/*
 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
 * All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * File: iwctl.c
 *
 * Purpose:  wireless ext & ioctl functions
 *
 * Author: Lyndon Chen
 *
 * Date: July 5, 2006
 *
 * Functions:
 *
 * Revision History:
 *
 */

#include "device.h"
#include "iwctl.h"
#include "mac.h"
#include "card.h"
#include "hostap.h"
#include "power.h"
#include "rf.h"
#include "iowpa.h"
#include "wpactl.h"
#include "control.h"
#include "rndis.h"

static const long frequency_list[] = {
	2412, 2417, 2422, 2427, 2432, 2437, 2442, 2447, 2452, 2457, 2462, 2467, 2472, 2484,
	4915, 4920, 4925, 4935, 4940, 4945, 4960, 4980,
	5035, 5040, 5045, 5055, 5060, 5080, 5170, 5180, 5190, 5200, 5210, 5220, 5230, 5240,
	5260, 5280, 5300, 5320, 5500, 5520, 5540, 5560, 5580, 5600, 5620, 5640, 5660, 5680,
	5700, 5745, 5765, 5785, 5805, 5825
};

static int msglevel = MSG_LEVEL_INFO;

struct iw_statistics *iwctl_get_wireless_stats(struct net_device *dev)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	long ldBm;

	pDevice->wstats.status = pDevice->eOPMode;
	if (pDevice->scStatistic.LinkQuality > 100)
		pDevice->scStatistic.LinkQuality = 100;
	pDevice->wstats.qual.qual =(u8)pDevice->scStatistic.LinkQuality;
	RFvRSSITodBm(pDevice, (u8)(pDevice->uCurrRSSI), &ldBm);
	pDevice->wstats.qual.level = ldBm;
	pDevice->wstats.qual.noise = 0;
	pDevice->wstats.qual.updated = 1;
	pDevice->wstats.discard.nwid = 0;
	pDevice->wstats.discard.code = 0;
	pDevice->wstats.discard.fragment = 0;
	pDevice->wstats.discard.retries = pDevice->scStatistic.dwTsrErr;
	pDevice->wstats.discard.misc = 0;
	pDevice->wstats.miss.beacon = 0;
	return &pDevice->wstats;
}

/*
 * Wireless Handler: get protocol name
 */
int iwctl_giwname(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	strcpy(wrqu->name, "802.11-a/b/g");
	return 0;
}

/*
 * Wireless Handler: set scan
 */
int iwctl_siwscan(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct iw_point *wrq = &wrqu->data;
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	struct iw_scan_req *req = (struct iw_scan_req *)extra;
	u8 abyScanSSID[WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1];
	PWLAN_IE_SSID pItemSSID = NULL;

	if (!(pDevice->flags & DEVICE_FLAGS_OPENED))
		return -EINVAL;

	PRINT_K(" SIOCSIWSCAN\n");

	if (pMgmt == NULL)
		return -EFAULT;

	if (pMgmt->eScanState ==  WMAC_IS_SCANNING) {
		// In scanning..
		PRINT_K("SIOCSIWSCAN(overlap??)-->In scanning...\n");
		return -EAGAIN;
	}

	if (pDevice->byReAssocCount > 0) { // reject scan when re-associating!
		// send scan event to wpa_Supplicant
		union iwreq_data wrqu;
		PRINT_K("wireless_send_event--->SIOCGIWSCAN(scan done)\n");
		memset(&wrqu, 0, sizeof(wrqu));
		wireless_send_event(pDevice->dev, SIOCGIWSCAN, &wrqu, NULL);
		return 0;
	}

	spin_lock_irq(&pDevice->lock);

	BSSvClearBSSList((void *)pDevice, pDevice->bLinkPass);

	// mike add: active scan OR passive scan OR desire_ssid scan
	if (wrq->length == sizeof(struct iw_scan_req)) {
		if (wrq->flags & IW_SCAN_THIS_ESSID) { // desire_ssid scan
			memset(abyScanSSID, 0, WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1);
			pItemSSID = (PWLAN_IE_SSID)abyScanSSID;
			pItemSSID->byElementID = WLAN_EID_SSID;
			memcpy(pItemSSID->abySSID, req->essid, (int)req->essid_len);
			if (pItemSSID->abySSID[req->essid_len] == '\0') {
				if (req->essid_len > 0)
					pItemSSID->len = req->essid_len;
			} else {
				pItemSSID->len = req->essid_len;
			}
			pMgmt->eScanType = WMAC_SCAN_PASSIVE;
			PRINT_K("SIOCSIWSCAN:[desired_ssid=%s,len=%d]\n", ((PWLAN_IE_SSID)abyScanSSID)->abySSID,
				((PWLAN_IE_SSID)abyScanSSID)->len);
			bScheduleCommand((void *)pDevice, WLAN_CMD_BSSID_SCAN, abyScanSSID);
			spin_unlock_irq(&pDevice->lock);

			return 0;
		} else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) { // passive scan
			pMgmt->eScanType = WMAC_SCAN_PASSIVE;
		}
	} else { // active scan
		pMgmt->eScanType = WMAC_SCAN_ACTIVE;
	}

	pMgmt->eScanType = WMAC_SCAN_PASSIVE;
	bScheduleCommand((void *)pDevice, WLAN_CMD_BSSID_SCAN, NULL);
	spin_unlock_irq(&pDevice->lock);

	return 0;
}

/*
 * Wireless Handler : get scan results
 */
int iwctl_giwscan(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct iw_point *wrq = &wrqu->data;
	int ii;
	int jj;
	int kk;
	struct vnt_private *pDevice = netdev_priv(dev);
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	PKnownBSS pBSS;
	PWLAN_IE_SSID pItemSSID;
	PWLAN_IE_SUPP_RATES pSuppRates;
	PWLAN_IE_SUPP_RATES pExtSuppRates;
	char *current_ev = extra;
	char *end_buf = extra + IW_SCAN_MAX_DATA;
	char *current_val = NULL;
	struct iw_event iwe;
	long ldBm;

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWSCAN\n");

	if (pMgmt == NULL)
		return -EFAULT;

	if (pMgmt->eScanState ==  WMAC_IS_SCANNING) {
		// In scanning..
		return -EAGAIN;
	}
	pBSS = &(pMgmt->sBSSList[0]);
	for (ii = 0, jj = 0; jj < MAX_BSS_NUM ; jj++) {
		if (current_ev >= end_buf)
			break;
		pBSS = &(pMgmt->sBSSList[jj]);
		if (pBSS->bActive) {
			// ADD mac address
			memset(&iwe, 0, sizeof(iwe));
			iwe.cmd = SIOCGIWAP;
			iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
			memcpy(iwe.u.ap_addr.sa_data, pBSS->abyBSSID, WLAN_BSSID_LEN);
			current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe, IW_EV_ADDR_LEN);
			// ADD ssid
			memset(&iwe, 0, sizeof(iwe));
			iwe.cmd = SIOCGIWESSID;
			pItemSSID = (PWLAN_IE_SSID)pBSS->abySSID;
			iwe.u.data.length = pItemSSID->len;
			iwe.u.data.flags = 1;
			current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, pItemSSID->abySSID);
			// ADD mode
			memset(&iwe, 0, sizeof(iwe));
			iwe.cmd = SIOCGIWMODE;
			if (WLAN_GET_CAP_INFO_ESS(pBSS->wCapInfo))
				iwe.u.mode = IW_MODE_INFRA;
			else
				iwe.u.mode = IW_MODE_ADHOC;
			iwe.len = IW_EV_UINT_LEN;
			current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe, IW_EV_UINT_LEN);
			// ADD frequency
			pSuppRates = (PWLAN_IE_SUPP_RATES)pBSS->abySuppRates;
			pExtSuppRates = (PWLAN_IE_SUPP_RATES)pBSS->abyExtSuppRates;
			memset(&iwe, 0, sizeof(iwe));
			iwe.cmd = SIOCGIWFREQ;
			iwe.u.freq.m = pBSS->uChannel;
			iwe.u.freq.e = 0;
			iwe.u.freq.i = 0;
			current_ev = iwe_stream_add_event(info, current_ev,end_buf, &iwe, IW_EV_FREQ_LEN);
			{
				int f = (int)pBSS->uChannel - 1;
				if (f < 0)
					f = 0;
				iwe.u.freq.m = frequency_list[f] * 100000;
				iwe.u.freq.e = 1;
			}
			current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe, IW_EV_FREQ_LEN);
			// ADD quality
			memset(&iwe, 0, sizeof(iwe));
			iwe.cmd = IWEVQUAL;
			RFvRSSITodBm(pDevice, (u8)(pBSS->uRSSI), &ldBm);
			iwe.u.qual.level = ldBm;
			iwe.u.qual.noise = 0;

			if (-ldBm < 50)
				iwe.u.qual.qual = 100;
			else  if (-ldBm > 90)
				iwe.u.qual.qual = 0;
			else
				iwe.u.qual.qual = (40 - (-ldBm - 50)) * 100 / 40;
			iwe.u.qual.updated = 7;

			current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe, IW_EV_QUAL_LEN);
			// ADD encryption
			memset(&iwe, 0, sizeof(iwe));
			iwe.cmd = SIOCGIWENCODE;
			iwe.u.data.length = 0;
			if (WLAN_GET_CAP_INFO_PRIVACY(pBSS->wCapInfo))
				iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
			else
				iwe.u.data.flags = IW_ENCODE_DISABLED;
			current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, pItemSSID->abySSID);

			memset(&iwe, 0, sizeof(iwe));
			iwe.cmd = SIOCGIWRATE;
			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
			current_val = current_ev + IW_EV_LCP_LEN;

			for (kk = 0; kk < 12; kk++) {
				if (pSuppRates->abyRates[kk] == 0)
					break;
				// Bit rate given in 500 kb/s units (+ 0x80)
				iwe.u.bitrate.value = ((pSuppRates->abyRates[kk] & 0x7f) * 500000);
				current_val = iwe_stream_add_value(info, current_ev, current_val, end_buf, &iwe, IW_EV_PARAM_LEN);
			}
			for (kk = 0; kk < 8; kk++) {
				if (pExtSuppRates->abyRates[kk] == 0)
					break;
				// Bit rate given in 500 kb/s units (+ 0x80)
				iwe.u.bitrate.value = ((pExtSuppRates->abyRates[kk] & 0x7f) * 500000);
				current_val = iwe_stream_add_value(info, current_ev, current_val, end_buf, &iwe, IW_EV_PARAM_LEN);
			}

			if ((current_val - current_ev) > IW_EV_LCP_LEN)
				current_ev = current_val;

			if ((pBSS->wWPALen > 0) && (pBSS->wWPALen <= MAX_WPA_IE_LEN)) {
				memset(&iwe, 0, sizeof(iwe));
				iwe.cmd = IWEVGENIE;
				iwe.u.data.length = pBSS->wWPALen;
				current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, pBSS->byWPAIE);
			}

			if ((pBSS->wRSNLen > 0) && (pBSS->wRSNLen <= MAX_WPA_IE_LEN)) {
				memset(&iwe, 0, sizeof(iwe));
				iwe.cmd = IWEVGENIE;
				iwe.u.data.length = pBSS->wRSNLen;
				current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, pBSS->byRSNIE);
			}
		}
	} // for
	wrq->length = current_ev - extra;
	return 0;
}

/*
 * Wireless Handler: set frequence or channel
 */
int iwctl_siwfreq(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct iw_freq *wrq = &wrqu->freq;
	int rc = 0;

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWFREQ\n");

	// If setting by frequency, convert to a channel
	if ((wrq->e == 1) && (wrq->m >= (int)2.412e8) &&
		(wrq->m <= (int)2.487e8)) {
		int f = wrq->m / 100000;
		int c = 0;
		while ((c < 14) && (f != frequency_list[c]))
			c++;
		wrq->e = 0;
		wrq->m = c + 1;
	}
	// Setting by channel number
	if ((wrq->m > 14) || (wrq->e > 0)) {
		rc = -EOPNOTSUPP;
	} else {
		int channel = wrq->m;
		if ((channel < 1) || (channel > 14)) {
			DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "%s: New channel value of %d is invalid!\n", dev->name, wrq->m);
			rc = -EINVAL;
		} else {
			// Yes ! We can set it !!!
			DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " Set to channel = %d\n", channel);
			pDevice->uChannel = channel;
		}
	}
	return rc;
}

/*
 * Wireless Handler: get frequence or channel
 */
int iwctl_giwfreq(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct iw_freq *wrq = &wrqu->freq;
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWFREQ\n");

	if (pMgmt == NULL)
		return -EFAULT;

#ifdef WEXT_USECHANNELS
	wrq->m = (int)pMgmt->uCurrChannel;
	wrq->e = 0;
#else
	{
		int f = (int)pMgmt->uCurrChannel - 1;
		if (f < 0)
			f = 0;
		wrq->m = frequency_list[f] * 100000;
		wrq->e = 1;
	}
#endif
	return 0;
}

/*
 * Wireless Handler: set operation mode
 */
int iwctl_siwmode(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	__u32 *wmode = &wrqu->mode;
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	int rc = 0;

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWMODE\n");

	if (pMgmt == NULL)
		return -EFAULT;

	if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP && pDevice->bEnableHostapd) {
		DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
			"Can't set operation mode, hostapd is running\n");
		return rc;
	}

	switch (*wmode) {
	case IW_MODE_ADHOC:
		if (pMgmt->eConfigMode != WMAC_CONFIG_IBSS_STA) {
			pMgmt->eConfigMode = WMAC_CONFIG_IBSS_STA;
			if (pDevice->flags & DEVICE_FLAGS_OPENED)
				pDevice->bCommit = true;
		}
		DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "set mode to ad-hoc \n");
		break;
	case IW_MODE_AUTO:
	case IW_MODE_INFRA:
		if (pMgmt->eConfigMode != WMAC_CONFIG_ESS_STA) {
			pMgmt->eConfigMode = WMAC_CONFIG_ESS_STA;
			if (pDevice->flags & DEVICE_FLAGS_OPENED)
				pDevice->bCommit = true;
		}
		DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "set mode to infrastructure \n");
		break;
	case IW_MODE_MASTER:

		pMgmt->eConfigMode = WMAC_CONFIG_ESS_STA;
		rc = -EOPNOTSUPP;
		break;

		if (pMgmt->eConfigMode != WMAC_CONFIG_AP) {
			pMgmt->eConfigMode = WMAC_CONFIG_AP;
			if (pDevice->flags & DEVICE_FLAGS_OPENED)
				pDevice->bCommit = true;
		}
		DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "set mode to Access Point \n");
		break;

	case IW_MODE_REPEAT:
		pMgmt->eConfigMode = WMAC_CONFIG_ESS_STA;
		rc = -EOPNOTSUPP;
		break;
	default:
		rc = -EINVAL;
	}

	if (pDevice->bCommit) {
		if (pMgmt->eConfigMode == WMAC_CONFIG_AP) {
			netif_stop_queue(pDevice->dev);
			spin_lock_irq(&pDevice->lock);
			bScheduleCommand((void *) pDevice,
				WLAN_CMD_RUN_AP, NULL);
			spin_unlock_irq(&pDevice->lock);
		} else {
			DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
				"Commit the settings\n");

			spin_lock_irq(&pDevice->lock);

			if (pDevice->bLinkPass &&
				memcmp(pMgmt->abyCurrSSID,
					pMgmt->abyDesireSSID,
					WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN)) {
				bScheduleCommand((void *) pDevice,
					WLAN_CMD_DISASSOCIATE, NULL);
			} else {
				pDevice->bLinkPass = false;
				pMgmt->eCurrState = WMAC_STATE_IDLE;
				memset(pMgmt->abyCurrBSSID, 0, 6);
			}

			ControlvMaskByte(pDevice,
				MESSAGE_REQUEST_MACREG,	MAC_REG_PAPEDELAY,
					LEDSTS_STS, LEDSTS_SLOW);

			netif_stop_queue(pDevice->dev);

			pMgmt->eScanType = WMAC_SCAN_ACTIVE;

			if (!pDevice->bWPASuppWextEnabled)
				bScheduleCommand((void *) pDevice,
					 WLAN_CMD_BSSID_SCAN,
					 pMgmt->abyDesireSSID);

			bScheduleCommand((void *) pDevice,
				 WLAN_CMD_SSID,
				 NULL);

			spin_unlock_irq(&pDevice->lock);
		}
		pDevice->bCommit = false;
	}

	return rc;
}

/*
 * Wireless Handler: get operation mode
 */
int iwctl_giwmode(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	__u32 *wmode = &wrqu->mode;
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWMODE\n");

	if (pMgmt == NULL)
		return -EFAULT;

	// If not managed, assume it's ad-hoc
	switch (pMgmt->eConfigMode) {
	case WMAC_CONFIG_ESS_STA:
		*wmode = IW_MODE_INFRA;
		break;
	case WMAC_CONFIG_IBSS_STA:
		*wmode = IW_MODE_ADHOC;
		break;
	case WMAC_CONFIG_AUTO:
		*wmode = IW_MODE_INFRA;
		break;
	case WMAC_CONFIG_AP:
		*wmode = IW_MODE_MASTER;
		break;
	default:
		*wmode = IW_MODE_ADHOC;
	}

	return 0;
}

/*
 * Wireless Handler: get capability range
 */
int iwctl_giwrange(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct iw_point *wrq = &wrqu->data;
	struct iw_range *range = (struct iw_range *)extra;
	int i;
	int k;
	u8 abySupportedRates[13] = {
		0x02, 0x04, 0x0B, 0x16, 0x0c, 0x12, 0x18, 0x24, 0x30, 0x48,
		0x60, 0x6C, 0x90
	};

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWRANGE\n");
	if (wrq->pointer) {
		wrq->length = sizeof(struct iw_range);
		memset(range, 0, sizeof(struct iw_range));
		range->min_nwid = 0x0000;
		range->max_nwid = 0x0000;
		range->num_channels = 14;
		// Should be based on cap_rid.country to give only
		// what the current card support
		k = 0;
		for (i = 0; i < 14; i++) {
			range->freq[k].i = i + 1; // List index
			range->freq[k].m = frequency_list[i] * 100000;
			range->freq[k++].e = 1;	// Values in table in MHz -> * 10^5 * 10
		}
		range->num_frequency = k;
		// Hum... Should put the right values there
		range->max_qual.qual = 100;
		range->max_qual.level = 0;
		range->max_qual.noise = 0;
		range->sensitivity = 255;

		for (i = 0; i < 13; i++) {
			range->bitrate[i] = abySupportedRates[i] * 500000;
			if (range->bitrate[i] == 0)
				break;
		}
		range->num_bitrates = i;

		// Set an indication of the max TCP throughput
		// in bit/s that we can expect using this interface.
		//  May be use for QoS stuff... Jean II
		if (i > 2)
			range->throughput = 5 * 1000 * 1000;
		else
			range->throughput = 1.5 * 1000 * 1000;

		range->min_rts = 0;
		range->max_rts = 2312;
		range->min_frag = 256;
		range->max_frag = 2312;

		// the encoding capabilities
		range->num_encoding_sizes = 3;
		// 64(40) bits WEP
		range->encoding_size[0] = 5;
		// 128(104) bits WEP
		range->encoding_size[1] = 13;
		// 256 bits for WPA-PSK
		range->encoding_size[2] = 32;
		// 4 keys are allowed
		range->max_encoding_tokens = 4;

		range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
			IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;

		range->min_pmp = 0;
		range->max_pmp = 1000000; // 1 secs
		range->min_pmt = 0;
		range->max_pmt = 1000000; // 1 secs
		range->pmp_flags = IW_POWER_PERIOD;
		range->pmt_flags = IW_POWER_TIMEOUT;
		range->pm_capa = IW_POWER_PERIOD | IW_POWER_TIMEOUT | IW_POWER_ALL_R;

		// Transmit Power - values are in mW
		range->txpower[0] = 100;
		range->num_txpower = 1;
		range->txpower_capa = IW_TXPOW_MWATT;
		range->we_version_source = WIRELESS_EXT;
		range->we_version_compiled = WIRELESS_EXT;
		range->retry_capa = IW_RETRY_LIMIT | IW_RETRY_LIFETIME;
		range->retry_flags = IW_RETRY_LIMIT;
		range->r_time_flags = IW_RETRY_LIFETIME;
		range->min_retry = 1;
		range->max_retry = 65535;
		range->min_r_time = 1024;
		range->max_r_time = 65535 * 1024;
		// Experimental measurements - boundary 11/5.5 Mb/s
		// Note : with or without the (local->rssi), results
		//  are somewhat different. - Jean II
		range->avg_qual.qual = 6;
		range->avg_qual.level = 176; // -80 dBm
		range->avg_qual.noise = 0;
	}

	return 0;
}

/*
 * Wireless Handler : set ap mac address
 */
int iwctl_siwap(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct sockaddr *wrq = &wrqu->ap_addr;
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	int rc = 0;
	u8 ZeroBSSID[WLAN_BSSID_LEN] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };

	PRINT_K(" SIOCSIWAP\n");

	if (pMgmt == NULL)
		return -EFAULT;

	if (wrq->sa_family != ARPHRD_ETHER) {
		rc = -EINVAL;
	} else {
		memcpy(pMgmt->abyDesireBSSID, wrq->sa_data, 6);
		// mike: add
		if ((is_broadcast_ether_addr(pMgmt->abyDesireBSSID)) ||
			(memcmp(pMgmt->abyDesireBSSID, ZeroBSSID, 6) == 0)) {
			PRINT_K("SIOCSIWAP:invalid desired BSSID return!\n");
			return rc;
		}
		// mike add: if desired AP is hidden ssid(there are
		// two same BSSID in list), then ignore,because you
		// don't known which one to be connect with??
		{
			unsigned ii;
			unsigned uSameBssidNum = 0;
			for (ii = 0; ii < MAX_BSS_NUM; ii++) {
				if (pMgmt->sBSSList[ii].bActive &&
					!compare_ether_addr(pMgmt->sBSSList[ii].abyBSSID,
							pMgmt->abyDesireBSSID)) {
					uSameBssidNum++;
				}
			}
			if (uSameBssidNum >= 2) {  //hit: desired AP is in hidden ssid mode!!!
				PRINT_K("SIOCSIWAP:ignore for desired AP in hidden mode\n");
				return rc;
			}
		}

		if (pDevice->flags & DEVICE_FLAGS_OPENED)
			pDevice->bCommit = true;
	}
	return rc;
}

/*
 * Wireless Handler: get ap mac address
 */
int iwctl_giwap(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct sockaddr *wrq = &wrqu->ap_addr;
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWAP\n");

	if (pMgmt == NULL)
		return -EFAULT;

	memcpy(wrq->sa_data, pMgmt->abyCurrBSSID, 6);

	if ((pDevice->bLinkPass == false) && (pMgmt->eCurrMode != WMAC_MODE_ESS_AP))
		memset(wrq->sa_data, 0, 6);

	if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP)
		memcpy(wrq->sa_data, pMgmt->abyCurrBSSID, 6);

	wrq->sa_family = ARPHRD_ETHER;
	return 0;
}

/*
 * Wireless Handler: get ap list
 */
int iwctl_giwaplist(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct iw_point *wrq = &wrqu->data;
	struct sockaddr *sock;
	struct iw_quality *qual;
	struct vnt_private *pDevice = netdev_priv(dev);
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	PKnownBSS pBSS = &pMgmt->sBSSList[0];
	int ii;
	int jj;

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWAPLIST\n");
	/* Only super-user can see AP list */

	if (pBSS == NULL)
		return -ENODEV;

	if (!capable(CAP_NET_ADMIN))
		return -EPERM;

	if (!wrq->pointer)
		return -EINVAL;

	sock = kzalloc(sizeof(struct sockaddr) * IW_MAX_AP, GFP_KERNEL);
	if (sock == NULL)
		return -ENOMEM;
	qual = kzalloc(sizeof(struct iw_quality) * IW_MAX_AP, GFP_KERNEL);
	if (qual == NULL) {
		kfree(sock);
		return -ENOMEM;
	}

	for (ii = 0, jj = 0; ii < MAX_BSS_NUM; ii++) {
		if (!pBSS[ii].bActive)
			continue;
		if (jj >= IW_MAX_AP)
			break;
		memcpy(sock[jj].sa_data, pBSS[ii].abyBSSID, 6);
		sock[jj].sa_family = ARPHRD_ETHER;
		qual[jj].level = pBSS[ii].uRSSI;
		qual[jj].qual = qual[jj].noise = 0;
		qual[jj].updated = 2;
		jj++;
	}

	wrq->flags = 1; /* Should be defined */
	wrq->length = jj;
	memcpy(extra, sock, sizeof(struct sockaddr) * jj);
	memcpy(extra + sizeof(struct sockaddr) * jj, qual,
		sizeof(struct iw_quality) * jj);

	kfree(sock);
	kfree(qual);

	return 0;
}

/*
 * Wireless Handler: set essid
 */
int iwctl_siwessid(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct iw_point	*wrq = &wrqu->essid;
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	PWLAN_IE_SSID pItemSSID;

	if (pMgmt == NULL)
		return -EFAULT;

	if (!(pDevice->flags & DEVICE_FLAGS_OPENED))
		return -EINVAL;

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWESSID :\n");

	pDevice->fWPA_Authened = false;
	// Check if we asked for `any'
	if (wrq->flags == 0) {
		// Just send an empty SSID list
		memset(pMgmt->abyDesireSSID, 0, WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1);
		memset(pMgmt->abyDesireBSSID, 0xFF,6);
		PRINT_K("set essid to 'any' \n");
		// Unknown desired AP, so here need not associate??
		return 0;
	} else {
		// Set the SSID
		memset(pMgmt->abyDesireSSID, 0, WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1);
		pItemSSID = (PWLAN_IE_SSID)pMgmt->abyDesireSSID;
		pItemSSID->byElementID = WLAN_EID_SSID;

		memcpy(pItemSSID->abySSID, extra, wrq->length);
		if (pItemSSID->abySSID[wrq->length] == '\0') {
			if (wrq->length>0)
				pItemSSID->len = wrq->length;
		} else {
			pItemSSID->len = wrq->length;
		}
		PRINT_K("set essid to %s \n", pItemSSID->abySSID);

		// mike: need clear desiredBSSID
		if (pItemSSID->len==0) {
			memset(pMgmt->abyDesireBSSID, 0xFF, 6);
			return 0;
		}

		// Wext wil order another command of siwap to link
		// with desired AP, so here need not associate??
		if (pDevice->bWPASuppWextEnabled == true)  {
			/*******search if  in hidden ssid mode ****/
			PKnownBSS pCurr = NULL;
			u8 abyTmpDesireSSID[WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1];
			unsigned ii;
			unsigned uSameBssidNum = 0;

			memcpy(abyTmpDesireSSID, pMgmt->abyDesireSSID, sizeof(abyTmpDesireSSID));
			pCurr = BSSpSearchBSSList(pDevice, NULL,
						abyTmpDesireSSID,
						pDevice->eConfigPHYMode);

			if (pCurr == NULL) {
				PRINT_K("SIOCSIWESSID:hidden ssid site survey before associate.......\n");
				vResetCommandTimer((void *)pDevice);
				pMgmt->eScanType = WMAC_SCAN_ACTIVE;
				bScheduleCommand((void *)pDevice,
						WLAN_CMD_BSSID_SCAN,
						pMgmt->abyDesireSSID);
				bScheduleCommand((void *)pDevice,
						WLAN_CMD_SSID,
						pMgmt->abyDesireSSID);
			} else {  // mike: to find out if that desired SSID is a
				// hidden-ssid AP, by means of judging if there
				// are two same BSSID exist in list ?
				for (ii = 0; ii < MAX_BSS_NUM; ii++) {
					if (pMgmt->sBSSList[ii].bActive &&
						!compare_ether_addr(pMgmt->sBSSList[ii].abyBSSID,
								pCurr->abyBSSID)) {
						uSameBssidNum++;
					}
				}
				if (uSameBssidNum >= 2) { // hit: desired AP is in hidden ssid mode!!!
					PRINT_K("SIOCSIWESSID:hidden ssid directly associate.......\n");
					vResetCommandTimer((void *)pDevice);
					pMgmt->eScanType = WMAC_SCAN_PASSIVE; // this scan type, you'll submit scan result!
					bScheduleCommand((void *)pDevice,
							WLAN_CMD_BSSID_SCAN,
							pMgmt->abyDesireSSID);
					bScheduleCommand((void *)pDevice,
							WLAN_CMD_SSID,
							pMgmt->abyDesireSSID);
				}
			}
			return 0;
		}

		DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "set essid = %s \n", pItemSSID->abySSID);
	}

	if (pDevice->flags & DEVICE_FLAGS_OPENED)
		pDevice->bCommit = true;

	return 0;
}

/*
 * Wireless Handler: get essid
 */
int iwctl_giwessid(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct iw_point	*wrq = &wrqu->essid;
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	PWLAN_IE_SSID pItemSSID;

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWESSID\n");

	if (pMgmt == NULL)
		return -EFAULT;

	// Note: if wrq->u.data.flags != 0, we should get the relevant
	// SSID from the SSID list...

	// Get the current SSID
	pItemSSID = (PWLAN_IE_SSID)pMgmt->abyCurrSSID;
	memcpy(extra, pItemSSID->abySSID, pItemSSID->len);
	extra[pItemSSID->len] = '\0';

        wrq->length = pItemSSID->len;
	wrq->flags = 1; // active

	return 0;
}

/*
 * Wireless Handler: set data rate
 */
int iwctl_siwrate(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct iw_param *wrq = &wrqu->bitrate;
	int rc = 0;
	u8 brate = 0;
	int i;
	u8 abySupportedRates[13] = {
		0x02, 0x04, 0x0B, 0x16, 0x0c, 0x12, 0x18, 0x24, 0x30, 0x48,
		0x60, 0x6C, 0x90
	};

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWRATE \n");
	if (!(pDevice->flags & DEVICE_FLAGS_OPENED)) {
		rc = -EINVAL;
		return rc;
	}

	// First: get a valid bit rate value

	// Which type of value
	if ((wrq->value < 13) && (wrq->value >= 0)) {
		// Setting by rate index
		// Find value in the magic rate table
		brate = wrq->value;
	} else {
		// Setting by frequency value
		u8 normvalue = (u8)(wrq->value/500000);

		// Check if rate is valid
		for (i = 0; i < 13; i++) {
			if (normvalue == abySupportedRates[i]) {
				brate = i;
				break;
			}
		}
	}
	// -1 designed the max rate (mostly auto mode)
	if (wrq->value == -1) {
		// Get the highest available rate
		for (i = 0; i < 13; i++) {
			if (abySupportedRates[i] == 0)
				break;
		}
		if (i != 0)
			brate = i - 1;

	}
	// Check that it is valid
	// brate is index of abySupportedRates[]
	if (brate > 13 ) {
		rc = -EINVAL;
		return rc;
	}

	// Now, check if we want a fixed or auto value
	if (wrq->fixed != 0) {
		// Fixed mode
		// One rate, fixed
		pDevice->bFixRate = true;
		if ((pDevice->byBBType == BB_TYPE_11B) && (brate > 3)) {
			pDevice->uConnectionRate = 3;
		} else {
			pDevice->uConnectionRate = brate;
			DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Fixed to Rate %d \n", pDevice->uConnectionRate);
		}
	} else {
		pDevice->bFixRate = false;
		pDevice->uConnectionRate = 13;
	}

	return rc;
}

/*
 * Wireless Handler: get data rate
 */
int iwctl_giwrate(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct iw_param *wrq = &wrqu->bitrate;
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWRATE\n");

	if (pMgmt == NULL)
		return -EFAULT;

	{
		u8 abySupportedRates[13] = {
			0x02, 0x04, 0x0B, 0x16, 0x0c, 0x12, 0x18, 0x24, 0x30,
			0x48, 0x60, 0x6C, 0x90
		};
		int brate = 0;

		if (pDevice->uConnectionRate < 13) {
			brate = abySupportedRates[pDevice->uConnectionRate];
		} else {
			if (pDevice->byBBType == BB_TYPE_11B)
				brate = 0x16;
			if (pDevice->byBBType == BB_TYPE_11G)
				brate = 0x6C;
			if (pDevice->byBBType == BB_TYPE_11A)
				brate = 0x6C;
		}
		if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
			if (pDevice->byBBType == BB_TYPE_11B)
				brate = 0x16;
			if (pDevice->byBBType == BB_TYPE_11G)
				brate = 0x6C;
			if (pDevice->byBBType == BB_TYPE_11A)
				brate = 0x6C;
		}
    		if (pDevice->uConnectionRate == 13)
			brate = abySupportedRates[pDevice->wCurrentRate];
		wrq->value = brate * 500000;
		// If more than one rate, set auto
		if (pDevice->bFixRate == true)
			wrq->fixed = true;
	}

	return 0;
}

/*
 * Wireless Handler: set rts threshold
 */
int iwctl_siwrts(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct iw_param *wrq = &wrqu->rts;

	if ((wrq->value < 0 || wrq->value > 2312) && !wrq->disabled)
		return -EINVAL;

	else if (wrq->disabled)
		pDevice->wRTSThreshold = 2312;
	else
		pDevice->wRTSThreshold = wrq->value;

	return 0;
}

/*
 * Wireless Handler: get rts
 */
int iwctl_giwrts(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct iw_param *wrq = &wrqu->rts;

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWRTS\n");
	wrq->value = pDevice->wRTSThreshold;
	wrq->disabled = (wrq->value >= 2312);
	wrq->fixed = 1;
	return 0;
}

/*
 * Wireless Handler: set fragment threshold
 */
int iwctl_siwfrag(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct iw_param *wrq = &wrqu->frag;
	int rc = 0;
	int fthr = wrq->value;

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWFRAG\n");

	if (wrq->disabled)
		fthr = 2312;
	if ((fthr < 256) || (fthr > 2312)) {
		rc = -EINVAL;
	} else {
		fthr &= ~0x1; // Get an even value
		pDevice->wFragmentationThreshold = (u16)fthr;
	}
	return rc;
}

/*
 * Wireless Handler: get fragment threshold
 */
int iwctl_giwfrag(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct iw_param *wrq = &wrqu->frag;

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWFRAG\n");
	wrq->value = pDevice->wFragmentationThreshold;
	wrq->disabled = (wrq->value >= 2312);
	wrq->fixed = 1;
	return 0;
}

/*
 * Wireless Handler: set retry threshold
 */
int iwctl_siwretry(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct iw_param *wrq = &wrqu->retry;
	int rc = 0;

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWRETRY\n");

	if (wrq->disabled) {
		rc = -EINVAL;
		return rc;
	}

	if (wrq->flags & IW_RETRY_LIMIT) {
		if (wrq->flags & IW_RETRY_MAX) {
			pDevice->byLongRetryLimit = wrq->value;
		} else if (wrq->flags & IW_RETRY_MIN) {
			pDevice->byShortRetryLimit = wrq->value;
		} else {
			// No modifier : set both
			pDevice->byShortRetryLimit = wrq->value;
			pDevice->byLongRetryLimit = wrq->value;
		}
	}
	if (wrq->flags & IW_RETRY_LIFETIME)
		pDevice->wMaxTransmitMSDULifetime = wrq->value;
	return rc;
}

/*
 * Wireless Handler: get retry threshold
 */
int iwctl_giwretry(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct iw_param *wrq = &wrqu->retry;
	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWRETRY\n");
	wrq->disabled = 0; // Can't be disabled

	// Note: by default, display the min retry number
	if ((wrq->flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
		wrq->flags = IW_RETRY_LIFETIME;
		wrq->value = (int)pDevice->wMaxTransmitMSDULifetime; // ms
	} else if ((wrq->flags & IW_RETRY_MAX)) {
		wrq->flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
		wrq->value = (int)pDevice->byLongRetryLimit;
	} else {
		wrq->flags = IW_RETRY_LIMIT;
		wrq->value = (int)pDevice->byShortRetryLimit;
		if ((int)pDevice->byShortRetryLimit != (int)pDevice->byLongRetryLimit)
			wrq->flags |= IW_RETRY_MIN;
	}
	return 0;
}

/*
 * Wireless Handler: set encode mode
 */
int iwctl_siwencode(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	struct iw_point *wrq = &wrqu->encoding;
	u32 dwKeyIndex = (u32)(wrq->flags & IW_ENCODE_INDEX);
	int ii;
	int uu;
	int rc = 0;
	int index = (wrq->flags & IW_ENCODE_INDEX);

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWENCODE\n");

	if (pMgmt == NULL)
		return -EFAULT;

	// Check the size of the key
	if (wrq->length > WLAN_WEP232_KEYLEN) {
		rc = -EINVAL;
		return rc;
	}

	if (dwKeyIndex > WLAN_WEP_NKEYS) {
		rc = -EINVAL;
		return rc;
	}

	if (dwKeyIndex > 0)
		dwKeyIndex--;

	// Send the key to the card
	if (wrq->length > 0) {
		if (wrq->length == WLAN_WEP232_KEYLEN) {
			DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Set 232 bit wep key\n");
		} else if (wrq->length == WLAN_WEP104_KEYLEN) {
			DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Set 104 bit wep key\n");
		} else if (wrq->length == WLAN_WEP40_KEYLEN) {
			DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Set 40 bit wep key, index= %d\n", (int)dwKeyIndex);
		}
		memset(pDevice->abyKey, 0, WLAN_WEP232_KEYLEN);
		memcpy(pDevice->abyKey, extra, wrq->length);

		DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"abyKey: ");
		for (ii = 0; ii < wrq->length; ii++)
			DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "%02x ", pDevice->abyKey[ii]);

		if (pDevice->flags & DEVICE_FLAGS_OPENED) {
			spin_lock_irq(&pDevice->lock);
			KeybSetDefaultKey(pDevice,
					&(pDevice->sKey),
					dwKeyIndex | (1 << 31),
					wrq->length, NULL,
					pDevice->abyKey,
					KEY_CTL_WEP);
			spin_unlock_irq(&pDevice->lock);
		}
		pDevice->byKeyIndex = (u8)dwKeyIndex;
		pDevice->uKeyLength = wrq->length;
		pDevice->bTransmitKey = true;
		pDevice->bEncryptionEnable = true;
		pDevice->eEncryptionStatus = Ndis802_11Encryption1Enabled;

		// Do we want to just set the transmit key index?
		if (index < 4) {
			pDevice->byKeyIndex = index;
		} else if (!(wrq->flags & IW_ENCODE_MODE)) {
			rc = -EINVAL;
			return rc;
		}
	}
	// Read the flags
	if (wrq->flags & IW_ENCODE_DISABLED) {
		DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Disable WEP function\n");
		pMgmt->bShareKeyAlgorithm = false;
		pDevice->bEncryptionEnable = false;
		pDevice->eEncryptionStatus = Ndis802_11EncryptionDisabled;
		if (pDevice->flags & DEVICE_FLAGS_OPENED) {
			spin_lock_irq(&pDevice->lock);
			for (uu = 0; uu < MAX_KEY_TABLE; uu++)
				MACvDisableKeyEntry(pDevice, uu);
			spin_unlock_irq(&pDevice->lock);
		}
	}
	if (wrq->flags & IW_ENCODE_RESTRICTED) {
		DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Enable WEP & ShareKey System\n");
		pMgmt->bShareKeyAlgorithm = true;
	}
	if (wrq->flags & IW_ENCODE_OPEN) {
		DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Enable WEP & Open System\n");
		pMgmt->bShareKeyAlgorithm = false;
	}

	memset(pMgmt->abyDesireBSSID, 0xFF, 6);

	return rc;
}

int iwctl_giwencode(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	struct iw_point *wrq = &wrqu->encoding;
	char abyKey[WLAN_WEP232_KEYLEN];

	unsigned index = (unsigned)(wrq->flags & IW_ENCODE_INDEX);
	PSKeyItem pKey = NULL;

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWENCODE\n");

	if (pMgmt == NULL)
		return -EFAULT;

	if (index > WLAN_WEP_NKEYS)
		return	-EINVAL;
	if (index < 1) { // get default key
		if (pDevice->byKeyIndex < WLAN_WEP_NKEYS)
			index = pDevice->byKeyIndex;
         	else
			index = 0;
	} else {
		index--;
	}

	memset(abyKey, 0, WLAN_WEP232_KEYLEN);
	// Check encryption mode
	wrq->flags = IW_ENCODE_NOKEY;
	// Is WEP enabled ???
	if (pDevice->bEncryptionEnable)
		wrq->flags |= IW_ENCODE_ENABLED;
	else
		wrq->flags |= IW_ENCODE_DISABLED;

	if (pMgmt->bShareKeyAlgorithm)
		wrq->flags |= IW_ENCODE_RESTRICTED;
	else
		wrq->flags |= IW_ENCODE_OPEN;
	wrq->length = 0;

	if ((index == 0) && (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled ||
				pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled)) { // get wpa pairwise  key
		if (KeybGetKey(&(pDevice->sKey), pMgmt->abyCurrBSSID, 0xffffffff, &pKey)) {
			wrq->length = pKey->uKeyLength;
			memcpy(abyKey, pKey->abyKey,	pKey->uKeyLength);
			memcpy(extra,  abyKey, WLAN_WEP232_KEYLEN);
		}
	} else if (KeybGetKey(&(pDevice->sKey), pDevice->abyBroadcastAddr, (u8)index, &pKey)) {
		wrq->length = pKey->uKeyLength;
		memcpy(abyKey, pKey->abyKey, pKey->uKeyLength);
		memcpy(extra, abyKey, WLAN_WEP232_KEYLEN);
	}

	wrq->flags |= index + 1;
	return 0;
}

/*
 * Wireless Handler: set power mode
 */
int iwctl_siwpower(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	struct iw_param *wrq = &wrqu->power;
	int rc = 0;

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWPOWER\n");

	if (pMgmt == NULL)
		return -EFAULT;

	if (!(pDevice->flags & DEVICE_FLAGS_OPENED)) {
		rc = -EINVAL;
		return rc;
	}

	spin_lock_irq(&pDevice->lock);

	if (wrq->disabled) {
		pDevice->ePSMode = WMAC_POWER_CAM;
		PSvDisablePowerSaving(pDevice);
		spin_unlock_irq(&pDevice->lock);
		return rc;
	}
	if ((wrq->flags & IW_POWER_TYPE) == IW_POWER_TIMEOUT) {
		pDevice->ePSMode = WMAC_POWER_FAST;
		PSvEnablePowerSaving((void *)pDevice, pMgmt->wListenInterval);

	} else if ((wrq->flags & IW_POWER_TYPE) == IW_POWER_PERIOD) {
		pDevice->ePSMode = WMAC_POWER_FAST;
		PSvEnablePowerSaving((void *)pDevice, pMgmt->wListenInterval);
	}

	spin_unlock_irq(&pDevice->lock);

	switch (wrq->flags & IW_POWER_MODE) {
	case IW_POWER_UNICAST_R:
		DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWPOWER: IW_POWER_UNICAST_R \n");
		rc = -EINVAL;
		break;
	case IW_POWER_ALL_R:
		DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWPOWER: IW_POWER_ALL_R \n");
		rc = -EINVAL;
	case IW_POWER_ON:
		DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWPOWER: IW_POWER_ON \n");
		break;
	default:
		rc = -EINVAL;
	}

	return rc;
}

/*
 * Wireless Handler: get power mode
 */
int iwctl_giwpower(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	struct iw_param *wrq = &wrqu->power;
	int mode = pDevice->ePSMode;

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWPOWER\n");

	if (pMgmt == NULL)
		return -EFAULT;

	if ((wrq->disabled = (mode == WMAC_POWER_CAM)))
		return 0;

	if ((wrq->flags & IW_POWER_TYPE) == IW_POWER_TIMEOUT) {
		wrq->value = (int)((pMgmt->wListenInterval *
			pMgmt->wCurrBeaconPeriod) / 100);
		wrq->flags = IW_POWER_TIMEOUT;
	} else {
		wrq->value = (int)((pMgmt->wListenInterval *
			pMgmt->wCurrBeaconPeriod) / 100);
		wrq->flags = IW_POWER_PERIOD;
	}

	wrq->flags |= IW_POWER_ALL_R;
	return 0;
}

/*
 * Wireless Handler: get Sensitivity
 */
int iwctl_giwsens(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct iw_param *wrq = &wrqu->sens;
	long ldBm;

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCGIWSENS\n");
	if (pDevice->bLinkPass == true) {
		RFvRSSITodBm(pDevice, (u8)(pDevice->uCurrRSSI), &ldBm);
		wrq->value = ldBm;
	} else {
		wrq->value = 0;
	}
	wrq->disabled = (wrq->value == 0);
	wrq->fixed = 1;
	return 0;
}

int iwctl_siwauth(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	struct iw_param *wrq = &wrqu->param;
	int ret = 0;
	static int wpa_version = 0; // must be static to save the last value, einsn liu
	static int pairwise = 0;

	if (pMgmt == NULL)
		return -EFAULT;

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWAUTH\n");
	switch (wrq->flags & IW_AUTH_INDEX) {
	case IW_AUTH_WPA_VERSION:
		wpa_version = wrq->value;
		if (wrq->value == IW_AUTH_WPA_VERSION_DISABLED) {
			PRINT_K("iwctl_siwauth:set WPADEV to disable at 1??????\n");
		} else if (wrq->value == IW_AUTH_WPA_VERSION_WPA) {
			PRINT_K("iwctl_siwauth:set WPADEV to WPA1******\n");
		} else {
			PRINT_K("iwctl_siwauth:set WPADEV to WPA2******\n");
		}
		break;
	case IW_AUTH_CIPHER_PAIRWISE:
		pairwise = wrq->value;
		PRINT_K("iwctl_siwauth:set pairwise=%d\n", pairwise);
		if (pairwise == IW_AUTH_CIPHER_CCMP){
			pDevice->eEncryptionStatus = Ndis802_11Encryption3Enabled;
		} else if (pairwise == IW_AUTH_CIPHER_TKIP) {
			pDevice->eEncryptionStatus = Ndis802_11Encryption2Enabled;
		} else if (pairwise == IW_AUTH_CIPHER_WEP40 ||
			pairwise == IW_AUTH_CIPHER_WEP104) {
			pDevice->eEncryptionStatus = Ndis802_11Encryption1Enabled;
		} else if (pairwise == IW_AUTH_CIPHER_NONE) {
			// do nothing, einsn liu
		} else {
			pDevice->eEncryptionStatus = Ndis802_11EncryptionDisabled;
		}
		break;
	case IW_AUTH_CIPHER_GROUP:
		PRINT_K("iwctl_siwauth:set GROUP=%d\n", wrq->value);
		if (wpa_version == IW_AUTH_WPA_VERSION_DISABLED)
			break;
		if (pairwise == IW_AUTH_CIPHER_NONE) {
			if (wrq->value == IW_AUTH_CIPHER_CCMP)
				pDevice->eEncryptionStatus = Ndis802_11Encryption3Enabled;
			else
				pDevice->eEncryptionStatus = Ndis802_11Encryption2Enabled;
		}
		break;
	case IW_AUTH_KEY_MGMT:
		PRINT_K("iwctl_siwauth(wpa_version=%d):set KEY_MGMT=%d\n", wpa_version,wrq->value);
		if (wpa_version == IW_AUTH_WPA_VERSION_WPA2){
			if (wrq->value == IW_AUTH_KEY_MGMT_PSK)
				pMgmt->eAuthenMode = WMAC_AUTH_WPA2PSK;
			else pMgmt->eAuthenMode = WMAC_AUTH_WPA2;
		} else if (wpa_version == IW_AUTH_WPA_VERSION_WPA) {
			if (wrq->value == 0){
				pMgmt->eAuthenMode = WMAC_AUTH_WPANONE;
			} else if (wrq->value == IW_AUTH_KEY_MGMT_PSK)
				pMgmt->eAuthenMode = WMAC_AUTH_WPAPSK;
		} else {
			pMgmt->eAuthenMode = WMAC_AUTH_WPA;
		}
		break;
	case IW_AUTH_TKIP_COUNTERMEASURES:
		break; /* FIXME */
	case IW_AUTH_DROP_UNENCRYPTED:
		break;
	case IW_AUTH_80211_AUTH_ALG:
		PRINT_K("iwctl_siwauth:set AUTH_ALG=%d\n", wrq->value);
		if (wrq->value == IW_AUTH_ALG_OPEN_SYSTEM)
			pMgmt->bShareKeyAlgorithm = false;
		else if (wrq->value == IW_AUTH_ALG_SHARED_KEY)
			pMgmt->bShareKeyAlgorithm = true;
		break;
	case IW_AUTH_WPA_ENABLED:
		break;
	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
		break;
	case IW_AUTH_ROAMING_CONTROL:
		ret = -EOPNOTSUPP;
		break;
	case IW_AUTH_PRIVACY_INVOKED:
		pDevice->bEncryptionEnable = !!wrq->value;
		if (pDevice->bEncryptionEnable == false) {
			wpa_version = 0;
			pairwise = 0;
			pDevice->eEncryptionStatus = Ndis802_11EncryptionDisabled;
			pMgmt->bShareKeyAlgorithm = false;
			pMgmt->eAuthenMode = WMAC_AUTH_OPEN;
			PRINT_K("iwctl_siwauth:set WPADEV to disaable at 2?????\n");
		}
		break;
	default:
		PRINT_K("iwctl_siwauth: not supported %x\n", wrq->flags);
		ret = -EOPNOTSUPP;
		break;
	}
	return ret;
}

int iwctl_giwauth(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	return -EOPNOTSUPP;
}

int iwctl_siwgenie(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	struct iw_point *wrq = &wrqu->data;
	int ret = 0;

	if (pMgmt == NULL)
		return -EFAULT;

	if (wrq->length){
		if ((wrq->length < 2) || (extra[1] + 2 != wrq->length)) {
			ret = -EINVAL;
			goto out;
		}
		if (wrq->length > MAX_WPA_IE_LEN){
			ret = -ENOMEM;
			goto out;
		}
		memset(pMgmt->abyWPAIE, 0, MAX_WPA_IE_LEN);
		if (copy_from_user(pMgmt->abyWPAIE, extra, wrq->length)){
			ret = -EFAULT;
			goto out;
		}
		pMgmt->wWPAIELen = wrq->length;
	} else {
		memset(pMgmt->abyWPAIE, 0, MAX_WPA_IE_LEN);
		pMgmt->wWPAIELen = 0;
	}

out: // not completely ...not necessary in wpa_supplicant 0.5.8
	return ret;
}

int iwctl_giwgenie(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	struct iw_point *wrq = &wrqu->data;
	int ret = 0;
	int space = wrq->length;

	if (pMgmt == NULL)
		return -EFAULT;

	wrq->length = 0;
	if (pMgmt->wWPAIELen > 0) {
		wrq->length = pMgmt->wWPAIELen;
		if (pMgmt->wWPAIELen <= space) {
			if (copy_to_user(extra, pMgmt->abyWPAIE, pMgmt->wWPAIELen)) {
				ret = -EFAULT;
			}
		} else {
			ret = -E2BIG;
		}
	}
	return ret;
}

int iwctl_siwencodeext(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	struct iw_point *wrq = &wrqu->encoding;
	struct iw_encode_ext *ext = (struct iw_encode_ext*)extra;
	struct viawget_wpa_param *param=NULL;
// original member
	wpa_alg alg_name;
	u8 addr[6];
	int key_idx;
	int set_tx = 0;
	u8 seq[IW_ENCODE_SEQ_MAX_SIZE];
	u8 key[64];
	size_t seq_len = 0;
	size_t key_len = 0;
	u8 *buf;
	u8 key_array[64];
	int ret = 0;

	PRINT_K("SIOCSIWENCODEEXT......\n");

	if (pMgmt == NULL)
		return -EFAULT;

	buf = kzalloc(sizeof(struct viawget_wpa_param), GFP_KERNEL);
	if (buf == NULL)
		return -ENOMEM;

	param = (struct viawget_wpa_param *)buf;

// recover alg_name
	switch (ext->alg) {
	case IW_ENCODE_ALG_NONE:
		alg_name = WPA_ALG_NONE;
		break;
	case IW_ENCODE_ALG_WEP:
		alg_name = WPA_ALG_WEP;
		break;
	case IW_ENCODE_ALG_TKIP:
		alg_name = WPA_ALG_TKIP;
		break;
	case IW_ENCODE_ALG_CCMP:
		alg_name = WPA_ALG_CCMP;
		break;
	default:
		PRINT_K("Unknown alg = %d\n",ext->alg);
		ret= -ENOMEM;
		goto error;
	}
// recover addr
	memcpy(addr, ext->addr.sa_data, ETH_ALEN);
// recover key_idx
	key_idx = (wrq->flags&IW_ENCODE_INDEX) - 1;
// recover set_tx
	if (ext->ext_flags & IW_ENCODE_EXT_SET_TX_KEY)
		set_tx = 1;
// recover seq,seq_len
	if (ext->ext_flags & IW_ENCODE_EXT_RX_SEQ_VALID) {
		seq_len=IW_ENCODE_SEQ_MAX_SIZE;
		memcpy(seq, ext->rx_seq, seq_len);
	}
// recover key,key_len
	if (ext->key_len) {
		key_len = ext->key_len;
		memcpy(key, &ext->key[0], key_len);
	}
	memset(key_array, 0, 64);
	if (key_len > 0) {
		memcpy(key_array, key, key_len);
		if (key_len == 32) {
			// notice ! the oder
			memcpy(&key_array[16], &key[24], 8);
			memcpy(&key_array[24], &key[16], 8);
		}
	}

/**************Translate iw_encode_ext to viawget_wpa_param****************/
	memcpy(param->addr, addr, ETH_ALEN);
	param->u.wpa_key.alg_name = (int)alg_name;
	param->u.wpa_key.set_tx = set_tx;
	param->u.wpa_key.key_index = key_idx;
	param->u.wpa_key.key_len = key_len;
	param->u.wpa_key.key = (u8 *)key_array;
	param->u.wpa_key.seq = (u8 *)seq;
	param->u.wpa_key.seq_len = seq_len;

/****set if current action is Network Manager count?? */
/****this method is so foolish,but there is no other way??? */
	if (param->u.wpa_key.alg_name == WPA_ALG_NONE) {
		if (param->u.wpa_key.key_index ==0) {
			pDevice->bwextstep0 = true;
		}
		if ((pDevice->bwextstep0 == true) && (param->u.wpa_key.key_index == 1)) {
			pDevice->bwextstep0 = false;
			pDevice->bwextstep1 = true;
		}
		if ((pDevice->bwextstep1 == true) && (param->u.wpa_key.key_index == 2)) {
			pDevice->bwextstep1 = false;
			pDevice->bwextstep2 = true;
		}
		if ((pDevice->bwextstep2 == true) && (param->u.wpa_key.key_index == 3)) {
			pDevice->bwextstep2 = false;
			pDevice->bwextstep3 = true;
		}
	}
	if (pDevice->bwextstep3 == true) {
		PRINT_K("SIOCSIWENCODEEXT:Enable WPA WEXT SUPPORT!!!!!\n");
		pDevice->bwextstep0 = false;
		pDevice->bwextstep1 = false;
		pDevice->bwextstep2 = false;
		pDevice->bwextstep3 = false;
		pDevice->bWPASuppWextEnabled = true;
		memset(pMgmt->abyDesireBSSID, 0xFF, 6);
		KeyvInitTable(pDevice, &pDevice->sKey);
	}
/*******/
	spin_lock_irq(&pDevice->lock);
	ret = wpa_set_keys(pDevice, param);
	spin_unlock_irq(&pDevice->lock);

error:
	kfree(buf);
	return ret;
}

int iwctl_giwencodeext(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	return -EOPNOTSUPP;
}

int iwctl_siwmlme(struct net_device *dev, struct iw_request_info *info,
		union iwreq_data *wrqu, char *extra)
{
	struct vnt_private *pDevice = netdev_priv(dev);
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	struct iw_mlme *mlme = (struct iw_mlme *)extra;
	int ret = 0;

	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " SIOCSIWMLME\n");

	if (pMgmt == NULL)
		return -EFAULT;

	if (memcmp(pMgmt->abyCurrBSSID, mlme->addr.sa_data, ETH_ALEN)) {
		ret = -EINVAL;
		return ret;
	}
	switch (mlme->cmd){
	case IW_MLME_DEAUTH:
	case IW_MLME_DISASSOC:
		if (pDevice->bLinkPass == true) {
			PRINT_K("iwctl_siwmlme--->send DISASSOCIATE\n");
			bScheduleCommand((void *)pDevice, WLAN_CMD_DISASSOCIATE,
					NULL);
		}
		break;
	default:
		ret = -EOPNOTSUPP;
	}
	return ret;
}

static int iwctl_config_commit(struct net_device *dev,
	struct iw_request_info *info, union iwreq_data *wrqu, char *extra)
{
	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "SIOCSIWCOMMIT\n");

	return 0;
}

static const iw_handler iwctl_handler[] = {
	IW_HANDLER(SIOCSIWCOMMIT, iwctl_config_commit),
	IW_HANDLER(SIOCGIWNAME, iwctl_giwname),
	IW_HANDLER(SIOCSIWFREQ, iwctl_siwfreq),
	IW_HANDLER(SIOCGIWFREQ, iwctl_giwfreq),
	IW_HANDLER(SIOCSIWMODE, iwctl_siwmode),
	IW_HANDLER(SIOCGIWMODE, iwctl_giwmode),
	IW_HANDLER(SIOCGIWSENS, iwctl_giwsens),
	IW_HANDLER(SIOCGIWRANGE, iwctl_giwrange),
	IW_HANDLER(SIOCSIWAP, iwctl_siwap),
	IW_HANDLER(SIOCGIWAP, iwctl_giwap),
	IW_HANDLER(SIOCSIWMLME, iwctl_siwmlme),
	IW_HANDLER(SIOCGIWAPLIST, iwctl_giwaplist),
	IW_HANDLER(SIOCSIWSCAN, iwctl_siwscan),
	IW_HANDLER(SIOCGIWSCAN, iwctl_giwscan),
	IW_HANDLER(SIOCSIWESSID, iwctl_siwessid),
	IW_HANDLER(SIOCGIWESSID, iwctl_giwessid),
	IW_HANDLER(SIOCSIWRATE, iwctl_siwrate),
	IW_HANDLER(SIOCGIWRATE, iwctl_giwrate),
	IW_HANDLER(SIOCSIWRTS, iwctl_siwrts),
	IW_HANDLER(SIOCGIWRTS, iwctl_giwrts),
	IW_HANDLER(SIOCSIWFRAG, iwctl_siwfrag),
	IW_HANDLER(SIOCGIWFRAG, iwctl_giwfrag),
	IW_HANDLER(SIOCSIWRETRY, iwctl_siwretry),
	IW_HANDLER(SIOCGIWRETRY, iwctl_giwretry),
	IW_HANDLER(SIOCSIWENCODE, iwctl_siwencode),
	IW_HANDLER(SIOCGIWENCODE, iwctl_giwencode),
	IW_HANDLER(SIOCSIWPOWER, iwctl_siwpower),
	IW_HANDLER(SIOCGIWPOWER, iwctl_giwpower),
	IW_HANDLER(SIOCSIWGENIE, iwctl_siwgenie),
	IW_HANDLER(SIOCGIWGENIE, iwctl_giwgenie),
	IW_HANDLER(SIOCSIWMLME, iwctl_siwmlme),
	IW_HANDLER(SIOCSIWAUTH, iwctl_siwauth),
	IW_HANDLER(SIOCGIWAUTH, iwctl_giwauth),
	IW_HANDLER(SIOCSIWENCODEEXT, iwctl_siwencodeext),
	IW_HANDLER(SIOCGIWENCODEEXT, iwctl_giwencodeext)
};

static const iw_handler iwctl_private_handler[] = {
	NULL, // SIOCIWFIRSTPRIV
};

const struct iw_handler_def iwctl_handler_def = {
	.get_wireless_stats	= &iwctl_get_wireless_stats,
	.num_standard		= ARRAY_SIZE(iwctl_handler),
	.num_private		= 0,
	.num_private_args	= 0,
	.standard		= iwctl_handler,
	.private		= NULL,
	.private_args		= NULL,
};