/* * ATI Mach64 GX Support */ #include <linux/delay.h> #include <linux/fb.h> #include <asm/io.h> #include <video/mach64.h> #include "atyfb.h" /* Definitions for the ICS 2595 == ATI 18818_1 Clockchip */ #define REF_FREQ_2595 1432 /* 14.33 MHz (exact 14.31818) */ #define REF_DIV_2595 46 /* really 43 on ICS 2595 !!! */ /* ohne Prescaler */ #define MAX_FREQ_2595 15938 /* 159.38 MHz (really 170.486) */ #define MIN_FREQ_2595 8000 /* 80.00 MHz ( 85.565) */ /* mit Prescaler 2, 4, 8 */ #define ABS_MIN_FREQ_2595 1000 /* 10.00 MHz (really 10.697) */ #define N_ADJ_2595 257 #define STOP_BITS_2595 0x1800 #define MIN_N_408 2 #define MIN_N_1703 6 #define MIN_M 2 #define MAX_M 30 #define MIN_N 35 #define MAX_N 255-8 /* * Support Functions */ static void aty_dac_waste4(const struct atyfb_par *par) { (void) aty_ld_8(DAC_REGS, par); (void) aty_ld_8(DAC_REGS + 2, par); (void) aty_ld_8(DAC_REGS + 2, par); (void) aty_ld_8(DAC_REGS + 2, par); (void) aty_ld_8(DAC_REGS + 2, par); } static void aty_StrobeClock(const struct atyfb_par *par) { u8 tmp; udelay(26); tmp = aty_ld_8(CLOCK_CNTL, par); aty_st_8(CLOCK_CNTL + par->clk_wr_offset, tmp | CLOCK_STROBE, par); return; } /* * IBM RGB514 DAC and Clock Chip */ static void aty_st_514(int offset, u8 val, const struct atyfb_par *par) { aty_st_8(DAC_CNTL, 1, par); /* right addr byte */ aty_st_8(DAC_W_INDEX, offset & 0xff, par); /* left addr byte */ aty_st_8(DAC_DATA, (offset >> 8) & 0xff, par); aty_st_8(DAC_MASK, val, par); aty_st_8(DAC_CNTL, 0, par); } static int aty_set_dac_514(const struct fb_info *info, const union aty_pll *pll, u32 bpp, u32 accel) { struct atyfb_par *par = (struct atyfb_par *) info->par; static struct { u8 pixel_dly; u8 misc2_cntl; u8 pixel_rep; u8 pixel_cntl_index; u8 pixel_cntl_v1; } tab[3] = { { 0, 0x41, 0x03, 0x71, 0x45}, /* 8 bpp */ { 0, 0x45, 0x04, 0x0c, 0x01}, /* 555 */ { 0, 0x45, 0x06, 0x0e, 0x00}, /* XRGB */ }; int i; switch (bpp) { case 8: default: i = 0; break; case 16: i = 1; break; case 32: i = 2; break; } aty_st_514(0x90, 0x00, par); /* VRAM Mask Low */ aty_st_514(0x04, tab[i].pixel_dly, par); /* Horizontal Sync Control */ aty_st_514(0x05, 0x00, par); /* Power Management */ aty_st_514(0x02, 0x01, par); /* Misc Clock Control */ aty_st_514(0x71, tab[i].misc2_cntl, par); /* Misc Control 2 */ aty_st_514(0x0a, tab[i].pixel_rep, par); /* Pixel Format */ aty_st_514(tab[i].pixel_cntl_index, tab[i].pixel_cntl_v1, par); /* Misc Control 2 / 16 BPP Control / 32 BPP Control */ return 0; } static int aty_var_to_pll_514(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll) { /* * FIXME: use real calculations instead of using fixed values from the old * driver */ static struct { u32 limit; /* pixlock rounding limit (arbitrary) */ u8 m; /* (df<<6) | vco_div_count */ u8 n; /* ref_div_count */ } RGB514_clocks[7] = { { 8000, (3 << 6) | 20, 9}, /* 7395 ps / 135.2273 MHz */ { 10000, (1 << 6) | 19, 3}, /* 9977 ps / 100.2273 MHz */ { 13000, (1 << 6) | 2, 3}, /* 12509 ps / 79.9432 MHz */ { 14000, (2 << 6) | 8, 7}, /* 13394 ps / 74.6591 MHz */ { 16000, (1 << 6) | 44, 6}, /* 15378 ps / 65.0284 MHz */ { 25000, (1 << 6) | 15, 5}, /* 17460 ps / 57.2727 MHz */ { 50000, (0 << 6) | 53, 7}, /* 33145 ps / 30.1705 MHz */ }; int i; for (i = 0; i < ARRAY_SIZE(RGB514_clocks); i++) if (vclk_per <= RGB514_clocks[i].limit) { pll->ibm514.m = RGB514_clocks[i].m; pll->ibm514.n = RGB514_clocks[i].n; return 0; } return -EINVAL; } static u32 aty_pll_514_to_var(const struct fb_info *info, const union aty_pll *pll) { struct atyfb_par *par = (struct atyfb_par *) info->par; u8 df, vco_div_count, ref_div_count; df = pll->ibm514.m >> 6; vco_div_count = pll->ibm514.m & 0x3f; ref_div_count = pll->ibm514.n; return ((par->ref_clk_per * ref_div_count) << (3 - df))/ (vco_div_count + 65); } static void aty_set_pll_514(const struct fb_info *info, const union aty_pll *pll) { struct atyfb_par *par = (struct atyfb_par *) info->par; aty_st_514(0x06, 0x02, par); /* DAC Operation */ aty_st_514(0x10, 0x01, par); /* PLL Control 1 */ aty_st_514(0x70, 0x01, par); /* Misc Control 1 */ aty_st_514(0x8f, 0x1f, par); /* PLL Ref. Divider Input */ aty_st_514(0x03, 0x00, par); /* Sync Control */ aty_st_514(0x05, 0x00, par); /* Power Management */ aty_st_514(0x20, pll->ibm514.m, par); /* F0 / M0 */ aty_st_514(0x21, pll->ibm514.n, par); /* F1 / N0 */ } const struct aty_dac_ops aty_dac_ibm514 = { .set_dac = aty_set_dac_514, }; const struct aty_pll_ops aty_pll_ibm514 = { .var_to_pll = aty_var_to_pll_514, .pll_to_var = aty_pll_514_to_var, .set_pll = aty_set_pll_514, }; /* * ATI 68860-B DAC */ static int aty_set_dac_ATI68860_B(const struct fb_info *info, const union aty_pll *pll, u32 bpp, u32 accel) { struct atyfb_par *par = (struct atyfb_par *) info->par; u32 gModeReg, devSetupRegA, temp, mask; gModeReg = 0; devSetupRegA = 0; switch (bpp) { case 8: gModeReg = 0x83; devSetupRegA = 0x60 | 0x00 /*(info->mach64DAC8Bit ? 0x00 : 0x01) */ ; break; case 15: gModeReg = 0xA0; devSetupRegA = 0x60; break; case 16: gModeReg = 0xA1; devSetupRegA = 0x60; break; case 24: gModeReg = 0xC0; devSetupRegA = 0x60; break; case 32: gModeReg = 0xE3; devSetupRegA = 0x60; break; } if (!accel) { gModeReg = 0x80; devSetupRegA = 0x61; } temp = aty_ld_8(DAC_CNTL, par); aty_st_8(DAC_CNTL, (temp & ~DAC_EXT_SEL_RS2) | DAC_EXT_SEL_RS3, par); aty_st_8(DAC_REGS + 2, 0x1D, par); aty_st_8(DAC_REGS + 3, gModeReg, par); aty_st_8(DAC_REGS, 0x02, par); temp = aty_ld_8(DAC_CNTL, par); aty_st_8(DAC_CNTL, temp | DAC_EXT_SEL_RS2 | DAC_EXT_SEL_RS3, par); if (info->fix.smem_len < ONE_MB) mask = 0x04; else if (info->fix.smem_len == ONE_MB) mask = 0x08; else mask = 0x0C; /* The following assumes that the BIOS has correctly set R7 of the * Device Setup Register A at boot time. */ #define A860_DELAY_L 0x80 temp = aty_ld_8(DAC_REGS, par); aty_st_8(DAC_REGS, (devSetupRegA | mask) | (temp & A860_DELAY_L), par); temp = aty_ld_8(DAC_CNTL, par); aty_st_8(DAC_CNTL, (temp & ~(DAC_EXT_SEL_RS2 | DAC_EXT_SEL_RS3)), par); aty_st_le32(BUS_CNTL, 0x890e20f1, par); aty_st_le32(DAC_CNTL, 0x47052100, par); return 0; } const struct aty_dac_ops aty_dac_ati68860b = { .set_dac = aty_set_dac_ATI68860_B, }; /* * AT&T 21C498 DAC */ static int aty_set_dac_ATT21C498(const struct fb_info *info, const union aty_pll *pll, u32 bpp, u32 accel) { struct atyfb_par *par = (struct atyfb_par *) info->par; u32 dotClock; int muxmode = 0; int DACMask = 0; dotClock = 100000000 / pll->ics2595.period_in_ps; switch (bpp) { case 8: if (dotClock > 8000) { DACMask = 0x24; muxmode = 1; } else DACMask = 0x04; break; case 15: DACMask = 0x16; break; case 16: DACMask = 0x36; break; case 24: DACMask = 0xE6; break; case 32: DACMask = 0xE6; break; } if (1 /* info->mach64DAC8Bit */ ) DACMask |= 0x02; aty_dac_waste4(par); aty_st_8(DAC_REGS + 2, DACMask, par); aty_st_le32(BUS_CNTL, 0x890e20f1, par); aty_st_le32(DAC_CNTL, 0x00072000, par); return muxmode; } const struct aty_dac_ops aty_dac_att21c498 = { .set_dac = aty_set_dac_ATT21C498, }; /* * ATI 18818 / ICS 2595 Clock Chip */ static int aty_var_to_pll_18818(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll) { u32 MHz100; /* in 0.01 MHz */ u32 program_bits; u32 post_divider; /* Calculate the programming word */ MHz100 = 100000000 / vclk_per; program_bits = -1; post_divider = 1; if (MHz100 > MAX_FREQ_2595) { MHz100 = MAX_FREQ_2595; return -EINVAL; } else if (MHz100 < ABS_MIN_FREQ_2595) { program_bits = 0; /* MHz100 = 257 */ return -EINVAL; } else { while (MHz100 < MIN_FREQ_2595) { MHz100 *= 2; post_divider *= 2; } } MHz100 *= 1000; MHz100 = (REF_DIV_2595 * MHz100) / REF_FREQ_2595; MHz100 += 500; /* + 0.5 round */ MHz100 /= 1000; if (program_bits == -1) { program_bits = MHz100 - N_ADJ_2595; switch (post_divider) { case 1: program_bits |= 0x0600; break; case 2: program_bits |= 0x0400; break; case 4: program_bits |= 0x0200; break; case 8: default: break; } } program_bits |= STOP_BITS_2595; pll->ics2595.program_bits = program_bits; pll->ics2595.locationAddr = 0; pll->ics2595.post_divider = post_divider; pll->ics2595.period_in_ps = vclk_per; return 0; } static u32 aty_pll_18818_to_var(const struct fb_info *info, const union aty_pll *pll) { return (pll->ics2595.period_in_ps); /* default for now */ } static void aty_ICS2595_put1bit(u8 data, const struct atyfb_par *par) { u8 tmp; data &= 0x01; tmp = aty_ld_8(CLOCK_CNTL, par); aty_st_8(CLOCK_CNTL + par->clk_wr_offset, (tmp & ~0x04) | (data << 2), par); tmp = aty_ld_8(CLOCK_CNTL, par); aty_st_8(CLOCK_CNTL + par->clk_wr_offset, (tmp & ~0x08) | (0 << 3), par); aty_StrobeClock(par); tmp = aty_ld_8(CLOCK_CNTL, par); aty_st_8(CLOCK_CNTL + par->clk_wr_offset, (tmp & ~0x08) | (1 << 3), par); aty_StrobeClock(par); return; } static void aty_set_pll18818(const struct fb_info *info, const union aty_pll *pll) { struct atyfb_par *par = (struct atyfb_par *) info->par; u32 program_bits; u32 locationAddr; u32 i; u8 old_clock_cntl; u8 old_crtc_ext_disp; old_clock_cntl = aty_ld_8(CLOCK_CNTL, par); aty_st_8(CLOCK_CNTL + par->clk_wr_offset, 0, par); old_crtc_ext_disp = aty_ld_8(CRTC_GEN_CNTL + 3, par); aty_st_8(CRTC_GEN_CNTL + 3, old_crtc_ext_disp | (CRTC_EXT_DISP_EN >> 24), par); mdelay(15); /* delay for 50 (15) ms */ program_bits = pll->ics2595.program_bits; locationAddr = pll->ics2595.locationAddr; /* Program the clock chip */ aty_st_8(CLOCK_CNTL + par->clk_wr_offset, 0, par); /* Strobe = 0 */ aty_StrobeClock(par); aty_st_8(CLOCK_CNTL + par->clk_wr_offset, 1, par); /* Strobe = 0 */ aty_StrobeClock(par); aty_ICS2595_put1bit(1, par); /* Send start bits */ aty_ICS2595_put1bit(0, par); /* Start bit */ aty_ICS2595_put1bit(0, par); /* Read / ~Write */ for (i = 0; i < 5; i++) { /* Location 0..4 */ aty_ICS2595_put1bit(locationAddr & 1, par); locationAddr >>= 1; } for (i = 0; i < 8 + 1 + 2 + 2; i++) { aty_ICS2595_put1bit(program_bits & 1, par); program_bits >>= 1; } mdelay(1); /* delay for 1 ms */ (void) aty_ld_8(DAC_REGS, par); /* Clear DAC Counter */ aty_st_8(CRTC_GEN_CNTL + 3, old_crtc_ext_disp, par); aty_st_8(CLOCK_CNTL + par->clk_wr_offset, old_clock_cntl | CLOCK_STROBE, par); mdelay(50); /* delay for 50 (15) ms */ aty_st_8(CLOCK_CNTL + par->clk_wr_offset, ((pll->ics2595.locationAddr & 0x0F) | CLOCK_STROBE), par); return; } const struct aty_pll_ops aty_pll_ati18818_1 = { .var_to_pll = aty_var_to_pll_18818, .pll_to_var = aty_pll_18818_to_var, .set_pll = aty_set_pll18818, }; /* * STG 1703 Clock Chip */ static int aty_var_to_pll_1703(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll) { u32 mhz100; /* in 0.01 MHz */ u32 program_bits; /* u32 post_divider; */ u32 mach64MinFreq, mach64MaxFreq, mach64RefFreq; u32 temp, tempB; u16 remainder, preRemainder; short divider = 0, tempA; /* Calculate the programming word */ mhz100 = 100000000 / vclk_per; mach64MinFreq = MIN_FREQ_2595; mach64MaxFreq = MAX_FREQ_2595; mach64RefFreq = REF_FREQ_2595; /* 14.32 MHz */ /* Calculate program word */ if (mhz100 == 0) program_bits = 0xE0; else { if (mhz100 < mach64MinFreq) mhz100 = mach64MinFreq; if (mhz100 > mach64MaxFreq) mhz100 = mach64MaxFreq; divider = 0; while (mhz100 < (mach64MinFreq << 3)) { mhz100 <<= 1; divider += 0x20; } temp = (unsigned int) (mhz100); temp = (unsigned int) (temp * (MIN_N_1703 + 2)); temp -= (short) (mach64RefFreq << 1); tempA = MIN_N_1703; preRemainder = 0xffff; do { tempB = temp; remainder = tempB % mach64RefFreq; tempB = tempB / mach64RefFreq; if ((tempB & 0xffff) <= 127 && (remainder <= preRemainder)) { preRemainder = remainder; divider &= ~0x1f; divider |= tempA; divider = (divider & 0x00ff) + ((tempB & 0xff) << 8); } temp += mhz100; tempA++; } while (tempA <= (MIN_N_1703 << 1)); program_bits = divider; } pll->ics2595.program_bits = program_bits; pll->ics2595.locationAddr = 0; pll->ics2595.post_divider = divider; /* fuer nix */ pll->ics2595.period_in_ps = vclk_per; return 0; } static u32 aty_pll_1703_to_var(const struct fb_info *info, const union aty_pll *pll) { return (pll->ics2595.period_in_ps); /* default for now */ } static void aty_set_pll_1703(const struct fb_info *info, const union aty_pll *pll) { struct atyfb_par *par = (struct atyfb_par *) info->par; u32 program_bits; u32 locationAddr; char old_crtc_ext_disp; old_crtc_ext_disp = aty_ld_8(CRTC_GEN_CNTL + 3, par); aty_st_8(CRTC_GEN_CNTL + 3, old_crtc_ext_disp | (CRTC_EXT_DISP_EN >> 24), par); program_bits = pll->ics2595.program_bits; locationAddr = pll->ics2595.locationAddr; /* Program clock */ aty_dac_waste4(par); (void) aty_ld_8(DAC_REGS + 2, par); aty_st_8(DAC_REGS + 2, (locationAddr << 1) + 0x20, par); aty_st_8(DAC_REGS + 2, 0, par); aty_st_8(DAC_REGS + 2, (program_bits & 0xFF00) >> 8, par); aty_st_8(DAC_REGS + 2, (program_bits & 0xFF), par); (void) aty_ld_8(DAC_REGS, par); /* Clear DAC Counter */ aty_st_8(CRTC_GEN_CNTL + 3, old_crtc_ext_disp, par); return; } const struct aty_pll_ops aty_pll_stg1703 = { .var_to_pll = aty_var_to_pll_1703, .pll_to_var = aty_pll_1703_to_var, .set_pll = aty_set_pll_1703, }; /* * Chrontel 8398 Clock Chip */ static int aty_var_to_pll_8398(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll) { u32 tempA, tempB, fOut, longMHz100, diff, preDiff; u32 mhz100; /* in 0.01 MHz */ u32 program_bits; /* u32 post_divider; */ u32 mach64MinFreq, mach64MaxFreq, mach64RefFreq; u16 m, n, k = 0, save_m, save_n, twoToKth; /* Calculate the programming word */ mhz100 = 100000000 / vclk_per; mach64MinFreq = MIN_FREQ_2595; mach64MaxFreq = MAX_FREQ_2595; mach64RefFreq = REF_FREQ_2595; /* 14.32 MHz */ save_m = 0; save_n = 0; /* Calculate program word */ if (mhz100 == 0) program_bits = 0xE0; else { if (mhz100 < mach64MinFreq) mhz100 = mach64MinFreq; if (mhz100 > mach64MaxFreq) mhz100 = mach64MaxFreq; longMHz100 = mhz100 * 256 / 100; /* 8 bit scale this */ while (mhz100 < (mach64MinFreq << 3)) { mhz100 <<= 1; k++; } twoToKth = 1 << k; diff = 0; preDiff = 0xFFFFFFFF; for (m = MIN_M; m <= MAX_M; m++) { for (n = MIN_N; n <= MAX_N; n++) { tempA = 938356; /* 14.31818 * 65536 */ tempA *= (n + 8); /* 43..256 */ tempB = twoToKth * 256; tempB *= (m + 2); /* 4..32 */ fOut = tempA / tempB; /* 8 bit scale */ if (longMHz100 > fOut) diff = longMHz100 - fOut; else diff = fOut - longMHz100; if (diff < preDiff) { save_m = m; save_n = n; preDiff = diff; } } } program_bits = (k << 6) + (save_m) + (save_n << 8); } pll->ics2595.program_bits = program_bits; pll->ics2595.locationAddr = 0; pll->ics2595.post_divider = 0; pll->ics2595.period_in_ps = vclk_per; return 0; } static u32 aty_pll_8398_to_var(const struct fb_info *info, const union aty_pll *pll) { return (pll->ics2595.period_in_ps); /* default for now */ } static void aty_set_pll_8398(const struct fb_info *info, const union aty_pll *pll) { struct atyfb_par *par = (struct atyfb_par *) info->par; u32 program_bits; u32 locationAddr; char old_crtc_ext_disp; char tmp; old_crtc_ext_disp = aty_ld_8(CRTC_GEN_CNTL + 3, par); aty_st_8(CRTC_GEN_CNTL + 3, old_crtc_ext_disp | (CRTC_EXT_DISP_EN >> 24), par); program_bits = pll->ics2595.program_bits; locationAddr = pll->ics2595.locationAddr; /* Program clock */ tmp = aty_ld_8(DAC_CNTL, par); aty_st_8(DAC_CNTL, tmp | DAC_EXT_SEL_RS2 | DAC_EXT_SEL_RS3, par); aty_st_8(DAC_REGS, locationAddr, par); aty_st_8(DAC_REGS + 1, (program_bits & 0xff00) >> 8, par); aty_st_8(DAC_REGS + 1, (program_bits & 0xff), par); tmp = aty_ld_8(DAC_CNTL, par); aty_st_8(DAC_CNTL, (tmp & ~DAC_EXT_SEL_RS2) | DAC_EXT_SEL_RS3, par); (void) aty_ld_8(DAC_REGS, par); /* Clear DAC Counter */ aty_st_8(CRTC_GEN_CNTL + 3, old_crtc_ext_disp, par); return; } const struct aty_pll_ops aty_pll_ch8398 = { .var_to_pll = aty_var_to_pll_8398, .pll_to_var = aty_pll_8398_to_var, .set_pll = aty_set_pll_8398, }; /* * AT&T 20C408 Clock Chip */ static int aty_var_to_pll_408(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll) { u32 mhz100; /* in 0.01 MHz */ u32 program_bits; /* u32 post_divider; */ u32 mach64MinFreq, mach64MaxFreq, mach64RefFreq; u32 temp, tempB; u16 remainder, preRemainder; short divider = 0, tempA; /* Calculate the programming word */ mhz100 = 100000000 / vclk_per; mach64MinFreq = MIN_FREQ_2595; mach64MaxFreq = MAX_FREQ_2595; mach64RefFreq = REF_FREQ_2595; /* 14.32 MHz */ /* Calculate program word */ if (mhz100 == 0) program_bits = 0xFF; else { if (mhz100 < mach64MinFreq) mhz100 = mach64MinFreq; if (mhz100 > mach64MaxFreq) mhz100 = mach64MaxFreq; while (mhz100 < (mach64MinFreq << 3)) { mhz100 <<= 1; divider += 0x40; } temp = (unsigned int) mhz100; temp = (unsigned int) (temp * (MIN_N_408 + 2)); temp -= ((short) (mach64RefFreq << 1)); tempA = MIN_N_408; preRemainder = 0xFFFF; do { tempB = temp; remainder = tempB % mach64RefFreq; tempB = tempB / mach64RefFreq; if (((tempB & 0xFFFF) <= 255) && (remainder <= preRemainder)) { preRemainder = remainder; divider &= ~0x3f; divider |= tempA; divider = (divider & 0x00FF) + ((tempB & 0xFF) << 8); } temp += mhz100; tempA++; } while (tempA <= 32); program_bits = divider; } pll->ics2595.program_bits = program_bits; pll->ics2595.locationAddr = 0; pll->ics2595.post_divider = divider; /* fuer nix */ pll->ics2595.period_in_ps = vclk_per; return 0; } static u32 aty_pll_408_to_var(const struct fb_info *info, const union aty_pll *pll) { return (pll->ics2595.period_in_ps); /* default for now */ } static void aty_set_pll_408(const struct fb_info *info, const union aty_pll *pll) { struct atyfb_par *par = (struct atyfb_par *) info->par; u32 program_bits; u32 locationAddr; u8 tmpA, tmpB, tmpC; char old_crtc_ext_disp; old_crtc_ext_disp = aty_ld_8(CRTC_GEN_CNTL + 3, par); aty_st_8(CRTC_GEN_CNTL + 3, old_crtc_ext_disp | (CRTC_EXT_DISP_EN >> 24), par); program_bits = pll->ics2595.program_bits; locationAddr = pll->ics2595.locationAddr; /* Program clock */ aty_dac_waste4(par); tmpB = aty_ld_8(DAC_REGS + 2, par) | 1; aty_dac_waste4(par); aty_st_8(DAC_REGS + 2, tmpB, par); tmpA = tmpB; tmpC = tmpA; tmpA |= 8; tmpB = 1; aty_st_8(DAC_REGS, tmpB, par); aty_st_8(DAC_REGS + 2, tmpA, par); udelay(400); /* delay for 400 us */ locationAddr = (locationAddr << 2) + 0x40; tmpB = locationAddr; tmpA = program_bits >> 8; aty_st_8(DAC_REGS, tmpB, par); aty_st_8(DAC_REGS + 2, tmpA, par); tmpB = locationAddr + 1; tmpA = (u8) program_bits; aty_st_8(DAC_REGS, tmpB, par); aty_st_8(DAC_REGS + 2, tmpA, par); tmpB = locationAddr + 2; tmpA = 0x77; aty_st_8(DAC_REGS, tmpB, par); aty_st_8(DAC_REGS + 2, tmpA, par); udelay(400); /* delay for 400 us */ tmpA = tmpC & (~(1 | 8)); tmpB = 1; aty_st_8(DAC_REGS, tmpB, par); aty_st_8(DAC_REGS + 2, tmpA, par); (void) aty_ld_8(DAC_REGS, par); /* Clear DAC Counter */ aty_st_8(CRTC_GEN_CNTL + 3, old_crtc_ext_disp, par); return; } const struct aty_pll_ops aty_pll_att20c408 = { .var_to_pll = aty_var_to_pll_408, .pll_to_var = aty_pll_408_to_var, .set_pll = aty_set_pll_408, }; /* * Unsupported DAC and Clock Chip */ static int aty_set_dac_unsupported(const struct fb_info *info, const union aty_pll *pll, u32 bpp, u32 accel) { struct atyfb_par *par = (struct atyfb_par *) info->par; aty_st_le32(BUS_CNTL, 0x890e20f1, par); aty_st_le32(DAC_CNTL, 0x47052100, par); /* new in 2.2.3p1 from Geert. ???????? */ aty_st_le32(BUS_CNTL, 0x590e10ff, par); aty_st_le32(DAC_CNTL, 0x47012100, par); return 0; } static int dummy(void) { return 0; } const struct aty_dac_ops aty_dac_unsupported = { .set_dac = aty_set_dac_unsupported, }; const struct aty_pll_ops aty_pll_unsupported = { .var_to_pll = (void *) dummy, .pll_to_var = (void *) dummy, .set_pll = (void *) dummy, };