts.nTxDescs[1] * PKT_BUF_SZ + CB_BEACON_BUF_SIZE + CB_MAX_BUF_SIZE, pDevice->tx0_bufs, pDevice->tx_bufs_dma0 ); } static void device_init_rd0_ring(PSDevice pDevice) { int i; dma_addr_t curr = pDevice->rd0_pool_dma; PSRxDesc pDesc; /* Init the RD0 ring entries */ for (i = 0; i < pDevice->sOpts.nRxDescs0; i ++, curr += sizeof(SRxDesc)) { pDesc = &(pDevice->aRD0Ring[i]); pDesc->pRDInfo = alloc_rd_info(); ASSERT(pDesc->pRDInfo); if (!device_alloc_rx_buf(pDevice, pDesc)) { DBG_PRT(MSG_LEVEL_ERR, KERN_ERR "%s: can not alloc rx bufs\n", pDevice->dev->name); } pDesc->next = &(pDevice->aRD0Ring[(i+1) % pDevice->sOpts.nRxDescs0]); pDesc->pRDInfo->curr_desc = cpu_to_le32(curr); pDesc->next_desc = cpu_to_le32(curr + sizeof(SRxDesc)); } if (i > 0) pDevice->aRD0Ring[i-1].next_desc = cpu_to_le32(pDevice->rd0_pool_dma); pDevice->pCurrRD[0] = &(pDevice->aRD0Ring[0]); } static void device_init_rd1_ring(PSDevice pDevice) { int i; dma_addr_t curr = pDevice->rd1_pool_dma; PSRxDesc pDesc; /* Init the RD1 ring entries */ for (i = 0; i < pDevice->sOpts.nRxDescs1; i ++, curr += sizeof(SRxDesc)) { pDesc = &(pDevice->aRD1Ring[i]); pDesc->pRDInfo = alloc_rd_info(); ASSERT(pDesc->pRDInfo); if (!device_alloc_rx_buf(pDevice, pDesc)) { DBG_PRT(MSG_LEVEL_ERR, KERN_ERR "%s: can not alloc rx bufs\n", pDevice->dev->name); } pDesc->next = &(pDevice->aRD1Ring[(i+1) % pDevice->sOpts.nRxDescs1]); pDesc->pRDInfo->curr_desc = cpu_to_le32(curr); pDesc->next_desc = cpu_to_le32(curr + sizeof(SRxDesc)); } if (i > 0) pDevice->aRD1Ring[i-1].next_desc = cpu_to_le32(pDevice->rd1_pool_dma); pDevice->pCurrRD[1] = &(pDevice->aRD1Ring[0]); } static void device_init_defrag_cb(PSDevice pDevice) { int i; PSDeFragControlBlock pDeF; /* Init the fragment ctl entries */ for (i = 0; i < CB_MAX_RX_FRAG; i++) { pDeF = &(pDevice->sRxDFCB[i]); if (!device_alloc_frag_buf(pDevice, pDeF)) { DBG_PRT(MSG_LEVEL_ERR, KERN_ERR "%s: can not alloc frag bufs\n", pDevice->dev->name); } } pDevice->cbDFCB = CB_MAX_RX_FRAG; pDevice->cbFreeDFCB = pDevice->cbDFCB; } static void device_free_rd0_ring(PSDevice pDevice) { int i; for (i = 0; i < pDevice->sOpts.nRxDescs0; i++) { PSRxDesc pDesc = &(pDevice->aRD0Ring[i]); PDEVICE_RD_INFO pRDInfo = pDesc->pRDInfo; pci_unmap_single(pDevice->pcid, pRDInfo->skb_dma, pDevice->rx_buf_sz, PCI_DMA_FROMDEVICE); dev_kfree_skb(pRDInfo->skb); kfree((void *)pDesc->pRDInfo); } } static void device_free_rd1_ring(PSDevice pDevice) { int i; for (i = 0; i < pDevice->sOpts.nRxDescs1; i++) { PSRxDesc pDesc = &(pDevice->aRD1Ring[i]); PDEVICE_RD_INFO pRDInfo = pDesc->pRDInfo; pci_unmap_single(pDevice->pcid, pRDInfo->skb_dma, pDevice->rx_buf_sz, PCI_DMA_FROMDEVICE); dev_kfree_skb(pRDInfo->skb); kfree((void *)pDesc->pRDInfo); } } static void device_free_frag_buf(PSDevice pDevice) { PSDeFragControlBlock pDeF; int i; for (i = 0; i < CB_MAX_RX_FRAG; i++) { pDeF = &(pDevice->sRxDFCB[i]); if (pDeF->skb) dev_kfree_skb(pDeF->skb); } } static void device_init_td0_ring(PSDevice pDevice) { int i; dma_addr_t curr; PSTxDesc pDesc; curr = pDevice->td0_pool_dma; for (i = 0; i < pDevice->sOpts.nTxDescs[0]; i++, curr += sizeof(STxDesc)) { pDesc = &(pDevice->apTD0Rings[i]); pDesc->pTDInfo = alloc_td_info(); ASSERT(pDesc->pTDInfo); if (pDevice->flags & DEVICE_FLAGS_TX_ALIGN) { pDesc->pTDInfo->buf = pDevice->tx0_bufs + (i)*PKT_BUF_SZ; pDesc->pTDInfo->buf_dma = pDevice->tx_bufs_dma0 + (i)*PKT_BUF_SZ; } pDesc->next = &(pDevice->apTD0Rings[(i+1) % pDevice->sOpts.nTxDescs[0]]); pDesc->pTDInfo->curr_desc = cpu_to_le32(curr); pDesc->next_desc = cpu_to_le32(curr+sizeof(STxDesc)); } if (i > 0) pDevice->apTD0Rings[i-1].next_desc = cpu_to_le32(pDevice->td0_pool_dma); pDevice->apTailTD[0] = pDevice->apCurrTD[0] = &(pDevice->apTD0Rings[0]); } static void device_init_td1_ring(PSDevice pDevice) { int i; dma_addr_t curr; PSTxDesc pDesc; /* Init the TD ring entries */ curr = pDevice->td1_pool_dma; for (i = 0; i < pDevice->sOpts.nTxDescs[1]; i++, curr += sizeof(STxDesc)) { pDesc = &(pDevice->apTD1Rings[i]); pDesc->pTDInfo = alloc_td_info(); ASSERT(pDesc->pTDInfo); if (pDevice->flags & DEVICE_FLAGS_TX_ALIGN) { pDesc->pTDInfo->buf = pDevice->tx1_bufs + (i) * PKT_BUF_SZ; pDesc->pTDInfo->buf_dma = pDevice->tx_bufs_dma1 + (i) * PKT_BUF_SZ; } pDesc->next = &(pDevice->apTD1Rings[(i + 1) % pDevice->sOpts.nTxDescs[1]]); pDesc->pTDInfo->curr_desc = cpu_to_le32(curr); pDesc->next_desc = cpu_to_le32(curr+sizeof(STxDesc)); } if (i > 0) pDevice->apTD1Rings[i-1].next_desc = cpu_to_le32(pDevice->td1_pool_dma); pDevice->apTailTD[1] = pDevice->apCurrTD[1] = &(pDevice->apTD1Rings[0]); } static void device_free_td0_ring(PSDevice pDevice) { int i; for (i = 0; i < pDevice->sOpts.nTxDescs[0]; i++) { PSTxDesc pDesc = &(pDevice->apTD0Rings[i]); PDEVICE_TD_INFO pTDInfo = pDesc->pTDInfo; if (pTDInfo->skb_dma && (pTDInfo->skb_dma != pTDInfo->buf_dma)) pci_unmap_single(pDevice->pcid, pTDInfo->skb_dma, pTDInfo->skb->len, PCI_DMA_TODEVICE); if (pTDInfo->skb) dev_kfree_skb(pTDInfo->skb); kfree((void *)pDesc->pTDInfo); } } static void device_free_td1_ring(PSDevice pDevice) { int i; for (i = 0; i < pDevice->sOpts.nTxDescs[1]; i++) { PSTxDesc pDesc = &(pDevice->apTD1Rings[i]); PDEVICE_TD_INFO pTDInfo = pDesc->pTDInfo; if (pTDInfo->skb_dma && (pTDInfo->skb_dma != pTDInfo->buf_dma)) pci_unmap_single(pDevice->pcid, pTDInfo->skb_dma, pTDInfo->skb->len, PCI_DMA_TODEVICE); if (pTDInfo->skb) dev_kfree_skb(pTDInfo->skb); kfree((void *)pDesc->pTDInfo); } } /*-----------------------------------------------------------------*/ static int device_rx_srv(PSDevice pDevice, unsigned int uIdx) { PSRxDesc pRD; int works = 0; for (pRD = pDevice->pCurrRD[uIdx]; pRD->m_rd0RD0.f1Owner == OWNED_BY_HOST; pRD = pRD->next) { // DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "pDevice->pCurrRD = %x, works = %d\n", pRD, works); if (works++ > 15) break; if (device_receive_frame(pDevice, pRD)) { if (!device_alloc_rx_buf(pDevice, pRD)) { DBG_PRT(MSG_LEVEL_ERR, KERN_ERR "%s: can not allocate rx buf\n", pDevice->dev->name); break; } } pRD->m_rd0RD0.f1Owner = OWNED_BY_NIC; pDevice->dev->last_rx = jiffies; } pDevice->pCurrRD[uIdx] = pRD; return works; } static bool device_alloc_rx_buf(PSDevice pDevice, PSRxDesc pRD) { PDEVICE_RD_INFO pRDInfo = pRD->pRDInfo; pRDInfo->skb = dev_alloc_skb((int)pDevice->rx_buf_sz); if (pRDInfo->skb == NULL) return false; ASSERT(pRDInfo->skb); pRDInfo->skb->dev = pDevice->dev; pRDInfo->skb_dma = pci_map_single(pDevice->pcid, skb_tail_pointer(pRDInfo->skb), pDevice->rx_buf_sz, PCI_DMA_FROMDEVICE); *((unsigned int *)&(pRD->m_rd0RD0)) = 0; /* FIX cast */ pRD->m_rd0RD0.wResCount = cpu_to_le16(pDevice->rx_buf_sz); pRD->m_rd0RD0.f1Owner = OWNED_BY_NIC; pRD->m_rd1RD1.wReqCount = cpu_to_le16(pDevice->rx_buf_sz); pRD->buff_addr = cpu_to_le32(pRDInfo->skb_dma); return true; } bool device_alloc_frag_buf(PSDevice pDevice, PSDeFragControlBlock pDeF) { pDeF->skb = dev_alloc_skb((int)pDevice->rx_buf_sz); if (pDeF->skb == NULL) return false; ASSERT(pDeF->skb); pDeF->skb->dev = pDevice->dev; return true; } static int device_tx_srv(PSDevice pDevice, unsigned int uIdx) { PSTxDesc pTD; bool bFull = false; int works = 0; unsigned char byTsr0; unsigned char byTsr1; unsigned int uFrameSize, uFIFOHeaderSize; PSTxBufHead pTxBufHead; struct net_device_stats *pStats = &pDevice->stats; struct sk_buff *skb; unsigned int uNodeIndex; PSMgmtObject pMgmt = pDevice->pMgmt; for (pTD = pDevice->apTailTD[uIdx]; pDevice->iTDUsed[uIdx] > 0; pTD = pTD->next) { if (pTD->m_td0TD0.f1Owner == OWNED_BY_NIC) break; if (works++ > 15) break; byTsr0 = pTD->m_td0TD0.byTSR0; byTsr1 = pTD->m_td0TD0.byTSR1; //Only the status of first TD in the chain is correct if (pTD->m_td1TD1.byTCR & TCR_STP) { if ((pTD->pTDInfo->byFlags & TD_FLAGS_NETIF_SKB) != 0) { uFIFOHeaderSize = pTD->pTDInfo->dwHeaderLength; uFrameSize = pTD->pTDInfo->dwReqCount - uFIFOHeaderSize; pTxBufHead = (PSTxBufHead) (pTD->pTDInfo->buf); // Update the statistics based on the Transmit status // now, we DONT check TSR0_CDH STAvUpdateTDStatCounter(&pDevice->scStatistic, byTsr0, byTsr1, (unsigned char *)(pTD->pTDInfo->buf + uFIFOHeaderSize), uFrameSize, uIdx); BSSvUpdateNodeTxCounter(pDevice, byTsr0, byTsr1, (unsigned char *)(pTD->pTDInfo->buf), uFIFOHeaderSize ); if (!(byTsr1 & TSR1_TERR)) { if (byTsr0 != 0) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " Tx[%d] OK but has error. tsr1[%02X] tsr0[%02X].\n", (int)uIdx, byTsr1, byTsr0); } if ((pTxBufHead->wFragCtl & FRAGCTL_ENDFRAG) != FRAGCTL_NONFRAG) { pDevice->s802_11Counter.TransmittedFragmentCount++; } pStats->tx_packets++; pStats->tx_bytes += pTD->pTDInfo->skb->len; } else { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " Tx[%d] dropped & tsr1[%02X] tsr0[%02X].\n", (int)uIdx, byTsr1, byTsr0); pStats->tx_errors++; pStats->tx_dropped++; } } if ((pTD->pTDInfo->byFlags & TD_FLAGS_PRIV_SKB) != 0) { if (pDevice->bEnableHostapd) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "tx call back netif.. \n"); skb = pTD->pTDInfo->skb; skb->dev = pDevice->apdev; skb_reset_mac_header(skb); skb->pkt_type = PACKET_OTHERHOST; //skb->protocol = htons(ETH_P_802_2); memset(skb->cb, 0, sizeof(skb->cb)); netif_rx(skb); } } if (byTsr1 & TSR1_TERR) { if ((pTD->pTDInfo->byFlags & TD_FLAGS_PRIV_SKB) != 0) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " Tx[%d] fail has error. tsr1[%02X] tsr0[%02X].\n", (int)uIdx, byTsr1, byTsr0); } // DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " Tx[%d] fail has error. tsr1[%02X] tsr0[%02X].\n", // (int)uIdx, byTsr1, byTsr0); if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) && (pTD->pTDInfo->byFlags & TD_FLAGS_NETIF_SKB)) { unsigned short wAID; unsigned char byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80}; skb = pTD->pTDInfo->skb; if (BSSDBbIsSTAInNodeDB(pMgmt, (unsigned char *)(skb->data), &uNodeIndex)) { if (pMgmt->sNodeDBTable[uNodeIndex].bPSEnable) { skb_queue_tail(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue, skb); pMgmt->sNodeDBTable[uNodeIndex].wEnQueueCnt++; // set tx map wAID = pMgmt->sNodeDBTable[uNodeIndex].wAID; pMgmt->abyPSTxMap[wAID >> 3] |= byMask[wAID & 7]; pTD->pTDInfo->byFlags &= ~(TD_FLAGS_NETIF_SKB); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "tx_srv:tx fail re-queue sta index= %d, QueCnt= %d\n" , (int)uNodeIndex, pMgmt->sNodeDBTable[uNodeIndex].wEnQueueCnt); pStats->tx_errors--; pStats->tx_dropped--; } } } } device_free_tx_buf(pDevice, pTD); pDevice->iTDUsed[uIdx]--; } } if (uIdx == TYPE_AC0DMA) { // RESERV_AC0DMA reserved for relay if (AVAIL_TD(pDevice, uIdx) < RESERV_AC0DMA) { bFull = true; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " AC0DMA is Full = %d\n", pDevice->iTDUsed[uIdx]); } if (netif_queue_stopped(pDevice->dev) && (bFull == false)) { netif_wake_queue(pDevice->dev); } } pDevice->apTailTD[uIdx] = pTD; return works; } static void device_error(PSDevice pDevice, unsigned short status) { if (status & ISR_FETALERR) { DBG_PRT(MSG_LEVEL_ERR, KERN_ERR "%s: Hardware fatal error.\n", pDevice->dev->name); netif_stop_queue(pDevice->dev); del_timer(&pDevice->sTimerCommand); del_timer(&(pDevice->pMgmt->sTimerSecondCallback)); pDevice->bCmdRunning = false; MACbShutdown(pDevice->PortOffset); return; } } static void device_free_tx_buf(PSDevice pDevice, PSTxDesc pDesc) { PDEVICE_TD_INFO pTDInfo = pDesc->pTDInfo; struct sk_buff *skb = pTDInfo->skb; // pre-allocated buf_dma can't be unmapped. if (pTDInfo->skb_dma && (pTDInfo->skb_dma != pTDInfo->buf_dma)) { pci_unmap_single(pDevice->pcid, pTDInfo->skb_dma, skb->len, PCI_DMA_TODEVICE); } if ((pTDInfo->byFlags & TD_FLAGS_NETIF_SKB) != 0) dev_kfree_skb_irq(skb); pTDInfo->skb_dma = 0; pTDInfo->skb = 0; pTDInfo->byFlags = 0; } //PLICE_DEBUG -> void InitRxManagementQueue(PSDevice pDevice) { pDevice->rxManeQueue.packet_num = 0; pDevice->rxManeQueue.head = pDevice->rxManeQueue.tail = 0; } //PLICE_DEBUG<- //PLICE_DEBUG -> int MlmeThread( void *Context) { PSDevice pDevice = (PSDevice) Context; PSRxMgmtPacket pRxMgmtPacket; // int i; //complete(&pDevice->notify); //i = 0; #if 1 while (1) { //down(&pDevice->mlme_semaphore); // pRxMgmtPacket = DeQueue(pDevice); #if 1 spin_lock_irq(&pDevice->lock); while (pDevice->rxManeQueue.packet_num != 0) { pRxMgmtPacket = DeQueue(pDevice); //pDevice; //DequeueManageObject(pDevice->FirstRecvMngList, pDevice->LastRecvMngList); vMgrRxManagePacket(pDevice, pDevice->pMgmt, pRxMgmtPacket); } spin_unlock_irq(&pDevice->lock); if (mlme_kill == 0) break; //udelay(200); #endif schedule(); if (mlme_kill == 0) break; } #endif return 0; } static int device_open(struct net_device *dev) { PSDevice pDevice = (PSDevice)netdev_priv(dev); int i; #ifdef WPA_SM_Transtatus extern SWPAResult wpa_Result; #endif pDevice->rx_buf_sz = PKT_BUF_SZ; if (!device_init_rings(pDevice)) { return -ENOMEM; } //2008-5-13 <add> by chester i = request_irq(pDevice->pcid->irq, &device_intr, IRQF_SHARED, dev->name, dev); if (i) return i; #ifdef WPA_SM_Transtatus memset(wpa_Result.ifname, 0, sizeof(wpa_Result.ifname)); wpa_Result.proto = 0; wpa_Result.key_mgmt = 0; wpa_Result.eap_type = 0; wpa_Result.authenticated = false; pDevice->fWPA_Authened = false; #endif DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "call device init rd0 ring\n"); device_init_rd0_ring(pDevice); device_init_rd1_ring(pDevice); device_init_defrag_cb(pDevice); device_init_td0_ring(pDevice); device_init_td1_ring(pDevice); // VNTWIFIvSet11h(pDevice->pMgmt, pDevice->b11hEnable); if (pDevice->bDiversityRegCtlON) { device_init_diversity_timer(pDevice); } vMgrObjectInit(pDevice); vMgrTimerInit(pDevice); //PLICE_DEBUG-> #ifdef TASK_LET tasklet_init(&pDevice->RxMngWorkItem, (void *)MngWorkItem, (unsigned long)pDevice); #endif #ifdef THREAD InitRxManagementQueue(pDevice); mlme_kill = 0; mlme_task = kthread_run(MlmeThread, (void *)pDevice, "MLME"); if (IS_ERR(mlme_task)) { printk("thread create fail\n"); return -1; } mlme_kill = 1; #endif //wait_for_completion(&pDevice->notify); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "call device_init_registers\n"); device_init_registers(pDevice, DEVICE_INIT_COLD); MACvReadEtherAddress(pDevice->PortOffset, pDevice->abyCurrentNetAddr); memcpy(pDevice->pMgmt->abyMACAddr, pDevice->abyCurrentNetAddr, ETH_ALEN); device_set_multi(pDevice->dev); // Init for Key Management KeyvInitTable(&pDevice->sKey, pDevice->PortOffset); add_timer(&(pDevice->pMgmt->sTimerSecondCallback)); #ifdef WPA_SUPPLICANT_DRIVER_WEXT_SUPPORT /* pDevice->bwextstep0 = false; pDevice->bwextstep1 = false; pDevice->bwextstep2 = false; pDevice->bwextstep3 = false; */ pDevice->bwextcount = 0; pDevice->bWPASuppWextEnabled = false; #endif pDevice->byReAssocCount = 0; pDevice->bWPADEVUp = false; // Patch: if WEP key already set by iwconfig but device not yet open if ((pDevice->bEncryptionEnable == true) && (pDevice->bTransmitKey == true)) { KeybSetDefaultKey(&(pDevice->sKey), (unsigned long)(pDevice->byKeyIndex | (1 << 31)), pDevice->uKeyLength, NULL, pDevice->abyKey, KEY_CTL_WEP, pDevice->PortOffset, pDevice->byLocalID ); pDevice->eEncryptionStatus = Ndis802_11Encryption1Enabled; } DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "call MACvIntEnable\n"); MACvIntEnable(pDevice->PortOffset, IMR_MASK_VALUE); if (pDevice->pMgmt->eConfigMode == WMAC_CONFIG_AP) { bScheduleCommand((void *)pDevice, WLAN_CMD_RUN_AP, NULL); } else { bScheduleCommand((void *)pDevice, WLAN_CMD_BSSID_SCAN, NULL); bScheduleCommand((void *)pDevice, WLAN_CMD_SSID, NULL); } pDevice->flags |= DEVICE_FLAGS_OPENED; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "device_open success.. \n"); return 0; } static int device_close(struct net_device *dev) { PSDevice pDevice = (PSDevice)netdev_priv(dev); PSMgmtObject pMgmt = pDevice->pMgmt; //PLICE_DEBUG-> #ifdef THREAD mlme_kill = 0; #endif //PLICE_DEBUG<- //2007-1121-02<Add>by EinsnLiu if (pDevice->bLinkPass) { bScheduleCommand((void *)pDevice, WLAN_CMD_DISASSOCIATE, NULL); mdelay(30); } #ifdef TxInSleep del_timer(&pDevice->sTimerTxData); #endif del_timer(&pDevice->sTimerCommand); del_timer(&pMgmt->sTimerSecondCallback); if (pDevice->bDiversityRegCtlON) { del_timer(&pDevice->TimerSQ3Tmax1); del_timer(&pDevice->TimerSQ3Tmax2); del_timer(&pDevice->TimerSQ3Tmax3); } #ifdef TASK_LET tasklet_kill(&pDevice->RxMngWorkItem); #endif netif_stop_queue(dev); pDevice->bCmdRunning = false; MACbShutdown(pDevice->PortOffset); MACbSoftwareReset(pDevice->PortOffset); CARDbRadioPowerOff(pDevice); pDevice->bLinkPass = false; memset(pMgmt->abyCurrBSSID, 0, 6); pMgmt->eCurrState = WMAC_STATE_IDLE; device_free_td0_ring(pDevice); device_free_td1_ring(pDevice); device_free_rd0_ring(pDevice); device_free_rd1_ring(pDevice); device_free_frag_buf(pDevice); device_free_rings(pDevice); BSSvClearNodeDBTable(pDevice, 0); free_irq(dev->irq, dev); pDevice->flags &= (~DEVICE_FLAGS_OPENED); //2008-0714-01<Add>by chester device_release_WPADEV(pDevice); //PLICE_DEBUG-> //tasklet_kill(&pDevice->RxMngWorkItem); //PLICE_DEBUG<- DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "device_close.. \n"); return 0; } static int device_dma0_tx_80211(struct sk_buff *skb, struct net_device *dev) { PSDevice pDevice = netdev_priv(dev); unsigned char *pbMPDU; unsigned int cbMPDULen = 0; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "device_dma0_tx_80211\n"); spin_lock_irq(&pDevice->lock); if (AVAIL_TD(pDevice, TYPE_TXDMA0) <= 0) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "device_dma0_tx_80211, td0 <=0\n"); dev_kfree_skb_irq(skb); spin_unlock_irq(&pDevice->lock); return 0; } if (pDevice->bStopTx0Pkt == true) { dev_kfree_skb_irq(skb); spin_unlock_irq(&pDevice->lock); return 0; } cbMPDULen = skb->len; pbMPDU = skb->data; vDMA0_tx_80211(pDevice, skb, pbMPDU, cbMPDULen); spin_unlock_irq(&pDevice->lock); return 0; } bool device_dma0_xmit(PSDevice pDevice, struct sk_buff *skb, unsigned int uNodeIndex) { PSMgmtObject pMgmt = pDevice->pMgmt; PSTxDesc pHeadTD, pLastTD; unsigned int cbFrameBodySize; unsigned int uMACfragNum; unsigned char byPktType; bool bNeedEncryption = false; PSKeyItem pTransmitKey = NULL; unsigned int cbHeaderSize; unsigned int ii; SKeyItem STempKey; // unsigned char byKeyIndex = 0; if (pDevice->bStopTx0Pkt == true) { dev_kfree_skb_irq(skb); return false; } if (AVAIL_TD(pDevice, TYPE_TXDMA0) <= 0) { dev_kfree_skb_irq(skb); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "device_dma0_xmit, td0 <=0\n"); return false; } if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) { if (pDevice->uAssocCount == 0) { dev_kfree_skb_irq(skb); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "device_dma0_xmit, assocCount = 0\n"); return false; } } pHeadTD = pDevice->apCurrTD[TYPE_TXDMA0]; pHeadTD->m_td1TD1.byTCR = (TCR_EDP|TCR_STP); memcpy(pDevice->sTxEthHeader.abyDstAddr, (unsigned char *)(skb->data), ETH_HLEN); cbFrameBodySize = skb->len - ETH_HLEN; // 802.1H if (ntohs(pDevice->sTxEthHeader.wType) > ETH_DATA_LEN) { cbFrameBodySize += 8; } uMACfragNum = cbGetFragCount(pDevice, pTransmitKey, cbFrameBodySize, &pDevice->sTxEthHeader); if (uMACfragNum > AVAIL_TD(pDevice, TYPE_TXDMA0)) { dev_kfree_skb_irq(skb); return false; } byPktType = (unsigned char)pDevice->byPacketType; if (pDevice->bFixRate) { if (pDevice->eCurrentPHYType == PHY_TYPE_11B) { if (pDevice->uConnectionRate >= RATE_11M) { pDevice->wCurrentRate = RATE_11M; } else { pDevice->wCurrentRate = (unsigned short)pDevice->uConnectionRate; } } else { if (pDevice->uConnectionRate >= RATE_54M) pDevice->wCurrentRate = RATE_54M; else pDevice->wCurrentRate = (unsigned short)pDevice->uConnectionRate; } } else { pDevice->wCurrentRate = pDevice->pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate; } //preamble type if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) { pDevice->byPreambleType = pDevice->byShortPreamble; } else { pDevice->byPreambleType = PREAMBLE_LONG; } DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dma0: pDevice->wCurrentRate = %d \n", pDevice->wCurrentRate); if (pDevice->wCurrentRate <= RATE_11M) { byPktType = PK_TYPE_11B; } else if (pDevice->eCurrentPHYType == PHY_TYPE_11A) { byPktType = PK_TYPE_11A; } else { if (pDevice->bProtectMode == true) { byPktType = PK_TYPE_11GB; } else { byPktType = PK_TYPE_11GA; } } if (pDevice->bEncryptionEnable == true) bNeedEncryption = true; if (pDevice->bEnableHostWEP) { pTransmitKey = &STempKey; pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite; pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex; pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength; pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16; pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0; memcpy(pTransmitKey->abyKey, &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0], pTransmitKey->uKeyLength ); } vGenerateFIFOHeader(pDevice, byPktType, pDevice->pbyTmpBuff, bNeedEncryption, cbFrameBodySize, TYPE_TXDMA0, pHeadTD, &pDevice->sTxEthHeader, (unsigned char *)skb->data, pTransmitKey, uNodeIndex, &uMACfragNum, &cbHeaderSize ); if (MACbIsRegBitsOn(pDevice->PortOffset, MAC_REG_PSCTL, PSCTL_PS)) { // Disable PS MACbPSWakeup(pDevice->PortOffset); } pDevice->bPWBitOn = false; pLastTD = pHeadTD; for (ii = 0; ii < uMACfragNum; ii++) { // Poll Transmit the adapter wmb(); pHeadTD->m_td0TD0.f1Owner = OWNED_BY_NIC; wmb(); if (ii == (uMACfragNum - 1)) pLastTD = pHeadTD; pHeadTD = pHeadTD->next; } // Save the information needed by the tx interrupt handler // to complete the Send request pLastTD->pTDInfo->skb = skb; pLastTD->pTDInfo->byFlags = 0; pLastTD->pTDInfo->byFlags |= TD_FLAGS_NETIF_SKB; pDevice->apCurrTD[TYPE_TXDMA0] = pHeadTD; MACvTransmit0(pDevice->PortOffset); return true; } //TYPE_AC0DMA data tx static int device_xmit(struct sk_buff *skb, struct net_device *dev) { PSDevice pDevice = netdev_priv(dev); PSMgmtObject pMgmt = pDevice->pMgmt; PSTxDesc pHeadTD, pLastTD; unsigned int uNodeIndex = 0; unsigned char byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80}; unsigned short wAID; unsigned int uMACfragNum = 1; unsigned int cbFrameBodySize; unsigned char byPktType; unsigned int cbHeaderSize; bool bNeedEncryption = false; PSKeyItem pTransmitKey = NULL; SKeyItem STempKey; unsigned int ii; bool bTKIP_UseGTK = false; bool bNeedDeAuth = false; unsigned char *pbyBSSID; bool bNodeExist = false; spin_lock_irq(&pDevice->lock); if (pDevice->bLinkPass == false) { dev_kfree_skb_irq(skb); spin_unlock_irq(&pDevice->lock); return 0; } if (pDevice->bStopDataPkt) { dev_kfree_skb_irq(skb); spin_unlock_irq(&pDevice->lock); return 0; } if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) { if (pDevice->uAssocCount == 0) { dev_kfree_skb_irq(skb); spin_unlock_irq(&pDevice->lock); return 0; } if (is_multicast_ether_addr((unsigned char *)(skb->data))) { uNodeIndex = 0; bNodeExist = true; if (pMgmt->sNodeDBTable[0].bPSEnable) { skb_queue_tail(&(pMgmt->sNodeDBTable[0].sTxPSQueue), skb); pMgmt->sNodeDBTable[0].wEnQueueCnt++; // set tx map pMgmt->abyPSTxMap[0] |= byMask[0]; spin_unlock_irq(&pDevice->lock); return 0; } } else { if (BSSDBbIsSTAInNodeDB(pMgmt, (unsigned char *)(skb->data), &uNodeIndex)) { if (pMgmt->sNodeDBTable[uNodeIndex].bPSEnable) { skb_queue_tail(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue, skb); pMgmt->sNodeDBTable[uNodeIndex].wEnQueueCnt++; // set tx map wAID = pMgmt->sNodeDBTable[uNodeIndex].wAID; pMgmt->abyPSTxMap[wAID >> 3] |= byMask[wAID & 7]; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Set:pMgmt->abyPSTxMap[%d]= %d\n", (wAID >> 3), pMgmt->abyPSTxMap[wAID >> 3]); spin_unlock_irq(&pDevice->lock); return 0; } if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) { pDevice->byPreambleType = pDevice->byShortPreamble; } else { pDevice->byPreambleType = PREAMBLE_LONG; } bNodeExist = true; } } if (bNodeExist == false) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG "Unknown STA not found in node DB \n"); dev_kfree_skb_irq(skb); spin_unlock_irq(&pDevice->lock); return 0; } } pHeadTD = pDevice->apCurrTD[TYPE_AC0DMA]; pHeadTD->m_td1TD1.byTCR = (TCR_EDP|TCR_STP); memcpy(pDevice->sTxEthHeader.abyDstAddr, (unsigned char *)(skb->data), ETH_HLEN); cbFrameBodySize = skb->len - ETH_HLEN; // 802.1H if (ntohs(pDevice->sTxEthHeader.wType) > ETH_DATA_LEN) { cbFrameBodySize += 8; } if (pDevice->bEncryptionEnable == true) { bNeedEncryption = true; // get Transmit key do { if ((pDevice->pMgmt->eCurrMode == WMAC_MODE_ESS_STA) && (pDevice->pMgmt->eCurrState == WMAC_STATE_ASSOC)) { pbyBSSID = pDevice->abyBSSID; // get pairwise key if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) { // get group key if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) { bTKIP_UseGTK = true; DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG "Get GTK.\n"); break; } } else { DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG "Get PTK.\n"); break; } } else if (pDevice->pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) { pbyBSSID = pDevice->sTxEthHeader.abyDstAddr; //TO_DS = 0 and FROM_DS = 0 --> 802.11 MAC Address1 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG "IBSS Serach Key: \n"); for (ii = 0; ii < 6; ii++) DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG "%x \n", *(pbyBSSID+ii)); DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG "\n"); // get pairwise key if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == true) break; } // get group key pbyBSSID = pDevice->abyBroadcastAddr; if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) { pTransmitKey = NULL; if (pDevice->pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG "IBSS and KEY is NULL. [%d]\n", pDevice->pMgmt->eCurrMode); } else DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG "NOT IBSS and KEY is NULL. [%d]\n", pDevice->pMgmt->eCurrMode); } else { bTKIP_UseGTK = true; DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG "Get GTK.\n"); } } while (false); } if (pDevice->bEnableHostWEP) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG "acdma0: STA index %d\n", uNodeIndex); if (pDevice->bEncryptionEnable == true) { pTransmitKey = &STempKey; pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite; pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex; pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength; pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16; pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0; memcpy(pTransmitKey->abyKey, &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0], pTransmitKey->uKeyLength ); } } uMACfragNum = cbGetFragCount(pDevice, pTransmitKey, cbFrameBodySize, &pDevice->sTxEthHeader); if (uMACfragNum > AVAIL_TD(pDevice, TYPE_AC0DMA)) { DBG_PRT(MSG_LEVEL_ERR, KERN_DEBUG "uMACfragNum > AVAIL_TD(TYPE_AC0DMA) = %d\n", uMACfragNum); dev_kfree_skb_irq(skb); spin_unlock_irq(&pDevice->lock); return 0; } if (pTransmitKey != NULL) { if ((pTransmitKey->byCipherSuite == KEY_CTL_WEP) && (pTransmitKey->uKeyLength == WLAN_WEP232_KEYLEN)) { uMACfragNum = 1; //WEP256 doesn't support fragment } } byPktType = (unsigned char)pDevice->byPacketType; if (pDevice->bFixRate) { #ifdef PLICE_DEBUG printk("Fix Rate: PhyType is %d,ConnectionRate is %d\n", pDevice->eCurrentPHYType, pDevice->uConnectionRate); #endif if (pDevice->eCurrentPHYType == PHY_TYPE_11B) { if (pDevice->uConnectionRate >= RATE_11M) { pDevice->wCurrentRate = RATE_11M; } else { pDevice->wCurrentRate = (unsigned short)pDevice->uConnectionRate; } } else { if ((pDevice->eCurrentPHYType == PHY_TYPE_11A) && (pDevice->uConnectionRate <= RATE_6M)) { pDevice->wCurrentRate = RATE_6M; } else { if (pDevice->uConnectionRate >= RATE_54M) pDevice->wCurrentRate = RATE_54M; else pDevice->wCurrentRate = (unsigned short)pDevice->uConnectionRate; } } pDevice->byACKRate = (unsigned char) pDevice->wCurrentRate; pDevice->byTopCCKBasicRate = RATE_1M; pDevice->byTopOFDMBasicRate = RATE_6M; } else { //auto rate if (pDevice->sTxEthHeader.wType == TYPE_PKT_802_1x) { if (pDevice->eCurrentPHYType != PHY_TYPE_11A) { pDevice->wCurrentRate = RATE_1M; pDevice->byACKRate = RATE_1M; pDevice->byTopCCKBasicRate = RATE_1M; pDevice->byTopOFDMBasicRate = RATE_6M; } else { pDevice->wCurrentRate = RATE_6M; pDevice->byACKRate = RATE_6M; pDevice->byTopCCKBasicRate = RATE_1M; pDevice->byTopOFDMBasicRate = RATE_6M; } } else { VNTWIFIvGetTxRate(pDevice->pMgmt, pDevice->sTxEthHeader.abyDstAddr, &(pDevice->wCurrentRate), &(pDevice->byACKRate), &(pDevice->byTopCCKBasicRate), &(pDevice->byTopOFDMBasicRate)); } } // DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "acdma0: pDevice->wCurrentRate = %d \n", pDevice->wCurrentRate); if (pDevice->wCurrentRate <= RATE_11M) { byPktType = PK_TYPE_11B; } else if (pDevice->eCurrentPHYType == PHY_TYPE_11A) { byPktType = PK_TYPE_11A; } else { if (pDevice->bProtectMode == true) { byPktType = PK_TYPE_11GB; } else { byPktType = PK_TYPE_11GA; } } //#ifdef PLICE_DEBUG // printk("FIX RATE:CurrentRate is %d"); //#endif if (bNeedEncryption == true) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "ntohs Pkt Type=%04x\n", ntohs(pDevice->sTxEthHeader.wType)); if ((pDevice->sTxEthHeader.wType) == TYPE_PKT_802_1x) { bNeedEncryption = false; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Pkt Type=%04x\n", (pDevice->sTxEthHeader.wType)); if ((pDevice->pMgmt->eCurrMode == WMAC_MODE_ESS_STA) && (pDevice->pMgmt->eCurrState == WMAC_STATE_ASSOC)) { if (pTransmitKey == NULL) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Don't Find TX KEY\n"); } else { if (bTKIP_UseGTK == true) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "error: KEY is GTK!!~~\n"); } else { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Find PTK [%lX]\n", pTransmitKey->dwKeyIndex); bNeedEncryption = true; } } } if (pDevice->byCntMeasure == 2) { bNeedDeAuth = true; pDevice->s802_11Counter.TKIPCounterMeasuresInvoked++; } if (pDevice->bEnableHostWEP) { if ((uNodeIndex != 0) && (pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex & PAIRWISE_KEY)) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Find PTK [%lX]\n", pTransmitKey->dwKeyIndex); bNeedEncryption = true; } } } else { if (pTransmitKey == NULL) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "return no tx key\n"); dev_kfree_skb_irq(skb); spin_unlock_irq(&pDevice->lock); return 0; } } } vGenerateFIFOHeader(pDevice, byPktType, pDevice->pbyTmpBuff, bNeedEncryption, cbFrameBodySize, TYPE_AC0DMA, pHeadTD, &pDevice->sTxEthHeader, (unsigned char *)skb->data, pTransmitKey, uNodeIndex, &uMACfragNum, &cbHeaderSize ); if (MACbIsRegBitsOn(pDevice->PortOffset, MAC_REG_PSCTL, PSCTL_PS)) { // Disable PS MACbPSWakeup(pDevice->PortOffset); } pDevice->bPWBitOn = false; pLastTD = pHeadTD; for (ii = 0; ii < uMACfragNum; ii++) { // Poll Transmit the adapter wmb(); pHeadTD->m_td0TD0.f1Owner = OWNED_BY_NIC; wmb(); if (ii == uMACfragNum - 1) pLastTD = pHeadTD; pHeadTD = pHeadTD->next; } // Save the information needed by the tx interrupt handler // to complete the Send request pLastTD->pTDInfo->skb = skb; pLastTD->pTDInfo->byFlags = 0; pLastTD->pTDInfo->byFlags |= TD_FLAGS_NETIF_SKB; #ifdef TxInSleep pDevice->nTxDataTimeCout = 0; //2008-8-21 chester <add> for send null packet #endif if (AVAIL_TD(pDevice, TYPE_AC0DMA) <= 1) { netif_stop_queue(dev); } pDevice->apCurrTD[TYPE_AC0DMA] = pHeadTD; //#ifdef PLICE_DEBUG if (pDevice->bFixRate) { printk("FixRate:Rate is %d,TxPower is %d\n", pDevice->wCurrentRate, pDevice->byCurPwr); } else { } //#endif { unsigned char Protocol_Version; //802.1x Authentication unsigned char Packet_Type; //802.1x Authentication unsigned char Descriptor_type; unsigned short Key_info; bool bTxeapol_key = false; Protocol_Version = skb->data[ETH_HLEN]; Packet_Type = skb->data[ETH_HLEN+1]; Descriptor_type = skb->data[ETH_HLEN+1+1+2]; Key_info = (skb->data[ETH_HLEN+1+1+2+1] << 8)|(skb->data[ETH_HLEN+1+1+2+2]); if (pDevice->sTxEthHeader.wType == TYPE_PKT_802_1x) { if (((Protocol_Version == 1) || (Protocol_Version == 2)) && (Packet_Type == 3)) { //802.1x OR eapol-key challenge frame transfer bTxeapol_key = true; if ((Descriptor_type == 254) || (Descriptor_type == 2)) { //WPA or RSN if (!(Key_info & BIT3) && //group-key challenge (Key_info & BIT8) && (Key_info & BIT9)) { //send 2/2 key pDevice->fWPA_Authened = true; if (Descriptor_type == 254) printk("WPA "); else printk("WPA2 "); printk("Authentication completed!!\n"); } } } } } MACvTransmitAC0(pDevice->PortOffset); // DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "acdma0:pDevice->apCurrTD= %p\n", pHeadTD); dev->trans_start = jiffies; spin_unlock_irq(&pDevice->lock); return 0; } static irqreturn_t device_intr(int irq, void *dev_instance) { struct net_device *dev = dev_instance; PSDevice pDevice = (PSDevice)netdev_priv(dev); int max_count = 0; unsigned long dwMIBCounter = 0; PSMgmtObject pMgmt = pDevice->pMgmt; unsigned char byOrgPageSel = 0; int handled = 0; unsigned char byData = 0; int ii = 0; // unsigned char byRSSI; MACvReadISR(pDevice->PortOffset, &pDevice->dwIsr); if (pDevice->dwIsr == 0) return IRQ_RETVAL(handled); if (pDevice->dwIsr == 0xffffffff) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dwIsr = 0xffff\n"); return IRQ_RETVAL(handled); } /* // 2008-05-21 <mark> by Richardtai, we can't read RSSI here, because no packet bound with RSSI if ((pDevice->dwIsr & ISR_RXDMA0) && (pDevice->byLocalID != REV_ID_VT3253_B0) && (pDevice->bBSSIDFilter == true)) { // update RSSI //BBbReadEmbedded(pDevice->PortOffset, 0x3E, &byRSSI); //pDevice->uCurrRSSI = byRSSI; } */ handled = 1; MACvIntDisable(pDevice->PortOffset); spin_lock_irq(&pDevice->lock); //Make sure current page is 0 VNSvInPortB(pDevice->PortOffset + MAC_REG_PAGE1SEL, &byOrgPageSel); if (byOrgPageSel == 1) { MACvSelectPage0(pDevice->PortOffset); } else byOrgPageSel = 0; MACvReadMIBCounter(pDevice->PortOffset, &dwMIBCounter); // TBD.... // Must do this after doing rx/tx, cause ISR bit is slow // than RD/TD write back // update ISR counter STAvUpdate802_11Counter(&pDevice->s802_11Counter, &pDevice->scStatistic , dwMIBCounter); while (pDevice->dwIsr != 0) { STAvUpdateIsrStatCounter(&pDevice->scStatistic, pDevice->dwIsr); MACvWriteISR(pDevice->PortOffset, pDevice->dwIsr); if (pDevice->dwIsr & ISR_FETALERR) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " ISR_FETALERR \n"); VNSvOutPortB(pDevice->PortOffset + MAC_REG_SOFTPWRCTL, 0); VNSvOutPortW(pDevice->PortOffset + MAC_REG_SOFTPWRCTL, SOFTPWRCTL_SWPECTI); device_error(pDevice, pDevice->dwIsr); } if (pDevice->byLocalID > REV_ID_VT3253_B1) { if (pDevice->dwIsr & ISR_MEASURESTART) { // 802.11h measure start pDevice->byOrgChannel = pDevice->byCurrentCh; VNSvInPortB(pDevice->PortOffset + MAC_REG_RCR, &(pDevice->byOrgRCR)); VNSvOutPortB(pDevice->PortOffset + MAC_REG_RCR, (RCR_RXALLTYPE | RCR_UNICAST | RCR_BROADCAST | RCR_MULTICAST | RCR_WPAERR)); MACvSelectPage1(pDevice->PortOffset); VNSvInPortD(pDevice->PortOffset + MAC_REG_MAR0, &(pDevice->dwOrgMAR0)); VNSvInPortD(pDevice->PortOffset + MAC_REG_MAR4, &(pDevice->dwOrgMAR4)); MACvSelectPage0(pDevice->PortOffset); //xxxx // WCMDbFlushCommandQueue(pDevice->pMgmt, true); if (set_channel(pDevice, pDevice->pCurrMeasureEID->sReq.byChannel) == true) { pDevice->bMeasureInProgress = true; MACvSelectPage1(pDevice->PortOffset); MACvRegBitsOn(pDevice->PortOffset, MAC_REG_MSRCTL, MSRCTL_READY); MACvSelectPage0(pDevice->PortOffset); pDevice->byBasicMap = 0; pDevice->byCCAFraction = 0; for (ii = 0; ii < 8; ii++) { pDevice->dwRPIs[ii] = 0; } } else { // can not measure because set channel fail // WCMDbResetCommandQueue(pDevice->pMgmt); // clear measure control MACvRegBitsOff(pDevice->PortOffset, MAC_REG_MSRCTL, MSRCTL_EN); s_vCompleteCurrentMeasure(pDevice, MEASURE_MODE_INCAPABLE); MACvSelectPage1(pDevice->PortOffset); MACvRegBitsOn(pDevice->PortOffset, MAC_REG_MSRCTL+1, MSRCTL1_TXPAUSE); MACvSelectPage0(pDevice->PortOffset); } } if (pDevice->dwIsr & ISR_MEASUREEND) { // 802.11h measure end pDevice->bMeasureInProgress = false; VNSvOutPortB(pDevice->PortOffset + MAC_REG_RCR, pDevice->byOrgRCR); MACvSelectPage1(pDevice->PortOffset); VNSvOutPortD(pDevice->PortOffset + MAC_REG_MAR0, pDevice->dwOrgMAR0); VNSvOutPortD(pDevice->PortOffset + MAC_REG_MAR4, pDevice->dwOrgMAR4); VNSvInPortB(pDevice->PortOffset + MAC_REG_MSRBBSTS, &byData); pDevice->byBasicMap |= (byData >> 4); VNSvInPortB(pDevice->PortOffset + MAC_REG_CCAFRACTION, &pDevice->byCCAFraction); VNSvInPortB(pDevice->PortOffset + MAC_REG_MSRCTL, &byData); // clear measure control MACvRegBitsOff(pDevice->PortOffset, MAC_REG_MSRCTL, MSRCTL_EN); MACvSelectPage0(pDevice->PortOffset); set_channel(pDevice, pDevice->byOrgChannel); // WCMDbResetCommandQueue(pDevice->pMgmt); MACvSelectPage1(pDevice->PortOffset); MACvRegBitsOn(pDevice->PortOffset, MAC_REG_MSRCTL+1, MSRCTL1_TXPAUSE); MACvSelectPage0(pDevice->PortOffset); if (byData & MSRCTL_FINISH) { // measure success s_vCompleteCurrentMeasure(pDevice, 0); } else { // can not measure because not ready before end of measure time s_vCompleteCurrentMeasure(pDevice, MEASURE_MODE_LATE); } } if (pDevice->dwIsr & ISR_QUIETSTART) { do { ; } while (CARDbStartQuiet(pDevice) == false); } } if (pDevice->dwIsr & ISR_TBTT) { if (pDevice->bEnableFirstQuiet == true) { pDevice->byQuietStartCount--; if (pDevice->byQuietStartCount == 0) { pDevice->bEnableFirstQuiet = false; MACvSelectPage1(pDevice->PortOffset); MACvRegBitsOn(pDevice->PortOffset, MAC_REG_MSRCTL, (MSRCTL_QUIETTXCHK | MSRCTL_QUIETEN)); MACvSelectPage0(pDevice->PortOffset); } } if ((pDevice->bChannelSwitch == true) && (pDevice->eOPMode == OP_MODE_INFRASTRUCTURE)) { pDevice->byChannelSwitchCount--; if (pDevice->byChannelSwitchCount == 0) { pDevice->bChannelSwitch = false; set_channel(pDevice, pDevice->byNewChannel); VNTWIFIbChannelSwitch(pDevice->pMgmt, pDevice->byNewChannel); MACvSelectPage1(pDevice->PortOffset); MACvRegBitsOn(pDevice->PortOffset, MAC_REG_MSRCTL+1, MSRCTL1_TXPAUSE); MACvSelectPage0(pDevice->PortOffset); CARDbStartTxPacket(pDevice, PKT_TYPE_802_11_ALL); } } if (pDevice->eOPMode == OP_MODE_ADHOC) { //pDevice->bBeaconSent = false; } else { if ((pDevice->bUpdateBBVGA) && (pDevice->bLinkPass == true) && (pDevice->uCurrRSSI != 0)) { long ldBm; RFvRSSITodBm(pDevice, (unsigned char) pDevice->uCurrRSSI, &ldBm); for (ii = 0; ii < BB_VGA_LEVEL; ii++) { if (ldBm < pDevice->ldBmThreshold[ii]) { pDevice->byBBVGANew = pDevice->abyBBVGA[ii]; break; } } if (pDevice->byBBVGANew != pDevice->byBBVGACurrent) { pDevice->uBBVGADiffCount++; if (pDevice->uBBVGADiffCount == 1) { // first VGA diff gain BBvSetVGAGainOffset(pDevice, pDevice->byBBVGANew); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "First RSSI[%d] NewGain[%d] OldGain[%d] Count[%d]\n", (int)ldBm, pDevice->byBBVGANew, pDevice->byBBVGACurrent, (int)pDevice->uBBVGADiffCount); } if (pDevice->uBBVGADiffCount >= BB_VGA_CHANGE_THRESHOLD) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "RSSI[%d] NewGain[%d] OldGain[%d] Count[%d]\n", (int)ldBm, pDevice->byBBVGANew, pDevice->byBBVGACurrent, (int)pDevice->uBBVGADiffCount); BBvSetVGAGainOffset(pDevice, pDevice->byBBVGANew); } } else { pDevice->uBBVGADiffCount = 1; } } } pDevice->bBeaconSent = false; if (pDevice->bEnablePSMode) { PSbIsNextTBTTWakeUp((void *)pDevice); } if ((pDevice->eOPMode == OP_MODE_AP) || (pDevice->eOPMode == OP_MODE_ADHOC)) { MACvOneShotTimer1MicroSec(pDevice->PortOffset, (pMgmt->wIBSSBeaconPeriod - MAKE_BEACON_RESERVED) << 10); } if (pDevice->eOPMode == OP_MODE_ADHOC && pDevice->pMgmt->wCurrATIMWindow > 0) { // todo adhoc PS mode } } if (pDevice->dwIsr & ISR_BNTX) { if (pDevice->eOPMode == OP_MODE_ADHOC) { pDevice->bIsBeaconBufReadySet = false; pDevice->cbBeaconBufReadySetCnt = 0; } if (pDevice->eOPMode == OP_MODE_AP) { if (pMgmt->byDTIMCount > 0) { pMgmt->byDTIMCount--; pMgmt->sNodeDBTable[0].bRxPSPoll = false; } else { if (pMgmt->byDTIMCount == 0) { // check if mutltcast tx bufferring pMgmt->byDTIMCount = pMgmt->byDTIMPeriod - 1; pMgmt->sNodeDBTable[0].bRxPSPoll = true; bScheduleCommand((void *)pDevice, WLAN_CMD_RX_PSPOLL, NULL); } } } pDevice->bBeaconSent = true; if (pDevice->bChannelSwitch == true) { pDevice->byChannelSwitchCount--; if (pDevice->byChannelSwitchCount == 0) { pDevice->bChannelSwitch = false; set_channel(pDevice, pDevice->byNewChannel); VNTWIFIbChannelSwitch(pDevice->pMgmt, pDevice->byNewChannel); MACvSelectPage1(pDevice->PortOffset); MACvRegBitsOn(pDevice->PortOffset, MAC_REG_MSRCTL+1, MSRCTL1_TXPAUSE); MACvSelectPage0(pDevice->PortOffset); //VNTWIFIbSendBeacon(pDevice->pMgmt); CARDbStartTxPacket(pDevice, PKT_TYPE_802_11_ALL); } } } if (pDevice->dwIsr & ISR_RXDMA0) { max_count += device_rx_srv(pDevice, TYPE_RXDMA0); } if (pDevice->dwIsr & ISR_RXDMA1) { max_count += device_rx_srv(pDevice, TYPE_RXDMA1); } if (pDevice->dwIsr & ISR_TXDMA0) { max_count += device_tx_srv(pDevice, TYPE_TXDMA0); } if (pDevice->dwIsr & ISR_AC0DMA) { max_count += device_tx_srv(pDevice, TYPE_AC0DMA); } if (pDevice->dwIsr & ISR_SOFTTIMER) { } if (pDevice->dwIsr & ISR_SOFTTIMER1) { if (pDevice->eOPMode == OP_MODE_AP) { if (pDevice->bShortSlotTime) pMgmt->wCurrCapInfo |= WLAN_SET_CAP_INFO_SHORTSLOTTIME(1); else pMgmt->wCurrCapInfo &= ~(WLAN_SET_CAP_INFO_SHORTSLOTTIME(1)); } bMgrPrepareBeaconToSend(pDevice, pMgmt); pDevice->byCntMeasure = 0; } MACvReadISR(pDevice->PortOffset, &pDevice->dwIsr); MACvReceive0(pDevice->PortOffset); MACvReceive1(pDevice->PortOffset); if (max_count > pDevice->sOpts.int_works) break; } if (byOrgPageSel == 1) { MACvSelectPage1(pDevice->PortOffset); } spin_unlock_irq(&pDevice->lock); MACvIntEnable(pDevice->PortOffset, IMR_MASK_VALUE); return IRQ_RETVAL(handled); } static unsigned const ethernet_polynomial = 0x04c11db7U; static inline u32 ether_crc(int length, unsigned char *data) { int crc = -1; while (--length >= 0) { unsigned char current_octet = *data++; int bit; for (bit = 0; bit < 8; bit++, current_octet >>= 1) { crc = (crc << 1) ^ ((crc < 0) ^ (current_octet & 1) ? ethernet_polynomial : 0); } } return crc; } //2008-8-4 <add> by chester static int Config_FileGetParameter(unsigned char *string, unsigned char *dest, unsigned char *source) { unsigned char buf1[100]; int source_len = strlen(source); memset(buf1, 0, 100); strcat(buf1, string); strcat(buf1, "="); source += strlen(buf1); memcpy(dest, source, source_len - strlen(buf1)); return true; } int Config_FileOperation(PSDevice pDevice,bool fwrite,unsigned char *Parameter) { unsigned char *buffer = kmalloc(1024, GFP_KERNEL); unsigned char tmpbuffer[20]; struct file *file; int result=0; if (!buffer) { printk("allocate mem for file fail?\n"); return -1; } file = filp_open(CONFIG_PATH, O_RDONLY, 0); if (IS_ERR(file)) { kfree(buffer); printk("Config_FileOperation:open file fail?\n"); return -1; } if (kernel_read(file, 0, buffer, 1024) < 0) { printk("read file error?\n"); result = -1; goto error1; } if (Config_FileGetParameter("ZONETYPE",tmpbuffer,buffer)!=true) { printk("get parameter error?\n"); result = -1; goto error1; } if (memcmp(tmpbuffer,"USA",3)==0) { result = ZoneType_USA; } else if(memcmp(tmpbuffer,"JAPAN",5)==0) { result = ZoneType_Japan; } else if(memcmp(tmpbuffer,"EUROPE",5)==0) { result = ZoneType_Europe; } else { result = -1; printk("Unknown Zonetype[%s]?\n",tmpbuffer); } error1: kfree(buffer); fput(file); return result; } static void device_set_multi(struct net_device *dev) { PSDevice pDevice = (PSDevice)netdev_priv(dev); PSMgmtObject pMgmt = pDevice->pMgmt; u32 mc_filter[2]; struct netdev_hw_addr *ha; VNSvInPortB(pDevice->PortOffset + MAC_REG_RCR, &(pDevice->byRxMode)); if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ DBG_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name); /* Unconditionally log net taps. */ pDevice->byRxMode |= (RCR_MULTICAST|RCR_BROADCAST|RCR_UNICAST); } else if ((netdev_mc_count(dev) > pDevice->multicast_limit) || (dev->flags & IFF_ALLMULTI)) { MACvSelectPage1(pDevice->PortOffset); VNSvOutPortD(pDevice->PortOffset + MAC_REG_MAR0, 0xffffffff); VNSvOutPortD(pDevice->PortOffset + MAC_REG_MAR0 + 4, 0xffffffff); MACvSelectPage0(pDevice->PortOffset); pDevice->byRxMode |= (RCR_MULTICAST|RCR_BROADCAST); } else { memset(mc_filter, 0, sizeof(mc_filter)); netdev_for_each_mc_addr(ha, dev) { int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26; mc_filter[bit_nr >> 5] |= cpu_to_le32(1 << (bit_nr & 31)); } MACvSelectPage1(pDevice->PortOffset); VNSvOutPortD(pDevice->PortOffset + MAC_REG_MAR0, mc_filter[0]); VNSvOutPortD(pDevice->PortOffset + MAC_REG_MAR0 + 4, mc_filter[1]); MACvSelectPage0(pDevice->PortOffset); pDevice->byRxMode &= ~(RCR_UNICAST); pDevice->byRxMode |= (RCR_MULTICAST|RCR_BROADCAST); } if (pMgmt->eConfigMode == WMAC_CONFIG_AP) { // If AP mode, don't enable RCR_UNICAST. Since hw only compare addr1 with local mac. pDevice->byRxMode |= (RCR_MULTICAST|RCR_BROADCAST); pDevice->byRxMode &= ~(RCR_UNICAST); } VNSvOutPortB(pDevice->PortOffset + MAC_REG_RCR, pDevice->byRxMode); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "pDevice->byRxMode = %x\n", pDevice->byRxMode); } static struct net_device_stats *device_get_stats(struct net_device *dev) { PSDevice pDevice = (PSDevice)netdev_priv(dev); return &pDevice->stats; } static int device_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { PSDevice pDevice = (PSDevice)netdev_priv(dev); struct iwreq *wrq = (struct iwreq *)rq; int rc = 0; PSMgmtObject pMgmt = pDevice->pMgmt; PSCmdRequest pReq; if (pMgmt == NULL) { rc = -EFAULT; return rc; } switch (cmd) { case SIOCGIWNAME: rc = iwctl_giwname(dev, NULL, (char *)&(wrq->u.name), NULL); break; case SIOCGIWNWID: //0x8b03 support rc = -EOPNOTSUPP; break; // Set frequency/channel case SIOCSIWFREQ: rc = iwctl_siwfreq(dev, NULL, &(wrq->u.freq), NULL); break; // Get frequency/channel case SIOCGIWFREQ: rc = iwctl_giwfreq(dev, NULL, &(wrq->u.freq), NULL); break; // Set desired network name (ESSID) case SIOCSIWESSID: { char essid[IW_ESSID_MAX_SIZE+1]; if (wrq->u.essid.length > IW_ESSID_MAX_SIZE) { rc = -E2BIG; break; } if (copy_from_user(essid, wrq->u.essid.pointer, wrq->u.essid.length)) { rc = -EFAULT; break; } rc = iwctl_siwessid(dev, NULL, &(wrq->u.essid), essid); } break; // Get current network name (ESSID) case SIOCGIWESSID: { char essid[IW_ESSID_MAX_SIZE+1]; if (wrq->u.essid.pointer) rc = iwctl_giwessid(dev, NULL, &(wrq->u.essid), essid); if (copy_to_user(wrq->u.essid.pointer, essid, wrq->u.essid.length)) rc = -EFAULT; } break; case SIOCSIWAP: rc = iwctl_siwap(dev, NULL, &(wrq->u.ap_addr), NULL); break; // Get current Access Point (BSSID) case SIOCGIWAP: rc = iwctl_giwap(dev, NULL, &(wrq->u.ap_addr), NULL); break; // Set desired station name case SIOCSIWNICKN: DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWNICKN \n"); rc = -EOPNOTSUPP; break; // Get current station name case SIOCGIWNICKN: DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWNICKN \n"); rc = -EOPNOTSUPP; break; // Set the desired bit-rate case SIOCSIWRATE: rc = iwctl_siwrate(dev, NULL, &(wrq->u.bitrate), NULL); break; // Get the current bit-rate case SIOCGIWRATE: rc = iwctl_giwrate(dev, NULL, &(wrq->u.bitrate), NULL); break; // Set the desired RTS threshold case SIOCSIWRTS: rc = iwctl_siwrts(dev, NULL, &(wrq->u.rts), NULL); break; // Get the current RTS threshold case SIOCGIWRTS: rc = iwctl_giwrts(dev, NULL, &(wrq->u.rts), NULL); break; // Set the desired fragmentation threshold case SIOCSIWFRAG: rc = iwctl_siwfrag(dev, NULL, &(wrq->u.frag), NULL); break; // Get the current fragmentation threshold case SIOCGIWFRAG: rc = iwctl_giwfrag(dev, NULL, &(wrq->u.frag), NULL); break; // Set mode of operation case SIOCSIWMODE: rc = iwctl_siwmode(dev, NULL, &(wrq->u.mode), NULL); break; // Get mode of operation case SIOCGIWMODE: rc = iwctl_giwmode(dev, NULL, &(wrq->u.mode), NULL); break; // Set WEP keys and mode case SIOCSIWENCODE: { char abyKey[WLAN_WEP232_KEYLEN]; if (wrq->u.encoding.pointer) { if (wrq->u.encoding.length > WLAN_WEP232_KEYLEN) { rc = -E2BIG; break; } memset(abyKey, 0, WLAN_WEP232_KEYLEN); if (copy_from_user(abyKey, wrq->u.encoding.pointer, wrq->u.encoding.length)) { rc = -EFAULT; break; } } else if (wrq->u.encoding.length != 0) { rc = -EINVAL; break; } rc = iwctl_siwencode(dev, NULL, &(wrq->u.encoding), abyKey); } break; // Get the WEP keys and mode case SIOCGIWENCODE: if (!capable(CAP_NET_ADMIN)) { rc = -EPERM; break; } { char abyKey[WLAN_WEP232_KEYLEN]; rc = iwctl_giwencode(dev, NULL, &(wrq->u.encoding), abyKey); if (rc != 0) break; if (wrq->u.encoding.pointer) { if (copy_to_user(wrq->u.encoding.pointer, abyKey, wrq->u.encoding.length)) rc = -EFAULT; } } break; // Get the current Tx-Power case SIOCGIWTXPOW: DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWTXPOW \n"); rc = -EOPNOTSUPP; break; case SIOCSIWTXPOW: DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWTXPOW \n"); rc = -EOPNOTSUPP; break; case SIOCSIWRETRY: rc = iwctl_siwretry(dev, NULL, &(wrq->u.retry), NULL); break; case SIOCGIWRETRY: rc = iwctl_giwretry(dev, NULL, &(wrq->u.retry), NULL); break; // Get range of parameters case SIOCGIWRANGE: { struct iw_range range; rc = iwctl_giwrange(dev, NULL, &(wrq->u.data), (char *)&range); if (copy_to_user(wrq->u.data.pointer, &range, sizeof(struct iw_range))) rc = -EFAULT; } break; case SIOCGIWPOWER: rc = iwctl_giwpower(dev, NULL, &(wrq->u.power), NULL); break; case SIOCSIWPOWER: rc = iwctl_siwpower(dev, NULL, &(wrq->u.power), NULL); break; case SIOCGIWSENS: rc = iwctl_giwsens(dev, NULL, &(wrq->u.sens), NULL); break; case SIOCSIWSENS: DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWSENS \n"); rc = -EOPNOTSUPP; break; case SIOCGIWAPLIST: { char buffer[IW_MAX_AP * (sizeof(struct sockaddr) + sizeof(struct iw_quality))]; if (wrq->u.data.pointer) { rc = iwctl_giwaplist(dev, NULL, &(wrq->u.data), buffer); if (rc == 0) { if (copy_to_user(wrq->u.data.pointer, buffer, (wrq->u.data.length * (sizeof(struct sockaddr) + sizeof(struct iw_quality))) )) rc = -EFAULT; } } } break; #ifdef WIRELESS_SPY // Set the spy list case SIOCSIWSPY: DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWSPY \n"); rc = -EOPNOTSUPP; break; // Get the spy list case SIOCGIWSPY: DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWSPY \n"); rc = -EOPNOTSUPP; break; #endif // WIRELESS_SPY case SIOCGIWPRIV: DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWPRIV \n"); rc = -EOPNOTSUPP; /* if (wrq->u.data.pointer) { wrq->u.data.length = sizeof(iwctl_private_args) / sizeof(iwctl_private_args[0]); if (copy_to_user(wrq->u.data.pointer, (u_char *) iwctl_private_args, sizeof(iwctl_private_args))) rc = -EFAULT; } */ break; //2008-0409-07, <Add> by Einsn Liu #ifdef WPA_SUPPLICANT_DRIVER_WEXT_SUPPORT case SIOCSIWAUTH: DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWAUTH \n"); rc = iwctl_siwauth(dev, NULL, &(wrq->u.param), NULL); break; case SIOCGIWAUTH: DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWAUTH \n"); rc = iwctl_giwauth(dev, NULL, &(wrq->u.param), NULL); break; case SIOCSIWGENIE: DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWGENIE \n"); rc = iwctl_siwgenie(dev, NULL, &(wrq->u.data), wrq->u.data.pointer); break; case SIOCGIWGENIE: DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWGENIE \n"); rc = iwctl_giwgenie(dev, NULL, &(wrq->u.data), wrq->u.data.pointer); break; case SIOCSIWENCODEEXT: { char extra[sizeof(struct iw_encode_ext)+MAX_KEY_LEN+1]; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWENCODEEXT \n"); if (wrq->u.encoding.pointer) { memset(extra, 0, sizeof(struct iw_encode_ext)+MAX_KEY_LEN + 1); if (wrq->u.encoding.length > (sizeof(struct iw_encode_ext) + MAX_KEY_LEN)) { rc = -E2BIG; break; } if (copy_from_user(extra, wrq->u.encoding.pointer, wrq->u.encoding.length)) { rc = -EFAULT; break; } } else if (wrq->u.encoding.length != 0) { rc = -EINVAL; break; } rc = iwctl_siwencodeext(dev, NULL, &(wrq->u.encoding), extra); } break; case SIOCGIWENCODEEXT: DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWENCODEEXT \n"); rc = iwctl_giwencodeext(dev, NULL, &(wrq->u.encoding), NULL); break; case SIOCSIWMLME: DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWMLME \n"); rc = iwctl_siwmlme(dev, NULL, &(wrq->u.data), wrq->u.data.pointer); break; #endif // #ifdef WPA_SUPPLICANT_DRIVER_WEXT_SUPPORT //End Add -- //2008-0409-07, <Add> by Einsn Liu case IOCTL_CMD_TEST: if (!(pDevice->flags & DEVICE_FLAGS_OPENED)) { rc = -EFAULT; break; } else { rc = 0; } pReq = (PSCmdRequest)rq; pReq->wResult = MAGIC_CODE; break; case IOCTL_CMD_SET: #ifdef SndEvt_ToAPI if ((((PSCmdRequest)rq)->wCmdCode != WLAN_CMD_SET_EVT) && !(pDevice->flags & DEVICE_FLAGS_OPENED)) #else if (!(pDevice->flags & DEVICE_FLAGS_OPENED) && (((PSCmdRequest)rq)->wCmdCode != WLAN_CMD_SET_WPA)) #endif { rc = -EFAULT; break; } else { rc = 0; } if (test_and_set_bit(0, (void *)&(pMgmt->uCmdBusy))) { return -EBUSY; } rc = private_ioctl(pDevice, rq); clear_bit(0, (void *)&(pMgmt->uCmdBusy)); break; case IOCTL_CMD_HOSTAPD: rc = vt6655_hostap_ioctl(pDevice, &wrq->u.data); break; case IOCTL_CMD_WPA: rc = wpa_ioctl(pDevice, &wrq->u.data); break; case SIOCETHTOOL: return ethtool_ioctl(dev, (void *)rq->ifr_data); // All other calls are currently unsupported default: rc = -EOPNOTSUPP; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Ioctl command not support..%x\n", cmd); } if (pDevice->bCommit) { if (pMgmt->eConfigMode == WMAC_CONFIG_AP) { netif_stop_queue(pDevice->dev); spin_lock_irq(&pDevice->lock); bScheduleCommand((void *)pDevice, WLAN_CMD_RUN_AP, NULL); spin_unlock_irq(&pDevice->lock); } else { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Commit the settings\n"); spin_lock_irq(&pDevice->lock); pDevice->bLinkPass = false; memset(pMgmt->abyCurrBSSID, 0, 6); pMgmt->eCurrState = WMAC_STATE_IDLE; netif_stop_queue(pDevice->dev); #ifdef WPA_SUPPLICANT_DRIVER_WEXT_SUPPORT pMgmt->eScanType = WMAC_SCAN_ACTIVE; if (pDevice->bWPASuppWextEnabled != true) #endif bScheduleCommand((void *)pDevice, WLAN_CMD_BSSID_SCAN, pMgmt->abyDesireSSID); bScheduleCommand((void *)pDevice, WLAN_CMD_SSID, NULL); spin_unlock_irq(&pDevice->lock); } pDevice->bCommit = false; } return rc; } static int ethtool_ioctl(struct net_device *dev, void *useraddr) { u32 ethcmd; if (copy_from_user(ðcmd, useraddr, sizeof(ethcmd))) return -EFAULT; switch (ethcmd) { case ETHTOOL_GDRVINFO: { struct ethtool_drvinfo info = {ETHTOOL_GDRVINFO}; strncpy(info.driver, DEVICE_NAME, sizeof(info.driver)-1); strncpy(info.version, DEVICE_VERSION, sizeof(info.version)-1); if (copy_to_user(useraddr, &info, sizeof(info))) return -EFAULT; return 0; } } return -EOPNOTSUPP; } /*------------------------------------------------------------------*/ MODULE_DEVICE_TABLE(pci, vt6655_pci_id_table); static struct pci_driver device_driver = { .name = DEVICE_NAME, .id_table = vt6655_pci_id_table, .probe = vt6655_probe, .remove = vt6655_remove, #ifdef CONFIG_PM .suspend = viawget_suspend, .resume = viawget_resume, #endif }; static int __init vt6655_init_module(void) { int ret; // ret=pci_module_init(&device_driver); //ret = pcie_port_service_register(&device_driver); ret = pci_register_driver(&device_driver); #ifdef CONFIG_PM if (ret >= 0) register_reboot_notifier(&device_notifier); #endif return ret; } static void __exit vt6655_cleanup_module(void) { #ifdef CONFIG_PM unregister_reboot_notifier(&device_notifier); #endif pci_unregister_driver(&device_driver); } module_init(vt6655_init_module); module_exit(vt6655_cleanup_module); #ifdef CONFIG_PM static int device_notify_reboot(struct notifier_block *nb, unsigned long event, void *p) { struct pci_dev *pdev = NULL; switch (event) { case SYS_DOWN: case SYS_HALT: case SYS_POWER_OFF: for_each_pci_dev(pdev) { if (pci_dev_driver(pdev) == &device_driver) { if (pci_get_drvdata(pdev)) viawget_suspend(pdev, PMSG_HIBERNATE); } } } return NOTIFY_DONE; } static int viawget_suspend(struct pci_dev *pcid, pm_message_t state) { int power_status; // to silence the compiler PSDevice pDevice = pci_get_drvdata(pcid); PSMgmtObject pMgmt = pDevice->pMgmt; netif_stop_queue(pDevice->dev); spin_lock_irq(&pDevice->lock); pci_save_state(pcid); del_timer(&pDevice->sTimerCommand); del_timer(&pMgmt->sTimerSecondCallback); pDevice->cbFreeCmdQueue = CMD_Q_SIZE; pDevice->uCmdDequeueIdx = 0; pDevice->uCmdEnqueueIdx = 0; pDevice->bCmdRunning = false; MACbShutdown(pDevice->PortOffset); MACvSaveContext(pDevice->PortOffset, pDevice->abyMacContext); pDevice->bLinkPass = false; memset(pMgmt->abyCurrBSSID, 0, 6); pMgmt->eCurrState = WMAC_STATE_IDLE; pci_disable_device(pcid); power_status = pci_set_power_state(pcid, pci_choose_state(pcid, state)); spin_unlock_irq(&pDevice->lock); return 0; } static int viawget_resume(struct pci_dev *pcid) { PSDevice pDevice = pci_get_drvdata(pcid); PSMgmtObject pMgmt = pDevice->pMgmt; int power_status; // to silence the compiler power_status = pci_set_power_state(pcid, 0); power_status = pci_enable_wake(pcid, 0, 0); pci_restore_state(pcid); if (netif_running(pDevice->dev)) { spin_lock_irq(&pDevice->lock); MACvRestoreContext(pDevice->PortOffset, pDevice->abyMacContext); device_init_registers(pDevice, DEVICE_INIT_DXPL); if (pMgmt->sNodeDBTable[0].bActive == true) { // Assoc with BSS pMgmt->sNodeDBTable[0].bActive = false; pDevice->bLinkPass = false; if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) { // In Adhoc, BSS state set back to started. pMgmt->eCurrState = WMAC_STATE_STARTED; } else { pMgmt->eCurrMode = WMAC_MODE_STANDBY; pMgmt->eCurrState = WMAC_STATE_IDLE; } } init_timer(&pMgmt->sTimerSecondCallback); init_timer(&pDevice->sTimerCommand); MACvIntEnable(pDevice->PortOffset, IMR_MASK_VALUE); BSSvClearBSSList((void *)pDevice, pDevice->bLinkPass); bScheduleCommand((void *)pDevice, WLAN_CMD_BSSID_SCAN, NULL); bScheduleCommand((void *)pDevice, WLAN_CMD_SSID, NULL); spin_unlock_irq(&pDevice->lock); } return 0; } #endif