/* * uvc_video.c -- USB Video Class Gadget driver * * Copyright (C) 2009-2010 * Laurent Pinchart (laurent.pinchart@ideasonboard.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include <linux/kernel.h> #include <linux/device.h> #include <linux/errno.h> #include <linux/usb/ch9.h> #include <linux/usb/gadget.h> #include <media/v4l2-dev.h> #include "uvc.h" #include "uvc_queue.h" /* -------------------------------------------------------------------------- * Video codecs */ static int uvc_video_encode_header(struct uvc_video *video, struct uvc_buffer *buf, u8 *data, int len) { data[0] = 2; data[1] = UVC_STREAM_EOH | video->fid; if (buf->bytesused - video->queue.buf_used <= len - 2) data[1] |= UVC_STREAM_EOF; return 2; } static int uvc_video_encode_data(struct uvc_video *video, struct uvc_buffer *buf, u8 *data, int len) { struct uvc_video_queue *queue = &video->queue; unsigned int nbytes; void *mem; /* Copy video data to the USB buffer. */ mem = buf->mem + queue->buf_used; nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used); memcpy(data, mem, nbytes); queue->buf_used += nbytes; return nbytes; } static void uvc_video_encode_bulk(struct usb_request *req, struct uvc_video *video, struct uvc_buffer *buf) { void *mem = req->buf; int len = video->req_size; int ret; /* Add a header at the beginning of the payload. */ if (video->payload_size == 0) { ret = uvc_video_encode_header(video, buf, mem, len); video->payload_size += ret; mem += ret; len -= ret; } /* Process video data. */ len = min((int)(video->max_payload_size - video->payload_size), len); ret = uvc_video_encode_data(video, buf, mem, len); video->payload_size += ret; len -= ret; req->length = video->req_size - len; req->zero = video->payload_size == video->max_payload_size; if (buf->bytesused == video->queue.buf_used) { video->queue.buf_used = 0; buf->state = UVC_BUF_STATE_DONE; uvc_queue_next_buffer(&video->queue, buf); video->fid ^= UVC_STREAM_FID; video->payload_size = 0; } if (video->payload_size == video->max_payload_size || buf->bytesused == video->queue.buf_used) video->payload_size = 0; } static void uvc_video_encode_isoc(struct usb_request *req, struct uvc_video *video, struct uvc_buffer *buf) { void *mem = req->buf; int len = video->req_size; int ret; /* Add the header. */ ret = uvc_video_encode_header(video, buf, mem, len); mem += ret; len -= ret; /* Process video data. */ ret = uvc_video_encode_data(video, buf, mem, len); len -= ret; req->length = video->req_size - len; if (buf->bytesused == video->queue.buf_used) { video->queue.buf_used = 0; buf->state = UVC_BUF_STATE_DONE; uvc_queue_next_buffer(&video->queue, buf); video->fid ^= UVC_STREAM_FID; } } /* -------------------------------------------------------------------------- * Request handling */ /* * I somehow feel that synchronisation won't be easy to achieve here. We have * three events that control USB requests submission: * * - USB request completion: the completion handler will resubmit the request * if a video buffer is available. * * - USB interface setting selection: in response to a SET_INTERFACE request, * the handler will start streaming if a video buffer is available and if * video is not currently streaming. * * - V4L2 buffer queueing: the driver will start streaming if video is not * currently streaming. * * Race conditions between those 3 events might lead to deadlocks or other * nasty side effects. * * The "video currently streaming" condition can't be detected by the irqqueue * being empty, as a request can still be in flight. A separate "queue paused" * flag is thus needed. * * The paused flag will be set when we try to retrieve the irqqueue head if the * queue is empty, and cleared when we queue a buffer. * * The USB request completion handler will get the buffer at the irqqueue head * under protection of the queue spinlock. If the queue is empty, the streaming * paused flag will be set. Right after releasing the spinlock a userspace * application can queue a buffer. The flag will then cleared, and the ioctl * handler will restart the video stream. */ static void uvc_video_complete(struct usb_ep *ep, struct usb_request *req) { struct uvc_video *video = req->context; struct uvc_video_queue *queue = &video->queue; struct uvc_buffer *buf; unsigned long flags; int ret; switch (req->status) { case 0: break; case -ESHUTDOWN: /* disconnect from host. */ printk(KERN_INFO "VS request cancelled.\n"); uvc_queue_cancel(queue, 1); goto requeue; default: printk(KERN_INFO "VS request completed with status %d.\n", req->status); uvc_queue_cancel(queue, 0); goto requeue; } spin_lock_irqsave(&video->queue.irqlock, flags); buf = uvc_queue_head(&video->queue); if (buf == NULL) { spin_unlock_irqrestore(&video->queue.irqlock, flags); goto requeue; } video->encode(req, video, buf); if ((ret = usb_ep_queue(ep, req, GFP_ATOMIC)) < 0) { printk(KERN_INFO "Failed to queue request (%d).\n", ret); usb_ep_set_halt(ep); spin_unlock_irqrestore(&video->queue.irqlock, flags); goto requeue; } spin_unlock_irqrestore(&video->queue.irqlock, flags); return; requeue: spin_lock_irqsave(&video->req_lock, flags); list_add_tail(&req->list, &video->req_free); spin_unlock_irqrestore(&video->req_lock, flags); } static int uvc_video_free_requests(struct uvc_video *video) { unsigned int i; for (i = 0; i < UVC_NUM_REQUESTS; ++i) { if (video->req[i]) { usb_ep_free_request(video->ep, video->req[i]); video->req[i] = NULL; } if (video->req_buffer[i]) { kfree(video->req_buffer[i]); video->req_buffer[i] = NULL; } } INIT_LIST_HEAD(&video->req_free); video->req_size = 0; return 0; } static int uvc_video_alloc_requests(struct uvc_video *video) { unsigned int req_size; unsigned int i; int ret = -ENOMEM; BUG_ON(video->req_size); req_size = video->ep->maxpacket * max_t(unsigned int, video->ep->maxburst, 1) * (video->ep->mult + 1); for (i = 0; i < UVC_NUM_REQUESTS; ++i) { video->req_buffer[i] = kmalloc(req_size, GFP_KERNEL); if (video->req_buffer[i] == NULL) goto error; video->req[i] = usb_ep_alloc_request(video->ep, GFP_KERNEL); if (video->req[i] == NULL) goto error; video->req[i]->buf = video->req_buffer[i]; video->req[i]->length = 0; video->req[i]->complete = uvc_video_complete; video->req[i]->context = video; list_add_tail(&video->req[i]->list, &video->req_free); } video->req_size = req_size; return 0; error: uvc_video_free_requests(video); return ret; } /* -------------------------------------------------------------------------- * Video streaming */ /* * uvc_video_pump - Pump video data into the USB requests * * This function fills the available USB requests (listed in req_free) with * video data from the queued buffers. */ static int uvc_video_pump(struct uvc_video *video) { struct usb_request *req; struct uvc_buffer *buf; unsigned long flags; int ret; /* FIXME TODO Race between uvc_video_pump and requests completion * handler ??? */ while (1) { /* Retrieve the first available USB request, protected by the * request lock. */ spin_lock_irqsave(&video->req_lock, flags); if (list_empty(&video->req_free)) { spin_unlock_irqrestore(&video->req_lock, flags); return 0; } req = list_first_entry(&video->req_free, struct usb_request, list); list_del(&req->list); spin_unlock_irqrestore(&video->req_lock, flags); /* Retrieve the first available video buffer and fill the * request, protected by the video queue irqlock. */ spin_lock_irqsave(&video->queue.irqlock, flags); buf = uvc_queue_head(&video->queue); if (buf == NULL) { spin_unlock_irqrestore(&video->queue.irqlock, flags); break; } video->encode(req, video, buf); /* Queue the USB request */ ret = usb_ep_queue(video->ep, req, GFP_ATOMIC); if (ret < 0) { printk(KERN_INFO "Failed to queue request (%d)\n", ret); usb_ep_set_halt(video->ep); spin_unlock_irqrestore(&video->queue.irqlock, flags); break; } spin_unlock_irqrestore(&video->queue.irqlock, flags); } spin_lock_irqsave(&video->req_lock, flags); list_add_tail(&req->list, &video->req_free); spin_unlock_irqrestore(&video->req_lock, flags); return 0; } /* * Enable or disable the video stream. */ static int uvc_video_enable(struct uvc_video *video, int enable) { unsigned int i; int ret; if (video->ep == NULL) { printk(KERN_INFO "Video enable failed, device is " "uninitialized.\n"); return -ENODEV; } if (!enable) { for (i = 0; i < UVC_NUM_REQUESTS; ++i) usb_ep_dequeue(video->ep, video->req[i]); uvc_video_free_requests(video); uvc_queue_enable(&video->queue, 0); return 0; } if ((ret = uvc_queue_enable(&video->queue, 1)) < 0) return ret; if ((ret = uvc_video_alloc_requests(video)) < 0) return ret; if (video->max_payload_size) { video->encode = uvc_video_encode_bulk; video->payload_size = 0; } else video->encode = uvc_video_encode_isoc; return uvc_video_pump(video); } /* * Initialize the UVC video stream. */ static int uvc_video_init(struct uvc_video *video) { INIT_LIST_HEAD(&video->req_free); spin_lock_init(&video->req_lock); video->fcc = V4L2_PIX_FMT_YUYV; video->bpp = 16; video->width = 320; video->height = 240; video->imagesize = 320 * 240 * 2; /* Initialize the video buffers queue. */ uvc_queue_init(&video->queue, V4L2_BUF_TYPE_VIDEO_OUTPUT); return 0; }