/* * Handles the Intel 27x USB Device Controller (UDC) * * Inspired by original driver by Frank Becker, David Brownell, and others. * Copyright (C) 2008 Robert Jarzmik * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <linux/list.h> #include <linux/interrupt.h> #include <linux/proc_fs.h> #include <linux/clk.h> #include <linux/irq.h> #include <linux/gpio.h> #include <linux/slab.h> #include <linux/prefetch.h> #include <linux/byteorder/generic.h> #include <linux/platform_data/pxa2xx_udc.h> #include <linux/usb.h> #include <linux/usb/ch9.h> #include <linux/usb/gadget.h> #include "pxa27x_udc.h" /* * This driver handles the USB Device Controller (UDC) in Intel's PXA 27x * series processors. * * Such controller drivers work with a gadget driver. The gadget driver * returns descriptors, implements configuration and data protocols used * by the host to interact with this device, and allocates endpoints to * the different protocol interfaces. The controller driver virtualizes * usb hardware so that the gadget drivers will be more portable. * * This UDC hardware wants to implement a bit too much USB protocol. The * biggest issues are: that the endpoints have to be set up before the * controller can be enabled (minor, and not uncommon); and each endpoint * can only have one configuration, interface and alternative interface * number (major, and very unusual). Once set up, these cannot be changed * without a controller reset. * * The workaround is to setup all combinations necessary for the gadgets which * will work with this driver. This is done in pxa_udc structure, statically. * See pxa_udc, udc_usb_ep versus pxa_ep, and matching function find_pxa_ep. * (You could modify this if needed. Some drivers have a "fifo_mode" module * parameter to facilitate such changes.) * * The combinations have been tested with these gadgets : * - zero gadget * - file storage gadget * - ether gadget * * The driver doesn't use DMA, only IO access and IRQ callbacks. No use is * made of UDC's double buffering either. USB "On-The-Go" is not implemented. * * All the requests are handled the same way : * - the drivers tries to handle the request directly to the IO * - if the IO fifo is not big enough, the remaining is send/received in * interrupt handling. */ #define DRIVER_VERSION "2008-04-18" #define DRIVER_DESC "PXA 27x USB Device Controller driver" static const char driver_name[] = "pxa27x_udc"; static struct pxa_udc *the_controller; static void handle_ep(struct pxa_ep *ep); /* * Debug filesystem */ #ifdef CONFIG_USB_GADGET_DEBUG_FS #include <linux/debugfs.h> #include <linux/uaccess.h> #include <linux/seq_file.h> static int state_dbg_show(struct seq_file *s, void *p) { struct pxa_udc *udc = s->private; int pos = 0, ret; u32 tmp; ret = -ENODEV; if (!udc->driver) goto out; /* basic device status */ pos += seq_printf(s, DRIVER_DESC "\n" "%s version: %s\nGadget driver: %s\n", driver_name, DRIVER_VERSION, udc->driver ? udc->driver->driver.name : "(none)"); tmp = udc_readl(udc, UDCCR); pos += seq_printf(s, "udccr=0x%0x(%s%s%s%s%s%s%s%s%s%s), " "con=%d,inter=%d,altinter=%d\n", tmp, (tmp & UDCCR_OEN) ? " oen":"", (tmp & UDCCR_AALTHNP) ? " aalthnp":"", (tmp & UDCCR_AHNP) ? " rem" : "", (tmp & UDCCR_BHNP) ? " rstir" : "", (tmp & UDCCR_DWRE) ? " dwre" : "", (tmp & UDCCR_SMAC) ? " smac" : "", (tmp & UDCCR_EMCE) ? " emce" : "", (tmp & UDCCR_UDR) ? " udr" : "", (tmp & UDCCR_UDA) ? " uda" : "", (tmp & UDCCR_UDE) ? " ude" : "", (tmp & UDCCR_ACN) >> UDCCR_ACN_S, (tmp & UDCCR_AIN) >> UDCCR_AIN_S, (tmp & UDCCR_AAISN) >> UDCCR_AAISN_S); /* registers for device and ep0 */ pos += seq_printf(s, "udcicr0=0x%08x udcicr1=0x%08x\n", udc_readl(udc, UDCICR0), udc_readl(udc, UDCICR1)); pos += seq_printf(s, "udcisr0=0x%08x udcisr1=0x%08x\n", udc_readl(udc, UDCISR0), udc_readl(udc, UDCISR1)); pos += seq_printf(s, "udcfnr=%d\n", udc_readl(udc, UDCFNR)); pos += seq_printf(s, "irqs: reset=%lu, suspend=%lu, resume=%lu, " "reconfig=%lu\n", udc->stats.irqs_reset, udc->stats.irqs_suspend, udc->stats.irqs_resume, udc->stats.irqs_reconfig); ret = 0; out: return ret; } static int queues_dbg_show(struct seq_file *s, void *p) { struct pxa_udc *udc = s->private; struct pxa_ep *ep; struct pxa27x_request *req; int pos = 0, i, maxpkt, ret; ret = -ENODEV; if (!udc->driver) goto out; /* dump endpoint queues */ for (i = 0; i < NR_PXA_ENDPOINTS; i++) { ep = &udc->pxa_ep[i]; maxpkt = ep->fifo_size; pos += seq_printf(s, "%-12s max_pkt=%d %s\n", EPNAME(ep), maxpkt, "pio"); if (list_empty(&ep->queue)) { pos += seq_printf(s, "\t(nothing queued)\n"); continue; } list_for_each_entry(req, &ep->queue, queue) { pos += seq_printf(s, "\treq %p len %d/%d buf %p\n", &req->req, req->req.actual, req->req.length, req->req.buf); } } ret = 0; out: return ret; } static int eps_dbg_show(struct seq_file *s, void *p) { struct pxa_udc *udc = s->private; struct pxa_ep *ep; int pos = 0, i, ret; u32 tmp; ret = -ENODEV; if (!udc->driver) goto out; ep = &udc->pxa_ep[0]; tmp = udc_ep_readl(ep, UDCCSR); pos += seq_printf(s, "udccsr0=0x%03x(%s%s%s%s%s%s%s)\n", tmp, (tmp & UDCCSR0_SA) ? " sa" : "", (tmp & UDCCSR0_RNE) ? " rne" : "", (tmp & UDCCSR0_FST) ? " fst" : "", (tmp & UDCCSR0_SST) ? " sst" : "", (tmp & UDCCSR0_DME) ? " dme" : "", (tmp & UDCCSR0_IPR) ? " ipr" : "", (tmp & UDCCSR0_OPC) ? " opc" : ""); for (i = 0; i < NR_PXA_ENDPOINTS; i++) { ep = &udc->pxa_ep[i]; tmp = i? udc_ep_readl(ep, UDCCR) : udc_readl(udc, UDCCR); pos += seq_printf(s, "%-12s: " "IN %lu(%lu reqs), OUT %lu(%lu reqs), " "irqs=%lu, udccr=0x%08x, udccsr=0x%03x, " "udcbcr=%d\n", EPNAME(ep), ep->stats.in_bytes, ep->stats.in_ops, ep->stats.out_bytes, ep->stats.out_ops, ep->stats.irqs, tmp, udc_ep_readl(ep, UDCCSR), udc_ep_readl(ep, UDCBCR)); } ret = 0; out: return ret; } static int eps_dbg_open(struct inode *inode, struct file *file) { return single_open(file, eps_dbg_show, inode->i_private); } static int queues_dbg_open(struct inode *inode, struct file *file) { return single_open(file, queues_dbg_show, inode->i_private); } static int state_dbg_open(struct inode *inode, struct file *file) { return single_open(file, state_dbg_show, inode->i_private); } static const struct file_operations state_dbg_fops = { .owner = THIS_MODULE, .open = state_dbg_open, .llseek = seq_lseek, .read = seq_read, .release = single_release, }; static const struct file_operations queues_dbg_fops = { .owner = THIS_MODULE, .open = queues_dbg_open, .llseek = seq_lseek, .read = seq_read, .release = single_release, }; static const struct file_operations eps_dbg_fops = { .owner = THIS_MODULE, .open = eps_dbg_open, .llseek = seq_lseek, .read = seq_read, .release = single_release, }; static void pxa_init_debugfs(struct pxa_udc *udc) { struct dentry *root, *state, *queues, *eps; root = debugfs_create_dir(udc->gadget.name, NULL); if (IS_ERR(root) || !root) goto err_root; state = debugfs_create_file("udcstate", 0400, root, udc, &state_dbg_fops); if (!state) goto err_state; queues = debugfs_create_file("queues", 0400, root, udc, &queues_dbg_fops); if (!queues) goto err_queues; eps = debugfs_create_file("epstate", 0400, root, udc, &eps_dbg_fops); if (!eps) goto err_eps; udc->debugfs_root = root; udc->debugfs_state = state; udc->debugfs_queues = queues; udc->debugfs_eps = eps; return; err_eps: debugfs_remove(eps); err_queues: debugfs_remove(queues); err_state: debugfs_remove(root); err_root: dev_err(udc->dev, "debugfs is not available\n"); } static void pxa_cleanup_debugfs(struct pxa_udc *udc) { debugfs_remove(udc->debugfs_eps); debugfs_remove(udc->debugfs_queues); debugfs_remove(udc->debugfs_state); debugfs_remove(udc->debugfs_root); udc->debugfs_eps = NULL; udc->debugfs_queues = NULL; udc->debugfs_state = NULL; udc->debugfs_root = NULL; } #else static inline void pxa_init_debugfs(struct pxa_udc *udc) { } static inline void pxa_cleanup_debugfs(struct pxa_udc *udc) { } #endif /** * is_match_usb_pxa - check if usb_ep and pxa_ep match * @udc_usb_ep: usb endpoint * @ep: pxa endpoint * @config: configuration required in pxa_ep * @interface: interface required in pxa_ep * @altsetting: altsetting required in pxa_ep * * Returns 1 if all criteria match between pxa and usb endpoint, 0 otherwise */ static int is_match_usb_pxa(struct udc_usb_ep *udc_usb_ep, struct pxa_ep *ep, int config, int interface, int altsetting) { if (usb_endpoint_num(&udc_usb_ep->desc) != ep->addr) return 0; if (usb_endpoint_dir_in(&udc_usb_ep->desc) != ep->dir_in) return 0; if (usb_endpoint_type(&udc_usb_ep->desc) != ep->type) return 0; if ((ep->config != config) || (ep->interface != interface) || (ep->alternate != altsetting)) return 0; return 1; } /** * find_pxa_ep - find pxa_ep structure matching udc_usb_ep * @udc: pxa udc * @udc_usb_ep: udc_usb_ep structure * * Match udc_usb_ep and all pxa_ep available, to see if one matches. * This is necessary because of the strong pxa hardware restriction requiring * that once pxa endpoints are initialized, their configuration is freezed, and * no change can be made to their address, direction, or in which configuration, * interface or altsetting they are active ... which differs from more usual * models which have endpoints be roughly just addressable fifos, and leave * configuration events up to gadget drivers (like all control messages). * * Note that there is still a blurred point here : * - we rely on UDCCR register "active interface" and "active altsetting". * This is a nonsense in regard of USB spec, where multiple interfaces are * active at the same time. * - if we knew for sure that the pxa can handle multiple interface at the * same time, assuming Intel's Developer Guide is wrong, this function * should be reviewed, and a cache of couples (iface, altsetting) should * be kept in the pxa_udc structure. In this case this function would match * against the cache of couples instead of the "last altsetting" set up. * * Returns the matched pxa_ep structure or NULL if none found */ static struct pxa_ep *find_pxa_ep(struct pxa_udc *udc, struct udc_usb_ep *udc_usb_ep) { int i; struct pxa_ep *ep; int cfg = udc->config; int iface = udc->last_interface; int alt = udc->last_alternate; if (udc_usb_ep == &udc->udc_usb_ep[0]) return &udc->pxa_ep[0]; for (i = 1; i < NR_PXA_ENDPOINTS; i++) { ep = &udc->pxa_ep[i]; if (is_match_usb_pxa(udc_usb_ep, ep, cfg, iface, alt)) return ep; } return NULL; } /** * update_pxa_ep_matches - update pxa_ep cached values in all udc_usb_ep * @udc: pxa udc * * Context: in_interrupt() * * Updates all pxa_ep fields in udc_usb_ep structures, if this field was * previously set up (and is not NULL). The update is necessary is a * configuration change or altsetting change was issued by the USB host. */ static void update_pxa_ep_matches(struct pxa_udc *udc) { int i; struct udc_usb_ep *udc_usb_ep; for (i = 1; i < NR_USB_ENDPOINTS; i++) { udc_usb_ep = &udc->udc_usb_ep[i]; if (udc_usb_ep->pxa_ep) udc_usb_ep->pxa_ep = find_pxa_ep(udc, udc_usb_ep); } } /** * pio_irq_enable - Enables irq generation for one endpoint * @ep: udc endpoint */ static void pio_irq_enable(struct pxa_ep *ep) { struct pxa_udc *udc = ep->dev; int index = EPIDX(ep); u32 udcicr0 = udc_readl(udc, UDCICR0); u32 udcicr1 = udc_readl(udc, UDCICR1); if (index < 16) udc_writel(udc, UDCICR0, udcicr0 | (3 << (index * 2))); else udc_writel(udc, UDCICR1, udcicr1 | (3 << ((index - 16) * 2))); } /** * pio_irq_disable - Disables irq generation for one endpoint * @ep: udc endpoint */ static void pio_irq_disable(struct pxa_ep *ep) { struct pxa_udc *udc = ep->dev; int index = EPIDX(ep); u32 udcicr0 = udc_readl(udc, UDCICR0); u32 udcicr1 = udc_readl(udc, UDCICR1); if (index < 16) udc_writel(udc, UDCICR0, udcicr0 & ~(3 << (index * 2))); else udc_writel(udc, UDCICR1, udcicr1 & ~(3 << ((index - 16) * 2))); } /** * udc_set_mask_UDCCR - set bits in UDCCR * @udc: udc device * @mask: bits to set in UDCCR * * Sets bits in UDCCR, leaving DME and FST bits as they were. */ static inline void udc_set_mask_UDCCR(struct pxa_udc *udc, int mask) { u32 udccr = udc_readl(udc, UDCCR); udc_writel(udc, UDCCR, (udccr & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS)); } /** * udc_clear_mask_UDCCR - clears bits in UDCCR * @udc: udc device * @mask: bit to clear in UDCCR * * Clears bits in UDCCR, leaving DME and FST bits as they were. */ static inline void udc_clear_mask_UDCCR(struct pxa_udc *udc, int mask) { u32 udccr = udc_readl(udc, UDCCR); udc_writel(udc, UDCCR, (udccr & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS)); } /** * ep_write_UDCCSR - set bits in UDCCSR * @udc: udc device * @mask: bits to set in UDCCR * * Sets bits in UDCCSR (UDCCSR0 and UDCCSR*). * * A specific case is applied to ep0 : the ACM bit is always set to 1, for * SET_INTERFACE and SET_CONFIGURATION. */ static inline void ep_write_UDCCSR(struct pxa_ep *ep, int mask) { if (is_ep0(ep)) mask |= UDCCSR0_ACM; udc_ep_writel(ep, UDCCSR, mask); } /** * ep_count_bytes_remain - get how many bytes in udc endpoint * @ep: udc endpoint * * Returns number of bytes in OUT fifos. Broken for IN fifos (-EOPNOTSUPP) */ static int ep_count_bytes_remain(struct pxa_ep *ep) { if (ep->dir_in) return -EOPNOTSUPP; return udc_ep_readl(ep, UDCBCR) & 0x3ff; } /** * ep_is_empty - checks if ep has byte ready for reading * @ep: udc endpoint * * If endpoint is the control endpoint, checks if there are bytes in the * control endpoint fifo. If endpoint is a data endpoint, checks if bytes * are ready for reading on OUT endpoint. * * Returns 0 if ep not empty, 1 if ep empty, -EOPNOTSUPP if IN endpoint */ static int ep_is_empty(struct pxa_ep *ep) { int ret; if (!is_ep0(ep) && ep->dir_in) return -EOPNOTSUPP; if (is_ep0(ep)) ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR0_RNE); else ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNE); return ret; } /** * ep_is_full - checks if ep has place to write bytes * @ep: udc endpoint * * If endpoint is not the control endpoint and is an IN endpoint, checks if * there is place to write bytes into the endpoint. * * Returns 0 if ep not full, 1 if ep full, -EOPNOTSUPP if OUT endpoint */ static int ep_is_full(struct pxa_ep *ep) { if (is_ep0(ep)) return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_IPR); if (!ep->dir_in) return -EOPNOTSUPP; return (!(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNF)); } /** * epout_has_pkt - checks if OUT endpoint fifo has a packet available * @ep: pxa endpoint * * Returns 1 if a complete packet is available, 0 if not, -EOPNOTSUPP for IN ep. */ static int epout_has_pkt(struct pxa_ep *ep) { if (!is_ep0(ep) && ep->dir_in) return -EOPNOTSUPP; if (is_ep0(ep)) return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_OPC); return (udc_ep_readl(ep, UDCCSR) & UDCCSR_PC); } /** * set_ep0state - Set ep0 automata state * @dev: udc device * @state: state */ static void set_ep0state(struct pxa_udc *udc, int state) { struct pxa_ep *ep = &udc->pxa_ep[0]; char *old_stname = EP0_STNAME(udc); udc->ep0state = state; ep_dbg(ep, "state=%s->%s, udccsr0=0x%03x, udcbcr=%d\n", old_stname, EP0_STNAME(udc), udc_ep_readl(ep, UDCCSR), udc_ep_readl(ep, UDCBCR)); } /** * ep0_idle - Put control endpoint into idle state * @dev: udc device */ static void ep0_idle(struct pxa_udc *dev) { set_ep0state(dev, WAIT_FOR_SETUP); } /** * inc_ep_stats_reqs - Update ep stats counts * @ep: physical endpoint * @req: usb request * @is_in: ep direction (USB_DIR_IN or 0) * */ static void inc_ep_stats_reqs(struct pxa_ep *ep, int is_in) { if (is_in) ep->stats.in_ops++; else ep->stats.out_ops++; } /** * inc_ep_stats_bytes - Update ep stats counts * @ep: physical endpoint * @count: bytes transferred on endpoint * @is_in: ep direction (USB_DIR_IN or 0) */ static void inc_ep_stats_bytes(struct pxa_ep *ep, int count, int is_in) { if (is_in) ep->stats.in_bytes += count; else ep->stats.out_bytes += count; } /** * pxa_ep_setup - Sets up an usb physical endpoint * @ep: pxa27x physical endpoint * * Find the physical pxa27x ep, and setup its UDCCR */ static void pxa_ep_setup(struct pxa_ep *ep) { u32 new_udccr; new_udccr = ((ep->config << UDCCONR_CN_S) & UDCCONR_CN) | ((ep->interface << UDCCONR_IN_S) & UDCCONR_IN) | ((ep->alternate << UDCCONR_AISN_S) & UDCCONR_AISN) | ((EPADDR(ep) << UDCCONR_EN_S) & UDCCONR_EN) | ((EPXFERTYPE(ep) << UDCCONR_ET_S) & UDCCONR_ET) | ((ep->dir_in) ? UDCCONR_ED : 0) | ((ep->fifo_size << UDCCONR_MPS_S) & UDCCONR_MPS) | UDCCONR_EE; udc_ep_writel(ep, UDCCR, new_udccr); } /** * pxa_eps_setup - Sets up all usb physical endpoints * @dev: udc device * * Setup all pxa physical endpoints, except ep0 */ static void pxa_eps_setup(struct pxa_udc *dev) { unsigned int i; dev_dbg(dev->dev, "%s: dev=%p\n", __func__, dev); for (i = 1; i < NR_PXA_ENDPOINTS; i++) pxa_ep_setup(&dev->pxa_ep[i]); } /** * pxa_ep_alloc_request - Allocate usb request * @_ep: usb endpoint * @gfp_flags: * * For the pxa27x, these can just wrap kmalloc/kfree. gadget drivers * must still pass correctly initialized endpoints, since other controller * drivers may care about how it's currently set up (dma issues etc). */ static struct usb_request * pxa_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags) { struct pxa27x_request *req; req = kzalloc(sizeof *req, gfp_flags); if (!req) return NULL; INIT_LIST_HEAD(&req->queue); req->in_use = 0; req->udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); return &req->req; } /** * pxa_ep_free_request - Free usb request * @_ep: usb endpoint * @_req: usb request * * Wrapper around kfree to free _req */ static void pxa_ep_free_request(struct usb_ep *_ep, struct usb_request *_req) { struct pxa27x_request *req; req = container_of(_req, struct pxa27x_request, req); WARN_ON(!list_empty(&req->queue)); kfree(req); } /** * ep_add_request - add a request to the endpoint's queue * @ep: usb endpoint * @req: usb request * * Context: ep->lock held * * Queues the request in the endpoint's queue, and enables the interrupts * on the endpoint. */ static void ep_add_request(struct pxa_ep *ep, struct pxa27x_request *req) { if (unlikely(!req)) return; ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req, req->req.length, udc_ep_readl(ep, UDCCSR)); req->in_use = 1; list_add_tail(&req->queue, &ep->queue); pio_irq_enable(ep); } /** * ep_del_request - removes a request from the endpoint's queue * @ep: usb endpoint * @req: usb request * * Context: ep->lock held * * Unqueue the request from the endpoint's queue. If there are no more requests * on the endpoint, and if it's not the control endpoint, interrupts are * disabled on the endpoint. */ static void ep_del_request(struct pxa_ep *ep, struct pxa27x_request *req) { if (unlikely(!req)) return; ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req, req->req.length, udc_ep_readl(ep, UDCCSR)); list_del_init(&req->queue); req->in_use = 0; if (!is_ep0(ep) && list_empty(&ep->queue)) pio_irq_disable(ep); } /** * req_done - Complete an usb request * @ep: pxa physical endpoint * @req: pxa request * @status: usb request status sent to gadget API * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held * * Context: ep->lock held if flags not NULL, else ep->lock released * * Retire a pxa27x usb request. Endpoint must be locked. */ static void req_done(struct pxa_ep *ep, struct pxa27x_request *req, int status, unsigned long *pflags) { unsigned long flags; ep_del_request(ep, req); if (likely(req->req.status == -EINPROGRESS)) req->req.status = status; else status = req->req.status; if (status && status != -ESHUTDOWN) ep_dbg(ep, "complete req %p stat %d len %u/%u\n", &req->req, status, req->req.actual, req->req.length); if (pflags) spin_unlock_irqrestore(&ep->lock, *pflags); local_irq_save(flags); req->req.complete(&req->udc_usb_ep->usb_ep, &req->req); local_irq_restore(flags); if (pflags) spin_lock_irqsave(&ep->lock, *pflags); } /** * ep_end_out_req - Ends endpoint OUT request * @ep: physical endpoint * @req: pxa request * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held * * Context: ep->lock held or released (see req_done()) * * Ends endpoint OUT request (completes usb request). */ static void ep_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req, unsigned long *pflags) { inc_ep_stats_reqs(ep, !USB_DIR_IN); req_done(ep, req, 0, pflags); } /** * ep0_end_out_req - Ends control endpoint OUT request (ends data stage) * @ep: physical endpoint * @req: pxa request * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held * * Context: ep->lock held or released (see req_done()) * * Ends control endpoint OUT request (completes usb request), and puts * control endpoint into idle state */ static void ep0_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req, unsigned long *pflags) { set_ep0state(ep->dev, OUT_STATUS_STAGE); ep_end_out_req(ep, req, pflags); ep0_idle(ep->dev); } /** * ep_end_in_req - Ends endpoint IN request * @ep: physical endpoint * @req: pxa request * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held * * Context: ep->lock held or released (see req_done()) * * Ends endpoint IN request (completes usb request). */ static void ep_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req, unsigned long *pflags) { inc_ep_stats_reqs(ep, USB_DIR_IN); req_done(ep, req, 0, pflags); } /** * ep0_end_in_req - Ends control endpoint IN request (ends data stage) * @ep: physical endpoint * @req: pxa request * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held * * Context: ep->lock held or released (see req_done()) * * Ends control endpoint IN request (completes usb request), and puts * control endpoint into status state */ static void ep0_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req, unsigned long *pflags) { set_ep0state(ep->dev, IN_STATUS_STAGE); ep_end_in_req(ep, req, pflags); } /** * nuke - Dequeue all requests * @ep: pxa endpoint * @status: usb request status * * Context: ep->lock released * * Dequeues all requests on an endpoint. As a side effect, interrupts will be * disabled on that endpoint (because no more requests). */ static void nuke(struct pxa_ep *ep, int status) { struct pxa27x_request *req; unsigned long flags; spin_lock_irqsave(&ep->lock, flags); while (!list_empty(&ep->queue)) { req = list_entry(ep->queue.next, struct pxa27x_request, queue); req_done(ep, req, status, &flags); } spin_unlock_irqrestore(&ep->lock, flags); } /** * read_packet - transfer 1 packet from an OUT endpoint into request * @ep: pxa physical endpoint * @req: usb request * * Takes bytes from OUT endpoint and transfers them info the usb request. * If there is less space in request than bytes received in OUT endpoint, * bytes are left in the OUT endpoint. * * Returns how many bytes were actually transferred */ static int read_packet(struct pxa_ep *ep, struct pxa27x_request *req) { u32 *buf; int bytes_ep, bufferspace, count, i; bytes_ep = ep_count_bytes_remain(ep); bufferspace = req->req.length - req->req.actual; buf = (u32 *)(req->req.buf + req->req.actual); prefetchw(buf); if (likely(!ep_is_empty(ep))) count = min(bytes_ep, bufferspace); else /* zlp */ count = 0; for (i = count; i > 0; i -= 4) *buf++ = udc_ep_readl(ep, UDCDR); req->req.actual += count; ep_write_UDCCSR(ep, UDCCSR_PC); return count; } /** * write_packet - transfer 1 packet from request into an IN endpoint * @ep: pxa physical endpoint * @req: usb request * @max: max bytes that fit into endpoint * * Takes bytes from usb request, and transfers them into the physical * endpoint. If there are no bytes to transfer, doesn't write anything * to physical endpoint. * * Returns how many bytes were actually transferred. */ static int write_packet(struct pxa_ep *ep, struct pxa27x_request *req, unsigned int max) { int length, count, remain, i; u32 *buf; u8 *buf_8; buf = (u32 *)(req->req.buf + req->req.actual); prefetch(buf); length = min(req->req.length - req->req.actual, max); req->req.actual += length; remain = length & 0x3; count = length & ~(0x3); for (i = count; i > 0 ; i -= 4) udc_ep_writel(ep, UDCDR, *buf++); buf_8 = (u8 *)buf; for (i = remain; i > 0; i--) udc_ep_writeb(ep, UDCDR, *buf_8++); ep_vdbg(ep, "length=%d+%d, udccsr=0x%03x\n", count, remain, udc_ep_readl(ep, UDCCSR)); return length; } /** * read_fifo - Transfer packets from OUT endpoint into usb request * @ep: pxa physical endpoint * @req: usb request * * Context: callable when in_interrupt() * * Unload as many packets as possible from the fifo we use for usb OUT * transfers and put them into the request. Caller should have made sure * there's at least one packet ready. * Doesn't complete the request, that's the caller's job * * Returns 1 if the request completed, 0 otherwise */ static int read_fifo(struct pxa_ep *ep, struct pxa27x_request *req) { int count, is_short, completed = 0; while (epout_has_pkt(ep)) { count = read_packet(ep, req); inc_ep_stats_bytes(ep, count, !USB_DIR_IN); is_short = (count < ep->fifo_size); ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n", udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "", &req->req, req->req.actual, req->req.length); /* completion */ if (is_short || req->req.actual == req->req.length) { completed = 1; break; } /* finished that packet. the next one may be waiting... */ } return completed; } /** * write_fifo - transfer packets from usb request into an IN endpoint * @ep: pxa physical endpoint * @req: pxa usb request * * Write to an IN endpoint fifo, as many packets as possible. * irqs will use this to write the rest later. * caller guarantees at least one packet buffer is ready (or a zlp). * Doesn't complete the request, that's the caller's job * * Returns 1 if request fully transferred, 0 if partial transfer */ static int write_fifo(struct pxa_ep *ep, struct pxa27x_request *req) { unsigned max; int count, is_short, is_last = 0, completed = 0, totcount = 0; u32 udccsr; max = ep->fifo_size; do { is_short = 0; udccsr = udc_ep_readl(ep, UDCCSR); if (udccsr & UDCCSR_PC) { ep_vdbg(ep, "Clearing Transmit Complete, udccsr=%x\n", udccsr); ep_write_UDCCSR(ep, UDCCSR_PC); } if (udccsr & UDCCSR_TRN) { ep_vdbg(ep, "Clearing Underrun on, udccsr=%x\n", udccsr); ep_write_UDCCSR(ep, UDCCSR_TRN); } count = write_packet(ep, req, max); inc_ep_stats_bytes(ep, count, USB_DIR_IN); totcount += count; /* last packet is usually short (or a zlp) */ if (unlikely(count < max)) { is_last = 1; is_short = 1; } else { if (likely(req->req.length > req->req.actual) || req->req.zero) is_last = 0; else is_last = 1; /* interrupt/iso maxpacket may not fill the fifo */ is_short = unlikely(max < ep->fifo_size); } if (is_short) ep_write_UDCCSR(ep, UDCCSR_SP); /* requests complete when all IN data is in the FIFO */ if (is_last) { completed = 1; break; } } while (!ep_is_full(ep)); ep_dbg(ep, "wrote count:%d bytes%s%s, left:%d req=%p\n", totcount, is_last ? "/L" : "", is_short ? "/S" : "", req->req.length - req->req.actual, &req->req); return completed; } /** * read_ep0_fifo - Transfer packets from control endpoint into usb request * @ep: control endpoint * @req: pxa usb request * * Special ep0 version of the above read_fifo. Reads as many bytes from control * endpoint as can be read, and stores them into usb request (limited by request * maximum length). * * Returns 0 if usb request only partially filled, 1 if fully filled */ static int read_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req) { int count, is_short, completed = 0; while (epout_has_pkt(ep)) { count = read_packet(ep, req); ep_write_UDCCSR(ep, UDCCSR0_OPC); inc_ep_stats_bytes(ep, count, !USB_DIR_IN); is_short = (count < ep->fifo_size); ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n", udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "", &req->req, req->req.actual, req->req.length); if (is_short || req->req.actual >= req->req.length) { completed = 1; break; } } return completed; } /** * write_ep0_fifo - Send a request to control endpoint (ep0 in) * @ep: control endpoint * @req: request * * Context: callable when in_interrupt() * * Sends a request (or a part of the request) to the control endpoint (ep0 in). * If the request doesn't fit, the remaining part will be sent from irq. * The request is considered fully written only if either : * - last write transferred all remaining bytes, but fifo was not fully filled * - last write was a 0 length write * * Returns 1 if request fully written, 0 if request only partially sent */ static int write_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req) { unsigned count; int is_last, is_short; count = write_packet(ep, req, EP0_FIFO_SIZE); inc_ep_stats_bytes(ep, count, USB_DIR_IN); is_short = (count < EP0_FIFO_SIZE); is_last = ((count == 0) || (count < EP0_FIFO_SIZE)); /* Sends either a short packet or a 0 length packet */ if (unlikely(is_short)) ep_write_UDCCSR(ep, UDCCSR0_IPR); ep_dbg(ep, "in %d bytes%s%s, %d left, req=%p, udccsr0=0x%03x\n", count, is_short ? "/S" : "", is_last ? "/L" : "", req->req.length - req->req.actual, &req->req, udc_ep_readl(ep, UDCCSR)); return is_last; } /** * pxa_ep_queue - Queue a request into an IN endpoint * @_ep: usb endpoint * @_req: usb request * @gfp_flags: flags * * Context: normally called when !in_interrupt, but callable when in_interrupt() * in the special case of ep0 setup : * (irq->handle_ep0_ctrl_req->gadget_setup->pxa_ep_queue) * * Returns 0 if succedeed, error otherwise */ static int pxa_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags) { struct udc_usb_ep *udc_usb_ep; struct pxa_ep *ep; struct pxa27x_request *req; struct pxa_udc *dev; unsigned long flags; int rc = 0; int is_first_req; unsigned length; int recursion_detected; req = container_of(_req, struct pxa27x_request, req); udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); if (unlikely(!_req || !_req->complete || !_req->buf)) return -EINVAL; if (unlikely(!_ep)) return -EINVAL; dev = udc_usb_ep->dev; ep = udc_usb_ep->pxa_ep; if (unlikely(!ep)) return -EINVAL; dev = ep->dev; if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) { ep_dbg(ep, "bogus device state\n"); return -ESHUTDOWN; } /* iso is always one packet per request, that's the only way * we can report per-packet status. that also helps with dma. */ if (unlikely(EPXFERTYPE_is_ISO(ep) && req->req.length > ep->fifo_size)) return -EMSGSIZE; spin_lock_irqsave(&ep->lock, flags); recursion_detected = ep->in_handle_ep; is_first_req = list_empty(&ep->queue); ep_dbg(ep, "queue req %p(first=%s), len %d buf %p\n", _req, is_first_req ? "yes" : "no", _req->length, _req->buf); if (!ep->enabled) { _req->status = -ESHUTDOWN; rc = -ESHUTDOWN; goto out_locked; } if (req->in_use) { ep_err(ep, "refusing to queue req %p (already queued)\n", req); goto out_locked; } length = _req->length; _req->status = -EINPROGRESS; _req->actual = 0; ep_add_request(ep, req); spin_unlock_irqrestore(&ep->lock, flags); if (is_ep0(ep)) { switch (dev->ep0state) { case WAIT_ACK_SET_CONF_INTERF: if (length == 0) { ep_end_in_req(ep, req, NULL); } else { ep_err(ep, "got a request of %d bytes while" "in state WAIT_ACK_SET_CONF_INTERF\n", length); ep_del_request(ep, req); rc = -EL2HLT; } ep0_idle(ep->dev); break; case IN_DATA_STAGE: if (!ep_is_full(ep)) if (write_ep0_fifo(ep, req)) ep0_end_in_req(ep, req, NULL); break; case OUT_DATA_STAGE: if ((length == 0) || !epout_has_pkt(ep)) if (read_ep0_fifo(ep, req)) ep0_end_out_req(ep, req, NULL); break; default: ep_err(ep, "odd state %s to send me a request\n", EP0_STNAME(ep->dev)); ep_del_request(ep, req); rc = -EL2HLT; break; } } else { if (!recursion_detected) handle_ep(ep); } out: return rc; out_locked: spin_unlock_irqrestore(&ep->lock, flags); goto out; } /** * pxa_ep_dequeue - Dequeue one request * @_ep: usb endpoint * @_req: usb request * * Return 0 if no error, -EINVAL or -ECONNRESET otherwise */ static int pxa_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req) { struct pxa_ep *ep; struct udc_usb_ep *udc_usb_ep; struct pxa27x_request *req; unsigned long flags; int rc = -EINVAL; if (!_ep) return rc; udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); ep = udc_usb_ep->pxa_ep; if (!ep || is_ep0(ep)) return rc; spin_lock_irqsave(&ep->lock, flags); /* make sure it's actually queued on this endpoint */ list_for_each_entry(req, &ep->queue, queue) { if (&req->req == _req) { rc = 0; break; } } spin_unlock_irqrestore(&ep->lock, flags); if (!rc) req_done(ep, req, -ECONNRESET, NULL); return rc; } /** * pxa_ep_set_halt - Halts operations on one endpoint * @_ep: usb endpoint * @value: * * Returns 0 if no error, -EINVAL, -EROFS, -EAGAIN otherwise */ static int pxa_ep_set_halt(struct usb_ep *_ep, int value) { struct pxa_ep *ep; struct udc_usb_ep *udc_usb_ep; unsigned long flags; int rc; if (!_ep) return -EINVAL; udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); ep = udc_usb_ep->pxa_ep; if (!ep || is_ep0(ep)) return -EINVAL; if (value == 0) { /* * This path (reset toggle+halt) is needed to implement * SET_INTERFACE on normal hardware. but it can't be * done from software on the PXA UDC, and the hardware * forgets to do it as part of SET_INTERFACE automagic. */ ep_dbg(ep, "only host can clear halt\n"); return -EROFS; } spin_lock_irqsave(&ep->lock, flags); rc = -EAGAIN; if (ep->dir_in && (ep_is_full(ep) || !list_empty(&ep->queue))) goto out; /* FST, FEF bits are the same for control and non control endpoints */ rc = 0; ep_write_UDCCSR(ep, UDCCSR_FST | UDCCSR_FEF); if (is_ep0(ep)) set_ep0state(ep->dev, STALL); out: spin_unlock_irqrestore(&ep->lock, flags); return rc; } /** * pxa_ep_fifo_status - Get how many bytes in physical endpoint * @_ep: usb endpoint * * Returns number of bytes in OUT fifos. Broken for IN fifos. */ static int pxa_ep_fifo_status(struct usb_ep *_ep) { struct pxa_ep *ep; struct udc_usb_ep *udc_usb_ep; if (!_ep) return -ENODEV; udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); ep = udc_usb_ep->pxa_ep; if (!ep || is_ep0(ep)) return -ENODEV; if (ep->dir_in) return -EOPNOTSUPP; if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN || ep_is_empty(ep)) return 0; else return ep_count_bytes_remain(ep) + 1; } /** * pxa_ep_fifo_flush - Flushes one endpoint * @_ep: usb endpoint * * Discards all data in one endpoint(IN or OUT), except control endpoint. */ static void pxa_ep_fifo_flush(struct usb_ep *_ep) { struct pxa_ep *ep; struct udc_usb_ep *udc_usb_ep; unsigned long flags; if (!_ep) return; udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); ep = udc_usb_ep->pxa_ep; if (!ep || is_ep0(ep)) return; spin_lock_irqsave(&ep->lock, flags); if (unlikely(!list_empty(&ep->queue))) ep_dbg(ep, "called while queue list not empty\n"); ep_dbg(ep, "called\n"); /* for OUT, just read and discard the FIFO contents. */ if (!ep->dir_in) { while (!ep_is_empty(ep)) udc_ep_readl(ep, UDCDR); } else { /* most IN status is the same, but ISO can't stall */ ep_write_UDCCSR(ep, UDCCSR_PC | UDCCSR_FEF | UDCCSR_TRN | (EPXFERTYPE_is_ISO(ep) ? 0 : UDCCSR_SST)); } spin_unlock_irqrestore(&ep->lock, flags); } /** * pxa_ep_enable - Enables usb endpoint * @_ep: usb endpoint * @desc: usb endpoint descriptor * * Nothing much to do here, as ep configuration is done once and for all * before udc is enabled. After udc enable, no physical endpoint configuration * can be changed. * Function makes sanity checks and flushes the endpoint. */ static int pxa_ep_enable(struct usb_ep *_ep, const struct usb_endpoint_descriptor *desc) { struct pxa_ep *ep; struct udc_usb_ep *udc_usb_ep; struct pxa_udc *udc; if (!_ep || !desc) return -EINVAL; udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); if (udc_usb_ep->pxa_ep) { ep = udc_usb_ep->pxa_ep; ep_warn(ep, "usb_ep %s already enabled, doing nothing\n", _ep->name); } else { ep = find_pxa_ep(udc_usb_ep->dev, udc_usb_ep); } if (!ep || is_ep0(ep)) { dev_err(udc_usb_ep->dev->dev, "unable to match pxa_ep for ep %s\n", _ep->name); return -EINVAL; } if ((desc->bDescriptorType != USB_DT_ENDPOINT) || (ep->type != usb_endpoint_type(desc))) { ep_err(ep, "type mismatch\n"); return -EINVAL; } if (ep->fifo_size < usb_endpoint_maxp(desc)) { ep_err(ep, "bad maxpacket\n"); return -ERANGE; } udc_usb_ep->pxa_ep = ep; udc = ep->dev; if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { ep_err(ep, "bogus device state\n"); return -ESHUTDOWN; } ep->enabled = 1; /* flush fifo (mostly for OUT buffers) */ pxa_ep_fifo_flush(_ep); ep_dbg(ep, "enabled\n"); return 0; } /** * pxa_ep_disable - Disable usb endpoint * @_ep: usb endpoint * * Same as for pxa_ep_enable, no physical endpoint configuration can be * changed. * Function flushes the endpoint and related requests. */ static int pxa_ep_disable(struct usb_ep *_ep) { struct pxa_ep *ep; struct udc_usb_ep *udc_usb_ep; if (!_ep) return -EINVAL; udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); ep = udc_usb_ep->pxa_ep; if (!ep || is_ep0(ep) || !list_empty(&ep->queue)) return -EINVAL; ep->enabled = 0; nuke(ep, -ESHUTDOWN); pxa_ep_fifo_flush(_ep); udc_usb_ep->pxa_ep = NULL; ep_dbg(ep, "disabled\n"); return 0; } static struct usb_ep_ops pxa_ep_ops = { .enable = pxa_ep_enable, .disable = pxa_ep_disable, .alloc_request = pxa_ep_alloc_request, .free_request = pxa_ep_free_request, .queue = pxa_ep_queue, .dequeue = pxa_ep_dequeue, .set_halt = pxa_ep_set_halt, .fifo_status = pxa_ep_fifo_status, .fifo_flush = pxa_ep_fifo_flush, }; /** * dplus_pullup - Connect or disconnect pullup resistor to D+ pin * @udc: udc device * @on: 0 if disconnect pullup resistor, 1 otherwise * Context: any * * Handle D+ pullup resistor, make the device visible to the usb bus, and * declare it as a full speed usb device */ static void dplus_pullup(struct pxa_udc *udc, int on) { if (on) { if (gpio_is_valid(udc->mach->gpio_pullup)) gpio_set_value(udc->mach->gpio_pullup, !udc->mach->gpio_pullup_inverted); if (udc->mach->udc_command) udc->mach->udc_command(PXA2XX_UDC_CMD_CONNECT); } else { if (gpio_is_valid(udc->mach->gpio_pullup)) gpio_set_value(udc->mach->gpio_pullup, udc->mach->gpio_pullup_inverted); if (udc->mach->udc_command) udc->mach->udc_command(PXA2XX_UDC_CMD_DISCONNECT); } udc->pullup_on = on; } /** * pxa_udc_get_frame - Returns usb frame number * @_gadget: usb gadget */ static int pxa_udc_get_frame(struct usb_gadget *_gadget) { struct pxa_udc *udc = to_gadget_udc(_gadget); return (udc_readl(udc, UDCFNR) & 0x7ff); } /** * pxa_udc_wakeup - Force udc device out of suspend * @_gadget: usb gadget * * Returns 0 if successful, error code otherwise */ static int pxa_udc_wakeup(struct usb_gadget *_gadget) { struct pxa_udc *udc = to_gadget_udc(_gadget); /* host may not have enabled remote wakeup */ if ((udc_readl(udc, UDCCR) & UDCCR_DWRE) == 0) return -EHOSTUNREACH; udc_set_mask_UDCCR(udc, UDCCR_UDR); return 0; } static void udc_enable(struct pxa_udc *udc); static void udc_disable(struct pxa_udc *udc); /** * should_enable_udc - Tells if UDC should be enabled * @udc: udc device * Context: any * * The UDC should be enabled if : * - the pullup resistor is connected * - and a gadget driver is bound * - and vbus is sensed (or no vbus sense is available) * * Returns 1 if UDC should be enabled, 0 otherwise */ static int should_enable_udc(struct pxa_udc *udc) { int put_on; put_on = ((udc->pullup_on) && (udc->driver)); put_on &= ((udc->vbus_sensed) || (IS_ERR_OR_NULL(udc->transceiver))); return put_on; } /** * should_disable_udc - Tells if UDC should be disabled * @udc: udc device * Context: any * * The UDC should be disabled if : * - the pullup resistor is not connected * - or no gadget driver is bound * - or no vbus is sensed (when vbus sesing is available) * * Returns 1 if UDC should be disabled */ static int should_disable_udc(struct pxa_udc *udc) { int put_off; put_off = ((!udc->pullup_on) || (!udc->driver)); put_off |= ((!udc->vbus_sensed) && (!IS_ERR_OR_NULL(udc->transceiver))); return put_off; } /** * pxa_udc_pullup - Offer manual D+ pullup control * @_gadget: usb gadget using the control * @is_active: 0 if disconnect, else connect D+ pullup resistor * Context: !in_interrupt() * * Returns 0 if OK, -EOPNOTSUPP if udc driver doesn't handle D+ pullup */ static int pxa_udc_pullup(struct usb_gadget *_gadget, int is_active) { struct pxa_udc *udc = to_gadget_udc(_gadget); if (!gpio_is_valid(udc->mach->gpio_pullup) && !udc->mach->udc_command) return -EOPNOTSUPP; dplus_pullup(udc, is_active); if (should_enable_udc(udc)) udc_enable(udc); if (should_disable_udc(udc)) udc_disable(udc); return 0; } static void udc_enable(struct pxa_udc *udc); static void udc_disable(struct pxa_udc *udc); /** * pxa_udc_vbus_session - Called by external transceiver to enable/disable udc * @_gadget: usb gadget * @is_active: 0 if should disable the udc, 1 if should enable * * Enables the udc, and optionnaly activates D+ pullup resistor. Or disables the * udc, and deactivates D+ pullup resistor. * * Returns 0 */ static int pxa_udc_vbus_session(struct usb_gadget *_gadget, int is_active) { struct pxa_udc *udc = to_gadget_udc(_gadget); udc->vbus_sensed = is_active; if (should_enable_udc(udc)) udc_enable(udc); if (should_disable_udc(udc)) udc_disable(udc); return 0; } /** * pxa_udc_vbus_draw - Called by gadget driver after SET_CONFIGURATION completed * @_gadget: usb gadget * @mA: current drawn * * Context: !in_interrupt() * * Called after a configuration was chosen by a USB host, to inform how much * current can be drawn by the device from VBus line. * * Returns 0 or -EOPNOTSUPP if no transceiver is handling the udc */ static int pxa_udc_vbus_draw(struct usb_gadget *_gadget, unsigned mA) { struct pxa_udc *udc; udc = to_gadget_udc(_gadget); if (!IS_ERR_OR_NULL(udc->transceiver)) return usb_phy_set_power(udc->transceiver, mA); return -EOPNOTSUPP; } static int pxa27x_udc_start(struct usb_gadget *g, struct usb_gadget_driver *driver); static int pxa27x_udc_stop(struct usb_gadget *g, struct usb_gadget_driver *driver); static const struct usb_gadget_ops pxa_udc_ops = { .get_frame = pxa_udc_get_frame, .wakeup = pxa_udc_wakeup, .pullup = pxa_udc_pullup, .vbus_session = pxa_udc_vbus_session, .vbus_draw = pxa_udc_vbus_draw, .udc_start = pxa27x_udc_start, .udc_stop = pxa27x_udc_stop, }; /** * udc_disable - disable udc device controller * @udc: udc device * Context: any * * Disables the udc device : disables clocks, udc interrupts, control endpoint * interrupts. */ static void udc_disable(struct pxa_udc *udc) { if (!udc->enabled) return; udc_writel(udc, UDCICR0, 0); udc_writel(udc, UDCICR1, 0); udc_clear_mask_UDCCR(udc, UDCCR_UDE); clk_disable(udc->clk); ep0_idle(udc); udc->gadget.speed = USB_SPEED_UNKNOWN; udc->enabled = 0; } /** * udc_init_data - Initialize udc device data structures * @dev: udc device * * Initializes gadget endpoint list, endpoints locks. No action is taken * on the hardware. */ static void udc_init_data(struct pxa_udc *dev) { int i; struct pxa_ep *ep; /* device/ep0 records init */ INIT_LIST_HEAD(&dev->gadget.ep_list); INIT_LIST_HEAD(&dev->gadget.ep0->ep_list); dev->udc_usb_ep[0].pxa_ep = &dev->pxa_ep[0]; ep0_idle(dev); /* PXA endpoints init */ for (i = 0; i < NR_PXA_ENDPOINTS; i++) { ep = &dev->pxa_ep[i]; ep->enabled = is_ep0(ep); INIT_LIST_HEAD(&ep->queue); spin_lock_init(&ep->lock); } /* USB endpoints init */ for (i = 1; i < NR_USB_ENDPOINTS; i++) list_add_tail(&dev->udc_usb_ep[i].usb_ep.ep_list, &dev->gadget.ep_list); } /** * udc_enable - Enables the udc device * @dev: udc device * * Enables the udc device : enables clocks, udc interrupts, control endpoint * interrupts, sets usb as UDC client and setups endpoints. */ static void udc_enable(struct pxa_udc *udc) { if (udc->enabled) return; udc_writel(udc, UDCICR0, 0); udc_writel(udc, UDCICR1, 0); udc_clear_mask_UDCCR(udc, UDCCR_UDE); clk_enable(udc->clk); ep0_idle(udc); udc->gadget.speed = USB_SPEED_FULL; memset(&udc->stats, 0, sizeof(udc->stats)); udc_set_mask_UDCCR(udc, UDCCR_UDE); ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_ACM); udelay(2); if (udc_readl(udc, UDCCR) & UDCCR_EMCE) dev_err(udc->dev, "Configuration errors, udc disabled\n"); /* * Caller must be able to sleep in order to cope with startup transients */ msleep(100); /* enable suspend/resume and reset irqs */ udc_writel(udc, UDCICR1, UDCICR1_IECC | UDCICR1_IERU | UDCICR1_IESU | UDCICR1_IERS); /* enable ep0 irqs */ pio_irq_enable(&udc->pxa_ep[0]); udc->enabled = 1; } /** * pxa27x_start - Register gadget driver * @driver: gadget driver * @bind: bind function * * When a driver is successfully registered, it will receive control requests * including set_configuration(), which enables non-control requests. Then * usb traffic follows until a disconnect is reported. Then a host may connect * again, or the driver might get unbound. * * Note that the udc is not automatically enabled. Check function * should_enable_udc(). * * Returns 0 if no error, -EINVAL, -ENODEV, -EBUSY otherwise */ static int pxa27x_udc_start(struct usb_gadget *g, struct usb_gadget_driver *driver) { struct pxa_udc *udc = to_pxa(g); int retval; /* first hook up the driver ... */ udc->driver = driver; dplus_pullup(udc, 1); if (!IS_ERR_OR_NULL(udc->transceiver)) { retval = otg_set_peripheral(udc->transceiver->otg, &udc->gadget); if (retval) { dev_err(udc->dev, "can't bind to transceiver\n"); goto fail; } } if (should_enable_udc(udc)) udc_enable(udc); return 0; fail: udc->driver = NULL; return retval; } /** * stop_activity - Stops udc endpoints * @udc: udc device * @driver: gadget driver * * Disables all udc endpoints (even control endpoint), report disconnect to * the gadget user. */ static void stop_activity(struct pxa_udc *udc, struct usb_gadget_driver *driver) { int i; /* don't disconnect drivers more than once */ if (udc->gadget.speed == USB_SPEED_UNKNOWN) driver = NULL; udc->gadget.speed = USB_SPEED_UNKNOWN; for (i = 0; i < NR_USB_ENDPOINTS; i++) pxa_ep_disable(&udc->udc_usb_ep[i].usb_ep); } /** * pxa27x_udc_stop - Unregister the gadget driver * @driver: gadget driver * * Returns 0 if no error, -ENODEV, -EINVAL otherwise */ static int pxa27x_udc_stop(struct usb_gadget *g, struct usb_gadget_driver *driver) { struct pxa_udc *udc = to_pxa(g); stop_activity(udc, driver); udc_disable(udc); dplus_pullup(udc, 0); udc->driver = NULL; if (!IS_ERR_OR_NULL(udc->transceiver)) return otg_set_peripheral(udc->transceiver->otg, NULL); return 0; } /** * handle_ep0_ctrl_req - handle control endpoint control request * @udc: udc device * @req: control request */ static void handle_ep0_ctrl_req(struct pxa_udc *udc, struct pxa27x_request *req) { struct pxa_ep *ep = &udc->pxa_ep[0]; union { struct usb_ctrlrequest r; u32 word[2]; } u; int i; int have_extrabytes = 0; unsigned long flags; nuke(ep, -EPROTO); spin_lock_irqsave(&ep->lock, flags); /* * In the PXA320 manual, in the section about Back-to-Back setup * packets, it describes this situation. The solution is to set OPC to * get rid of the status packet, and then continue with the setup * packet. Generalize to pxa27x CPUs. */ if (epout_has_pkt(ep) && (ep_count_bytes_remain(ep) == 0)) ep_write_UDCCSR(ep, UDCCSR0_OPC); /* read SETUP packet */ for (i = 0; i < 2; i++) { if (unlikely(ep_is_empty(ep))) goto stall; u.word[i] = udc_ep_readl(ep, UDCDR); } have_extrabytes = !ep_is_empty(ep); while (!ep_is_empty(ep)) { i = udc_ep_readl(ep, UDCDR); ep_err(ep, "wrong to have extra bytes for setup : 0x%08x\n", i); } ep_dbg(ep, "SETUP %02x.%02x v%04x i%04x l%04x\n", u.r.bRequestType, u.r.bRequest, le16_to_cpu(u.r.wValue), le16_to_cpu(u.r.wIndex), le16_to_cpu(u.r.wLength)); if (unlikely(have_extrabytes)) goto stall; if (u.r.bRequestType & USB_DIR_IN) set_ep0state(udc, IN_DATA_STAGE); else set_ep0state(udc, OUT_DATA_STAGE); /* Tell UDC to enter Data Stage */ ep_write_UDCCSR(ep, UDCCSR0_SA | UDCCSR0_OPC); spin_unlock_irqrestore(&ep->lock, flags); i = udc->driver->setup(&udc->gadget, &u.r); spin_lock_irqsave(&ep->lock, flags); if (i < 0) goto stall; out: spin_unlock_irqrestore(&ep->lock, flags); return; stall: ep_dbg(ep, "protocol STALL, udccsr0=%03x err %d\n", udc_ep_readl(ep, UDCCSR), i); ep_write_UDCCSR(ep, UDCCSR0_FST | UDCCSR0_FTF); set_ep0state(udc, STALL); goto out; } /** * handle_ep0 - Handle control endpoint data transfers * @udc: udc device * @fifo_irq: 1 if triggered by fifo service type irq * @opc_irq: 1 if triggered by output packet complete type irq * * Context : when in_interrupt() or with ep->lock held * * Tries to transfer all pending request data into the endpoint and/or * transfer all pending data in the endpoint into usb requests. * Handles states of ep0 automata. * * PXA27x hardware handles several standard usb control requests without * driver notification. The requests fully handled by hardware are : * SET_ADDRESS, SET_FEATURE, CLEAR_FEATURE, GET_CONFIGURATION, GET_INTERFACE, * GET_STATUS * The requests handled by hardware, but with irq notification are : * SYNCH_FRAME, SET_CONFIGURATION, SET_INTERFACE * The remaining standard requests really handled by handle_ep0 are : * GET_DESCRIPTOR, SET_DESCRIPTOR, specific requests. * Requests standardized outside of USB 2.0 chapter 9 are handled more * uniformly, by gadget drivers. * * The control endpoint state machine is _not_ USB spec compliant, it's even * hardly compliant with Intel PXA270 developers guide. * The key points which inferred this state machine are : * - on every setup token, bit UDCCSR0_SA is raised and held until cleared by * software. * - on every OUT packet received, UDCCSR0_OPC is raised and held until * cleared by software. * - clearing UDCCSR0_OPC always flushes ep0. If in setup stage, never do it * before reading ep0. * This is true only for PXA27x. This is not true anymore for PXA3xx family * (check Back-to-Back setup packet in developers guide). * - irq can be called on a "packet complete" event (opc_irq=1), while * UDCCSR0_OPC is not yet raised (delta can be as big as 100ms * from experimentation). * - as UDCCSR0_SA can be activated while in irq handling, and clearing * UDCCSR0_OPC would flush the setup data, we almost never clear UDCCSR0_OPC * => we never actually read the "status stage" packet of an IN data stage * => this is not documented in Intel documentation * - hardware as no idea of STATUS STAGE, it only handle SETUP STAGE and DATA * STAGE. The driver add STATUS STAGE to send last zero length packet in * OUT_STATUS_STAGE. * - special attention was needed for IN_STATUS_STAGE. If a packet complete * event is detected, we terminate the status stage without ackowledging the * packet (not to risk to loose a potential SETUP packet) */ static void handle_ep0(struct pxa_udc *udc, int fifo_irq, int opc_irq) { u32 udccsr0; struct pxa_ep *ep = &udc->pxa_ep[0]; struct pxa27x_request *req = NULL; int completed = 0; if (!list_empty(&ep->queue)) req = list_entry(ep->queue.next, struct pxa27x_request, queue); udccsr0 = udc_ep_readl(ep, UDCCSR); ep_dbg(ep, "state=%s, req=%p, udccsr0=0x%03x, udcbcr=%d, irq_msk=%x\n", EP0_STNAME(udc), req, udccsr0, udc_ep_readl(ep, UDCBCR), (fifo_irq << 1 | opc_irq)); if (udccsr0 & UDCCSR0_SST) { ep_dbg(ep, "clearing stall status\n"); nuke(ep, -EPIPE); ep_write_UDCCSR(ep, UDCCSR0_SST); ep0_idle(udc); } if (udccsr0 & UDCCSR0_SA) { nuke(ep, 0); set_ep0state(udc, SETUP_STAGE); } switch (udc->ep0state) { case WAIT_FOR_SETUP: /* * Hardware bug : beware, we cannot clear OPC, since we would * miss a potential OPC irq for a setup packet. * So, we only do ... nothing, and hope for a next irq with * UDCCSR0_SA set. */ break; case SETUP_STAGE: udccsr0 &= UDCCSR0_CTRL_REQ_MASK; if (likely(udccsr0 == UDCCSR0_CTRL_REQ_MASK)) handle_ep0_ctrl_req(udc, req); break; case IN_DATA_STAGE: /* GET_DESCRIPTOR */ if (epout_has_pkt(ep)) ep_write_UDCCSR(ep, UDCCSR0_OPC); if (req && !ep_is_full(ep)) completed = write_ep0_fifo(ep, req); if (completed) ep0_end_in_req(ep, req, NULL); break; case OUT_DATA_STAGE: /* SET_DESCRIPTOR */ if (epout_has_pkt(ep) && req) completed = read_ep0_fifo(ep, req); if (completed) ep0_end_out_req(ep, req, NULL); break; case STALL: ep_write_UDCCSR(ep, UDCCSR0_FST); break; case IN_STATUS_STAGE: /* * Hardware bug : beware, we cannot clear OPC, since we would * miss a potential PC irq for a setup packet. * So, we only put the ep0 into WAIT_FOR_SETUP state. */ if (opc_irq) ep0_idle(udc); break; case OUT_STATUS_STAGE: case WAIT_ACK_SET_CONF_INTERF: ep_warn(ep, "should never get in %s state here!!!\n", EP0_STNAME(ep->dev)); ep0_idle(udc); break; } } /** * handle_ep - Handle endpoint data tranfers * @ep: pxa physical endpoint * * Tries to transfer all pending request data into the endpoint and/or * transfer all pending data in the endpoint into usb requests. * * Is always called when in_interrupt() and with ep->lock released. */ static void handle_ep(struct pxa_ep *ep) { struct pxa27x_request *req; int completed; u32 udccsr; int is_in = ep->dir_in; int loop = 0; unsigned long flags; spin_lock_irqsave(&ep->lock, flags); if (ep->in_handle_ep) goto recursion_detected; ep->in_handle_ep = 1; do { completed = 0; udccsr = udc_ep_readl(ep, UDCCSR); if (likely(!list_empty(&ep->queue))) req = list_entry(ep->queue.next, struct pxa27x_request, queue); else req = NULL; ep_dbg(ep, "req:%p, udccsr 0x%03x loop=%d\n", req, udccsr, loop++); if (unlikely(udccsr & (UDCCSR_SST | UDCCSR_TRN))) udc_ep_writel(ep, UDCCSR, udccsr & (UDCCSR_SST | UDCCSR_TRN)); if (!req) break; if (unlikely(is_in)) { if (likely(!ep_is_full(ep))) completed = write_fifo(ep, req); } else { if (likely(epout_has_pkt(ep))) completed = read_fifo(ep, req); } if (completed) { if (is_in) ep_end_in_req(ep, req, &flags); else ep_end_out_req(ep, req, &flags); } } while (completed); ep->in_handle_ep = 0; recursion_detected: spin_unlock_irqrestore(&ep->lock, flags); } /** * pxa27x_change_configuration - Handle SET_CONF usb request notification * @udc: udc device * @config: usb configuration * * Post the request to upper level. * Don't use any pxa specific harware configuration capabilities */ static void pxa27x_change_configuration(struct pxa_udc *udc, int config) { struct usb_ctrlrequest req ; dev_dbg(udc->dev, "config=%d\n", config); udc->config = config; udc->last_interface = 0; udc->last_alternate = 0; req.bRequestType = 0; req.bRequest = USB_REQ_SET_CONFIGURATION; req.wValue = config; req.wIndex = 0; req.wLength = 0; set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF); udc->driver->setup(&udc->gadget, &req); ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN); } /** * pxa27x_change_interface - Handle SET_INTERF usb request notification * @udc: udc device * @iface: interface number * @alt: alternate setting number * * Post the request to upper level. * Don't use any pxa specific harware configuration capabilities */ static void pxa27x_change_interface(struct pxa_udc *udc, int iface, int alt) { struct usb_ctrlrequest req; dev_dbg(udc->dev, "interface=%d, alternate setting=%d\n", iface, alt); udc->last_interface = iface; udc->last_alternate = alt; req.bRequestType = USB_RECIP_INTERFACE; req.bRequest = USB_REQ_SET_INTERFACE; req.wValue = alt; req.wIndex = iface; req.wLength = 0; set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF); udc->driver->setup(&udc->gadget, &req); ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN); } /* * irq_handle_data - Handle data transfer * @irq: irq IRQ number * @udc: dev pxa_udc device structure * * Called from irq handler, transferts data to or from endpoint to queue */ static void irq_handle_data(int irq, struct pxa_udc *udc) { int i; struct pxa_ep *ep; u32 udcisr0 = udc_readl(udc, UDCISR0) & UDCCISR0_EP_MASK; u32 udcisr1 = udc_readl(udc, UDCISR1) & UDCCISR1_EP_MASK; if (udcisr0 & UDCISR_INT_MASK) { udc->pxa_ep[0].stats.irqs++; udc_writel(udc, UDCISR0, UDCISR_INT(0, UDCISR_INT_MASK)); handle_ep0(udc, !!(udcisr0 & UDCICR_FIFOERR), !!(udcisr0 & UDCICR_PKTCOMPL)); } udcisr0 >>= 2; for (i = 1; udcisr0 != 0 && i < 16; udcisr0 >>= 2, i++) { if (!(udcisr0 & UDCISR_INT_MASK)) continue; udc_writel(udc, UDCISR0, UDCISR_INT(i, UDCISR_INT_MASK)); WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep)); if (i < ARRAY_SIZE(udc->pxa_ep)) { ep = &udc->pxa_ep[i]; ep->stats.irqs++; handle_ep(ep); } } for (i = 16; udcisr1 != 0 && i < 24; udcisr1 >>= 2, i++) { udc_writel(udc, UDCISR1, UDCISR_INT(i - 16, UDCISR_INT_MASK)); if (!(udcisr1 & UDCISR_INT_MASK)) continue; WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep)); if (i < ARRAY_SIZE(udc->pxa_ep)) { ep = &udc->pxa_ep[i]; ep->stats.irqs++; handle_ep(ep); } } } /** * irq_udc_suspend - Handle IRQ "UDC Suspend" * @udc: udc device */ static void irq_udc_suspend(struct pxa_udc *udc) { udc_writel(udc, UDCISR1, UDCISR1_IRSU); udc->stats.irqs_suspend++; if (udc->gadget.speed != USB_SPEED_UNKNOWN && udc->driver && udc->driver->suspend) udc->driver->suspend(&udc->gadget); ep0_idle(udc); } /** * irq_udc_resume - Handle IRQ "UDC Resume" * @udc: udc device */ static void irq_udc_resume(struct pxa_udc *udc) { udc_writel(udc, UDCISR1, UDCISR1_IRRU); udc->stats.irqs_resume++; if (udc->gadget.speed != USB_SPEED_UNKNOWN && udc->driver && udc->driver->resume) udc->driver->resume(&udc->gadget); } /** * irq_udc_reconfig - Handle IRQ "UDC Change Configuration" * @udc: udc device */ static void irq_udc_reconfig(struct pxa_udc *udc) { unsigned config, interface, alternate, config_change; u32 udccr = udc_readl(udc, UDCCR); udc_writel(udc, UDCISR1, UDCISR1_IRCC); udc->stats.irqs_reconfig++; config = (udccr & UDCCR_ACN) >> UDCCR_ACN_S; config_change = (config != udc->config); pxa27x_change_configuration(udc, config); interface = (udccr & UDCCR_AIN) >> UDCCR_AIN_S; alternate = (udccr & UDCCR_AAISN) >> UDCCR_AAISN_S; pxa27x_change_interface(udc, interface, alternate); if (config_change) update_pxa_ep_matches(udc); udc_set_mask_UDCCR(udc, UDCCR_SMAC); } /** * irq_udc_reset - Handle IRQ "UDC Reset" * @udc: udc device */ static void irq_udc_reset(struct pxa_udc *udc) { u32 udccr = udc_readl(udc, UDCCR); struct pxa_ep *ep = &udc->pxa_ep[0]; dev_info(udc->dev, "USB reset\n"); udc_writel(udc, UDCISR1, UDCISR1_IRRS); udc->stats.irqs_reset++; if ((udccr & UDCCR_UDA) == 0) { dev_dbg(udc->dev, "USB reset start\n"); stop_activity(udc, udc->driver); } udc->gadget.speed = USB_SPEED_FULL; memset(&udc->stats, 0, sizeof udc->stats); nuke(ep, -EPROTO); ep_write_UDCCSR(ep, UDCCSR0_FTF | UDCCSR0_OPC); ep0_idle(udc); } /** * pxa_udc_irq - Main irq handler * @irq: irq number * @_dev: udc device * * Handles all udc interrupts */ static irqreturn_t pxa_udc_irq(int irq, void *_dev) { struct pxa_udc *udc = _dev; u32 udcisr0 = udc_readl(udc, UDCISR0); u32 udcisr1 = udc_readl(udc, UDCISR1); u32 udccr = udc_readl(udc, UDCCR); u32 udcisr1_spec; dev_vdbg(udc->dev, "Interrupt, UDCISR0:0x%08x, UDCISR1:0x%08x, " "UDCCR:0x%08x\n", udcisr0, udcisr1, udccr); udcisr1_spec = udcisr1 & 0xf8000000; if (unlikely(udcisr1_spec & UDCISR1_IRSU)) irq_udc_suspend(udc); if (unlikely(udcisr1_spec & UDCISR1_IRRU)) irq_udc_resume(udc); if (unlikely(udcisr1_spec & UDCISR1_IRCC)) irq_udc_reconfig(udc); if (unlikely(udcisr1_spec & UDCISR1_IRRS)) irq_udc_reset(udc); if ((udcisr0 & UDCCISR0_EP_MASK) | (udcisr1 & UDCCISR1_EP_MASK)) irq_handle_data(irq, udc); return IRQ_HANDLED; } static struct pxa_udc memory = { .gadget = { .ops = &pxa_udc_ops, .ep0 = &memory.udc_usb_ep[0].usb_ep, .name = driver_name, .dev = { .init_name = "gadget", }, }, .udc_usb_ep = { USB_EP_CTRL, USB_EP_OUT_BULK(1), USB_EP_IN_BULK(2), USB_EP_IN_ISO(3), USB_EP_OUT_ISO(4), USB_EP_IN_INT(5), }, .pxa_ep = { PXA_EP_CTRL, /* Endpoints for gadget zero */ PXA_EP_OUT_BULK(1, 1, 3, 0, 0), PXA_EP_IN_BULK(2, 2, 3, 0, 0), /* Endpoints for ether gadget, file storage gadget */ PXA_EP_OUT_BULK(3, 1, 1, 0, 0), PXA_EP_IN_BULK(4, 2, 1, 0, 0), PXA_EP_IN_ISO(5, 3, 1, 0, 0), PXA_EP_OUT_ISO(6, 4, 1, 0, 0), PXA_EP_IN_INT(7, 5, 1, 0, 0), /* Endpoints for RNDIS, serial */ PXA_EP_OUT_BULK(8, 1, 2, 0, 0), PXA_EP_IN_BULK(9, 2, 2, 0, 0), PXA_EP_IN_INT(10, 5, 2, 0, 0), /* * All the following endpoints are only for completion. They * won't never work, as multiple interfaces are really broken on * the pxa. */ PXA_EP_OUT_BULK(11, 1, 2, 1, 0), PXA_EP_IN_BULK(12, 2, 2, 1, 0), /* Endpoint for CDC Ether */ PXA_EP_OUT_BULK(13, 1, 1, 1, 1), PXA_EP_IN_BULK(14, 2, 1, 1, 1), } }; /** * pxa_udc_probe - probes the udc device * @_dev: platform device * * Perform basic init : allocates udc clock, creates sysfs files, requests * irq. */ static int pxa_udc_probe(struct platform_device *pdev) { struct resource *regs; struct pxa_udc *udc = &memory; int retval = 0, gpio; regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!regs) return -ENXIO; udc->irq = platform_get_irq(pdev, 0); if (udc->irq < 0) return udc->irq; udc->dev = &pdev->dev; udc->mach = pdev->dev.platform_data; udc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2); gpio = udc->mach->gpio_pullup; if (gpio_is_valid(gpio)) { retval = gpio_request(gpio, "USB D+ pullup"); if (retval == 0) gpio_direction_output(gpio, udc->mach->gpio_pullup_inverted); } if (retval) { dev_err(&pdev->dev, "Couldn't request gpio %d : %d\n", gpio, retval); return retval; } udc->clk = clk_get(&pdev->dev, NULL); if (IS_ERR(udc->clk)) { retval = PTR_ERR(udc->clk); goto err_clk; } retval = -ENOMEM; udc->regs = ioremap(regs->start, resource_size(regs)); if (!udc->regs) { dev_err(&pdev->dev, "Unable to map UDC I/O memory\n"); goto err_map; } udc->vbus_sensed = 0; the_controller = udc; platform_set_drvdata(pdev, udc); udc_init_data(udc); pxa_eps_setup(udc); /* irq setup after old hardware state is cleaned up */ retval = request_irq(udc->irq, pxa_udc_irq, IRQF_SHARED, driver_name, udc); if (retval != 0) { dev_err(udc->dev, "%s: can't get irq %i, err %d\n", driver_name, udc->irq, retval); goto err_irq; } retval = usb_add_gadget_udc(&pdev->dev, &udc->gadget); if (retval) goto err_add_udc; pxa_init_debugfs(udc); return 0; err_add_udc: free_irq(udc->irq, udc); err_irq: iounmap(udc->regs); err_map: clk_put(udc->clk); udc->clk = NULL; err_clk: return retval; } /** * pxa_udc_remove - removes the udc device driver * @_dev: platform device */ static int pxa_udc_remove(struct platform_device *_dev) { struct pxa_udc *udc = platform_get_drvdata(_dev); int gpio = udc->mach->gpio_pullup; usb_del_gadget_udc(&udc->gadget); usb_gadget_unregister_driver(udc->driver); free_irq(udc->irq, udc); pxa_cleanup_debugfs(udc); if (gpio_is_valid(gpio)) gpio_free(gpio); usb_put_phy(udc->transceiver); udc->transceiver = NULL; platform_set_drvdata(_dev, NULL); the_controller = NULL; clk_put(udc->clk); iounmap(udc->regs); return 0; } static void pxa_udc_shutdown(struct platform_device *_dev) { struct pxa_udc *udc = platform_get_drvdata(_dev); if (udc_readl(udc, UDCCR) & UDCCR_UDE) udc_disable(udc); } #ifdef CONFIG_PXA27x extern void pxa27x_clear_otgph(void); #else #define pxa27x_clear_otgph() do {} while (0) #endif #ifdef CONFIG_PM /** * pxa_udc_suspend - Suspend udc device * @_dev: platform device * @state: suspend state * * Suspends udc : saves configuration registers (UDCCR*), then disables the udc * device. */ static int pxa_udc_suspend(struct platform_device *_dev, pm_message_t state) { int i; struct pxa_udc *udc = platform_get_drvdata(_dev); struct pxa_ep *ep; ep = &udc->pxa_ep[0]; udc->udccsr0 = udc_ep_readl(ep, UDCCSR); for (i = 1; i < NR_PXA_ENDPOINTS; i++) { ep = &udc->pxa_ep[i]; ep->udccsr_value = udc_ep_readl(ep, UDCCSR); ep->udccr_value = udc_ep_readl(ep, UDCCR); ep_dbg(ep, "udccsr:0x%03x, udccr:0x%x\n", ep->udccsr_value, ep->udccr_value); } udc_disable(udc); udc->pullup_resume = udc->pullup_on; dplus_pullup(udc, 0); return 0; } /** * pxa_udc_resume - Resume udc device * @_dev: platform device * * Resumes udc : restores configuration registers (UDCCR*), then enables the udc * device. */ static int pxa_udc_resume(struct platform_device *_dev) { int i; struct pxa_udc *udc = platform_get_drvdata(_dev); struct pxa_ep *ep; ep = &udc->pxa_ep[0]; udc_ep_writel(ep, UDCCSR, udc->udccsr0 & (UDCCSR0_FST | UDCCSR0_DME)); for (i = 1; i < NR_PXA_ENDPOINTS; i++) { ep = &udc->pxa_ep[i]; udc_ep_writel(ep, UDCCSR, ep->udccsr_value); udc_ep_writel(ep, UDCCR, ep->udccr_value); ep_dbg(ep, "udccsr:0x%03x, udccr:0x%x\n", ep->udccsr_value, ep->udccr_value); } dplus_pullup(udc, udc->pullup_resume); if (should_enable_udc(udc)) udc_enable(udc); /* * We do not handle OTG yet. * * OTGPH bit is set when sleep mode is entered. * it indicates that OTG pad is retaining its state. * Upon exit from sleep mode and before clearing OTGPH, * Software must configure the USB OTG pad, UDC, and UHC * to the state they were in before entering sleep mode. */ pxa27x_clear_otgph(); return 0; } #endif /* work with hotplug and coldplug */ MODULE_ALIAS("platform:pxa27x-udc"); static struct platform_driver udc_driver = { .driver = { .name = "pxa27x-udc", .owner = THIS_MODULE, }, .probe = pxa_udc_probe, .remove = pxa_udc_remove, .shutdown = pxa_udc_shutdown, #ifdef CONFIG_PM .suspend = pxa_udc_suspend, .resume = pxa_udc_resume #endif }; module_platform_driver(udc_driver); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_AUTHOR("Robert Jarzmik"); MODULE_LICENSE("GPL");