/* linux/drivers/video/exynos/exynos_mipi_dsi_common.c * * Samsung SoC MIPI-DSI common driver. * * Copyright (c) 2012 Samsung Electronics Co., Ltd * * InKi Dae, <inki.dae@samsung.com> * Donghwa Lee, <dh09.lee@samsung.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/mutex.h> #include <linux/wait.h> #include <linux/fs.h> #include <linux/mm.h> #include <linux/fb.h> #include <linux/ctype.h> #include <linux/platform_device.h> #include <linux/io.h> #include <linux/memory.h> #include <linux/delay.h> #include <linux/irqreturn.h> #include <linux/kthread.h> #include <video/mipi_display.h> #include <video/exynos_mipi_dsim.h> #include "exynos_mipi_dsi_regs.h" #include "exynos_mipi_dsi_lowlevel.h" #include "exynos_mipi_dsi_common.h" #define MIPI_FIFO_TIMEOUT msecs_to_jiffies(250) #define MIPI_RX_FIFO_READ_DONE 0x30800002 #define MIPI_MAX_RX_FIFO 20 #define MHZ (1000 * 1000) #define FIN_HZ (24 * MHZ) #define DFIN_PLL_MIN_HZ (6 * MHZ) #define DFIN_PLL_MAX_HZ (12 * MHZ) #define DFVCO_MIN_HZ (500 * MHZ) #define DFVCO_MAX_HZ (1000 * MHZ) #define TRY_GET_FIFO_TIMEOUT (5000 * 2) #define TRY_FIFO_CLEAR (10) /* MIPI-DSIM status types. */ enum { DSIM_STATE_INIT, /* should be initialized. */ DSIM_STATE_STOP, /* CPU and LCDC are LP mode. */ DSIM_STATE_HSCLKEN, /* HS clock was enabled. */ DSIM_STATE_ULPS }; /* define DSI lane types. */ enum { DSIM_LANE_CLOCK = (1 << 0), DSIM_LANE_DATA0 = (1 << 1), DSIM_LANE_DATA1 = (1 << 2), DSIM_LANE_DATA2 = (1 << 3), DSIM_LANE_DATA3 = (1 << 4) }; static unsigned int dpll_table[15] = { 100, 120, 170, 220, 270, 320, 390, 450, 510, 560, 640, 690, 770, 870, 950 }; irqreturn_t exynos_mipi_dsi_interrupt_handler(int irq, void *dev_id) { struct mipi_dsim_device *dsim = dev_id; unsigned int intsrc, intmsk; intsrc = exynos_mipi_dsi_read_interrupt(dsim); intmsk = exynos_mipi_dsi_read_interrupt_mask(dsim); intmsk = ~intmsk & intsrc; if (intsrc & INTMSK_RX_DONE) { complete(&dsim_rd_comp); dev_dbg(dsim->dev, "MIPI INTMSK_RX_DONE\n"); } if (intsrc & INTMSK_FIFO_EMPTY) { complete(&dsim_wr_comp); dev_dbg(dsim->dev, "MIPI INTMSK_FIFO_EMPTY\n"); } exynos_mipi_dsi_clear_interrupt(dsim, intmsk); return IRQ_HANDLED; } /* * write long packet to mipi dsi slave * @dsim: mipi dsim device structure. * @data0: packet data to send. * @data1: size of packet data */ static void exynos_mipi_dsi_long_data_wr(struct mipi_dsim_device *dsim, const unsigned char *data0, unsigned int data_size) { unsigned int data_cnt = 0, payload = 0; /* in case that data count is more then 4 */ for (data_cnt = 0; data_cnt < data_size; data_cnt += 4) { /* * after sending 4bytes per one time, * send remainder data less then 4. */ if ((data_size - data_cnt) < 4) { if ((data_size - data_cnt) == 3) { payload = data0[data_cnt] | data0[data_cnt + 1] << 8 | data0[data_cnt + 2] << 16; dev_dbg(dsim->dev, "count = 3 payload = %x, %x %x %x\n", payload, data0[data_cnt], data0[data_cnt + 1], data0[data_cnt + 2]); } else if ((data_size - data_cnt) == 2) { payload = data0[data_cnt] | data0[data_cnt + 1] << 8; dev_dbg(dsim->dev, "count = 2 payload = %x, %x %x\n", payload, data0[data_cnt], data0[data_cnt + 1]); } else if ((data_size - data_cnt) == 1) { payload = data0[data_cnt]; } exynos_mipi_dsi_wr_tx_data(dsim, payload); /* send 4bytes per one time. */ } else { payload = data0[data_cnt] | data0[data_cnt + 1] << 8 | data0[data_cnt + 2] << 16 | data0[data_cnt + 3] << 24; dev_dbg(dsim->dev, "count = 4 payload = %x, %x %x %x %x\n", payload, *(u8 *)(data0 + data_cnt), data0[data_cnt + 1], data0[data_cnt + 2], data0[data_cnt + 3]); exynos_mipi_dsi_wr_tx_data(dsim, payload); } } } int exynos_mipi_dsi_wr_data(struct mipi_dsim_device *dsim, unsigned int data_id, const unsigned char *data0, unsigned int data_size) { unsigned int check_rx_ack = 0; if (dsim->state == DSIM_STATE_ULPS) { dev_err(dsim->dev, "state is ULPS.\n"); return -EINVAL; } /* FIXME!!! why does it need this delay? */ msleep(20); mutex_lock(&dsim->lock); switch (data_id) { /* short packet types of packet types for command. */ case MIPI_DSI_GENERIC_SHORT_WRITE_0_PARAM: case MIPI_DSI_GENERIC_SHORT_WRITE_1_PARAM: case MIPI_DSI_GENERIC_SHORT_WRITE_2_PARAM: case MIPI_DSI_DCS_SHORT_WRITE: case MIPI_DSI_DCS_SHORT_WRITE_PARAM: case MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE: exynos_mipi_dsi_wr_tx_header(dsim, data_id, data0[0], data0[1]); if (check_rx_ack) { /* process response func should be implemented */ mutex_unlock(&dsim->lock); return 0; } else { mutex_unlock(&dsim->lock); return -EINVAL; } /* general command */ case MIPI_DSI_COLOR_MODE_OFF: case MIPI_DSI_COLOR_MODE_ON: case MIPI_DSI_SHUTDOWN_PERIPHERAL: case MIPI_DSI_TURN_ON_PERIPHERAL: exynos_mipi_dsi_wr_tx_header(dsim, data_id, data0[0], data0[1]); if (check_rx_ack) { /* process response func should be implemented. */ mutex_unlock(&dsim->lock); return 0; } else { mutex_unlock(&dsim->lock); return -EINVAL; } /* packet types for video data */ case MIPI_DSI_V_SYNC_START: case MIPI_DSI_V_SYNC_END: case MIPI_DSI_H_SYNC_START: case MIPI_DSI_H_SYNC_END: case MIPI_DSI_END_OF_TRANSMISSION: mutex_unlock(&dsim->lock); return 0; /* long packet type and null packet */ case MIPI_DSI_NULL_PACKET: case MIPI_DSI_BLANKING_PACKET: mutex_unlock(&dsim->lock); return 0; case MIPI_DSI_GENERIC_LONG_WRITE: case MIPI_DSI_DCS_LONG_WRITE: { unsigned int size, payload = 0; INIT_COMPLETION(dsim_wr_comp); size = data_size * 4; /* if data count is less then 4, then send 3bytes data. */ if (data_size < 4) { payload = data0[0] | data0[1] << 8 | data0[2] << 16; exynos_mipi_dsi_wr_tx_data(dsim, payload); dev_dbg(dsim->dev, "count = %d payload = %x,%x %x %x\n", data_size, payload, data0[0], data0[1], data0[2]); /* in case that data count is more then 4 */ } else exynos_mipi_dsi_long_data_wr(dsim, data0, data_size); /* put data into header fifo */ exynos_mipi_dsi_wr_tx_header(dsim, data_id, data_size & 0xff, (data_size & 0xff00) >> 8); if (!wait_for_completion_interruptible_timeout(&dsim_wr_comp, MIPI_FIFO_TIMEOUT)) { dev_warn(dsim->dev, "command write timeout.\n"); mutex_unlock(&dsim->lock); return -EAGAIN; } if (check_rx_ack) { /* process response func should be implemented. */ mutex_unlock(&dsim->lock); return 0; } else { mutex_unlock(&dsim->lock); return -EINVAL; } } /* packet typo for video data */ case MIPI_DSI_PACKED_PIXEL_STREAM_16: case MIPI_DSI_PACKED_PIXEL_STREAM_18: case MIPI_DSI_PIXEL_STREAM_3BYTE_18: case MIPI_DSI_PACKED_PIXEL_STREAM_24: if (check_rx_ack) { /* process response func should be implemented. */ mutex_unlock(&dsim->lock); return 0; } else { mutex_unlock(&dsim->lock); return -EINVAL; } default: dev_warn(dsim->dev, "data id %x is not supported current DSI spec.\n", data_id); mutex_unlock(&dsim->lock); return -EINVAL; } } static unsigned int exynos_mipi_dsi_long_data_rd(struct mipi_dsim_device *dsim, unsigned int req_size, unsigned int rx_data, u8 *rx_buf) { unsigned int rcv_pkt, i, j; u16 rxsize; /* for long packet */ rxsize = (u16)((rx_data & 0x00ffff00) >> 8); dev_dbg(dsim->dev, "mipi dsi rx size : %d\n", rxsize); if (rxsize != req_size) { dev_dbg(dsim->dev, "received size mismatch received: %d, requested: %d\n", rxsize, req_size); goto err; } for (i = 0; i < (rxsize >> 2); i++) { rcv_pkt = exynos_mipi_dsi_rd_rx_fifo(dsim); dev_dbg(dsim->dev, "received pkt : %08x\n", rcv_pkt); for (j = 0; j < 4; j++) { rx_buf[(i * 4) + j] = (u8)(rcv_pkt >> (j * 8)) & 0xff; dev_dbg(dsim->dev, "received value : %02x\n", (rcv_pkt >> (j * 8)) & 0xff); } } if (rxsize % 4) { rcv_pkt = exynos_mipi_dsi_rd_rx_fifo(dsim); dev_dbg(dsim->dev, "received pkt : %08x\n", rcv_pkt); for (j = 0; j < (rxsize % 4); j++) { rx_buf[(i * 4) + j] = (u8)(rcv_pkt >> (j * 8)) & 0xff; dev_dbg(dsim->dev, "received value : %02x\n", (rcv_pkt >> (j * 8)) & 0xff); } } return rxsize; err: return -EINVAL; } static unsigned int exynos_mipi_dsi_response_size(unsigned int req_size) { switch (req_size) { case 1: return MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE; case 2: return MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE; default: return MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE; } } int exynos_mipi_dsi_rd_data(struct mipi_dsim_device *dsim, unsigned int data_id, unsigned int data0, unsigned int req_size, u8 *rx_buf) { unsigned int rx_data, rcv_pkt, i; u8 response = 0; u16 rxsize; if (dsim->state == DSIM_STATE_ULPS) { dev_err(dsim->dev, "state is ULPS.\n"); return -EINVAL; } /* FIXME!!! */ msleep(20); mutex_lock(&dsim->lock); INIT_COMPLETION(dsim_rd_comp); exynos_mipi_dsi_rd_tx_header(dsim, MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, req_size); response = exynos_mipi_dsi_response_size(req_size); switch (data_id) { case MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM: case MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM: case MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM: case MIPI_DSI_DCS_READ: exynos_mipi_dsi_rd_tx_header(dsim, data_id, data0); /* process response func should be implemented. */ break; default: dev_warn(dsim->dev, "data id %x is not supported current DSI spec.\n", data_id); return -EINVAL; } if (!wait_for_completion_interruptible_timeout(&dsim_rd_comp, MIPI_FIFO_TIMEOUT)) { pr_err("RX done interrupt timeout\n"); mutex_unlock(&dsim->lock); return 0; } msleep(20); rx_data = exynos_mipi_dsi_rd_rx_fifo(dsim); if ((u8)(rx_data & 0xff) != response) { printk(KERN_ERR "mipi dsi wrong response rx_data : %x, response:%x\n", rx_data, response); goto clear_rx_fifo; } if (req_size <= 2) { /* for short packet */ for (i = 0; i < req_size; i++) rx_buf[i] = (rx_data >> (8 + (i * 8))) & 0xff; rxsize = req_size; } else { /* for long packet */ rxsize = exynos_mipi_dsi_long_data_rd(dsim, req_size, rx_data, rx_buf); if (rxsize != req_size) goto clear_rx_fifo; } rcv_pkt = exynos_mipi_dsi_rd_rx_fifo(dsim); msleep(20); if (rcv_pkt != MIPI_RX_FIFO_READ_DONE) { dev_info(dsim->dev, "Can't found RX FIFO READ DONE FLAG : %x\n", rcv_pkt); goto clear_rx_fifo; } mutex_unlock(&dsim->lock); return rxsize; clear_rx_fifo: i = 0; while (1) { rcv_pkt = exynos_mipi_dsi_rd_rx_fifo(dsim); if ((rcv_pkt == MIPI_RX_FIFO_READ_DONE) || (i > MIPI_MAX_RX_FIFO)) break; dev_dbg(dsim->dev, "mipi dsi clear rx fifo : %08x\n", rcv_pkt); i++; } dev_info(dsim->dev, "mipi dsi rx done count : %d, rcv_pkt : %08x\n", i, rcv_pkt); mutex_unlock(&dsim->lock); return 0; } static int exynos_mipi_dsi_pll_on(struct mipi_dsim_device *dsim, unsigned int enable) { int sw_timeout; if (enable) { sw_timeout = 1000; exynos_mipi_dsi_enable_pll(dsim, 1); while (1) { sw_timeout--; if (exynos_mipi_dsi_is_pll_stable(dsim)) return 0; if (sw_timeout == 0) return -EINVAL; } } else exynos_mipi_dsi_enable_pll(dsim, 0); return 0; } static unsigned long exynos_mipi_dsi_change_pll(struct mipi_dsim_device *dsim, unsigned int pre_divider, unsigned int main_divider, unsigned int scaler) { unsigned long dfin_pll, dfvco, dpll_out; unsigned int i, freq_band = 0xf; dfin_pll = (FIN_HZ / pre_divider); /****************************************************** * Serial Clock(=ByteClk X 8) FreqBand[3:0] * ****************************************************** * ~ 99.99 MHz 0000 * 100 ~ 119.99 MHz 0001 * 120 ~ 159.99 MHz 0010 * 160 ~ 199.99 MHz 0011 * 200 ~ 239.99 MHz 0100 * 140 ~ 319.99 MHz 0101 * 320 ~ 389.99 MHz 0110 * 390 ~ 449.99 MHz 0111 * 450 ~ 509.99 MHz 1000 * 510 ~ 559.99 MHz 1001 * 560 ~ 639.99 MHz 1010 * 640 ~ 689.99 MHz 1011 * 690 ~ 769.99 MHz 1100 * 770 ~ 869.99 MHz 1101 * 870 ~ 949.99 MHz 1110 * 950 ~ 1000 MHz 1111 ******************************************************/ if (dfin_pll < DFIN_PLL_MIN_HZ || dfin_pll > DFIN_PLL_MAX_HZ) { dev_warn(dsim->dev, "fin_pll range should be 6MHz ~ 12MHz\n"); exynos_mipi_dsi_enable_afc(dsim, 0, 0); } else { if (dfin_pll < 7 * MHZ) exynos_mipi_dsi_enable_afc(dsim, 1, 0x1); else if (dfin_pll < 8 * MHZ) exynos_mipi_dsi_enable_afc(dsim, 1, 0x0); else if (dfin_pll < 9 * MHZ) exynos_mipi_dsi_enable_afc(dsim, 1, 0x3); else if (dfin_pll < 10 * MHZ) exynos_mipi_dsi_enable_afc(dsim, 1, 0x2); else if (dfin_pll < 11 * MHZ) exynos_mipi_dsi_enable_afc(dsim, 1, 0x5); else exynos_mipi_dsi_enable_afc(dsim, 1, 0x4); } dfvco = dfin_pll * main_divider; dev_dbg(dsim->dev, "dfvco = %lu, dfin_pll = %lu, main_divider = %d\n", dfvco, dfin_pll, main_divider); if (dfvco < DFVCO_MIN_HZ || dfvco > DFVCO_MAX_HZ) dev_warn(dsim->dev, "fvco range should be 500MHz ~ 1000MHz\n"); dpll_out = dfvco / (1 << scaler); dev_dbg(dsim->dev, "dpll_out = %lu, dfvco = %lu, scaler = %d\n", dpll_out, dfvco, scaler); for (i = 0; i < ARRAY_SIZE(dpll_table); i++) { if (dpll_out < dpll_table[i] * MHZ) { freq_band = i; break; } } dev_dbg(dsim->dev, "freq_band = %d\n", freq_band); exynos_mipi_dsi_pll_freq(dsim, pre_divider, main_divider, scaler); exynos_mipi_dsi_hs_zero_ctrl(dsim, 0); exynos_mipi_dsi_prep_ctrl(dsim, 0); /* Freq Band */ exynos_mipi_dsi_pll_freq_band(dsim, freq_band); /* Stable time */ exynos_mipi_dsi_pll_stable_time(dsim, dsim->dsim_config->pll_stable_time); /* Enable PLL */ dev_dbg(dsim->dev, "FOUT of mipi dphy pll is %luMHz\n", (dpll_out / MHZ)); return dpll_out; } static int exynos_mipi_dsi_set_clock(struct mipi_dsim_device *dsim, unsigned int byte_clk_sel, unsigned int enable) { unsigned int esc_div; unsigned long esc_clk_error_rate; unsigned long hs_clk = 0, byte_clk = 0, escape_clk = 0; if (enable) { dsim->e_clk_src = byte_clk_sel; /* Escape mode clock and byte clock source */ exynos_mipi_dsi_set_byte_clock_src(dsim, byte_clk_sel); /* DPHY, DSIM Link : D-PHY clock out */ if (byte_clk_sel == DSIM_PLL_OUT_DIV8) { hs_clk = exynos_mipi_dsi_change_pll(dsim, dsim->dsim_config->p, dsim->dsim_config->m, dsim->dsim_config->s); if (hs_clk == 0) { dev_err(dsim->dev, "failed to get hs clock.\n"); return -EINVAL; } byte_clk = hs_clk / 8; exynos_mipi_dsi_enable_pll_bypass(dsim, 0); exynos_mipi_dsi_pll_on(dsim, 1); /* DPHY : D-PHY clock out, DSIM link : external clock out */ } else if (byte_clk_sel == DSIM_EXT_CLK_DIV8) { dev_warn(dsim->dev, "this project is not support\n"); dev_warn(dsim->dev, "external clock source for MIPI DSIM.\n"); } else if (byte_clk_sel == DSIM_EXT_CLK_BYPASS) { dev_warn(dsim->dev, "this project is not support\n"); dev_warn(dsim->dev, "external clock source for MIPI DSIM\n"); } /* escape clock divider */ esc_div = byte_clk / (dsim->dsim_config->esc_clk); dev_dbg(dsim->dev, "esc_div = %d, byte_clk = %lu, esc_clk = %lu\n", esc_div, byte_clk, dsim->dsim_config->esc_clk); if ((byte_clk / esc_div) >= (20 * MHZ) || (byte_clk / esc_div) > dsim->dsim_config->esc_clk) esc_div += 1; escape_clk = byte_clk / esc_div; dev_dbg(dsim->dev, "escape_clk = %lu, byte_clk = %lu, esc_div = %d\n", escape_clk, byte_clk, esc_div); /* enable escape clock. */ exynos_mipi_dsi_enable_byte_clock(dsim, 1); /* enable byte clk and escape clock */ exynos_mipi_dsi_set_esc_clk_prs(dsim, 1, esc_div); /* escape clock on lane */ exynos_mipi_dsi_enable_esc_clk_on_lane(dsim, (DSIM_LANE_CLOCK | dsim->data_lane), 1); dev_dbg(dsim->dev, "byte clock is %luMHz\n", (byte_clk / MHZ)); dev_dbg(dsim->dev, "escape clock that user's need is %lu\n", (dsim->dsim_config->esc_clk / MHZ)); dev_dbg(dsim->dev, "escape clock divider is %x\n", esc_div); dev_dbg(dsim->dev, "escape clock is %luMHz\n", ((byte_clk / esc_div) / MHZ)); if ((byte_clk / esc_div) > escape_clk) { esc_clk_error_rate = escape_clk / (byte_clk / esc_div); dev_warn(dsim->dev, "error rate is %lu over.\n", (esc_clk_error_rate / 100)); } else if ((byte_clk / esc_div) < (escape_clk)) { esc_clk_error_rate = (byte_clk / esc_div) / escape_clk; dev_warn(dsim->dev, "error rate is %lu under.\n", (esc_clk_error_rate / 100)); } } else { exynos_mipi_dsi_enable_esc_clk_on_lane(dsim, (DSIM_LANE_CLOCK | dsim->data_lane), 0); exynos_mipi_dsi_set_esc_clk_prs(dsim, 0, 0); /* disable escape clock. */ exynos_mipi_dsi_enable_byte_clock(dsim, 0); if (byte_clk_sel == DSIM_PLL_OUT_DIV8) exynos_mipi_dsi_pll_on(dsim, 0); } return 0; } int exynos_mipi_dsi_init_dsim(struct mipi_dsim_device *dsim) { dsim->state = DSIM_STATE_INIT; switch (dsim->dsim_config->e_no_data_lane) { case DSIM_DATA_LANE_1: dsim->data_lane = DSIM_LANE_DATA0; break; case DSIM_DATA_LANE_2: dsim->data_lane = DSIM_LANE_DATA0 | DSIM_LANE_DATA1; break; case DSIM_DATA_LANE_3: dsim->data_lane = DSIM_LANE_DATA0 | DSIM_LANE_DATA1 | DSIM_LANE_DATA2; break; case DSIM_DATA_LANE_4: dsim->data_lane = DSIM_LANE_DATA0 | DSIM_LANE_DATA1 | DSIM_LANE_DATA2 | DSIM_LANE_DATA3; break; default: dev_info(dsim->dev, "data lane is invalid.\n"); return -EINVAL; }; exynos_mipi_dsi_sw_reset(dsim); exynos_mipi_dsi_func_reset(dsim); exynos_mipi_dsi_dp_dn_swap(dsim, 0); return 0; } void exynos_mipi_dsi_init_interrupt(struct mipi_dsim_device *dsim) { unsigned int src = 0; src = (INTSRC_SFR_FIFO_EMPTY | INTSRC_RX_DATA_DONE); exynos_mipi_dsi_set_interrupt(dsim, src, 1); src = 0; src = ~(INTMSK_RX_DONE | INTMSK_FIFO_EMPTY); exynos_mipi_dsi_set_interrupt_mask(dsim, src, 1); } int exynos_mipi_dsi_enable_frame_done_int(struct mipi_dsim_device *dsim, unsigned int enable) { /* enable only frame done interrupt */ exynos_mipi_dsi_set_interrupt_mask(dsim, INTMSK_FRAME_DONE, enable); return 0; } void exynos_mipi_dsi_stand_by(struct mipi_dsim_device *dsim, unsigned int enable) { /* consider Main display and Sub display. */ exynos_mipi_dsi_set_main_stand_by(dsim, enable); } int exynos_mipi_dsi_set_display_mode(struct mipi_dsim_device *dsim, struct mipi_dsim_config *dsim_config) { struct mipi_dsim_platform_data *dsim_pd; struct fb_videomode *timing; dsim_pd = (struct mipi_dsim_platform_data *)dsim->pd; timing = (struct fb_videomode *)dsim_pd->lcd_panel_info; /* in case of VIDEO MODE (RGB INTERFACE), it sets polarities. */ if (dsim_config->e_interface == (u32) DSIM_VIDEO) { if (dsim_config->auto_vertical_cnt == 0) { exynos_mipi_dsi_set_main_disp_vporch(dsim, dsim_config->cmd_allow, timing->lower_margin, timing->upper_margin); exynos_mipi_dsi_set_main_disp_hporch(dsim, timing->right_margin, timing->left_margin); exynos_mipi_dsi_set_main_disp_sync_area(dsim, timing->vsync_len, timing->hsync_len); } } exynos_mipi_dsi_set_main_disp_resol(dsim, timing->xres, timing->yres); exynos_mipi_dsi_display_config(dsim, dsim_config); dev_info(dsim->dev, "lcd panel ==> width = %d, height = %d\n", timing->xres, timing->yres); return 0; } int exynos_mipi_dsi_init_link(struct mipi_dsim_device *dsim) { unsigned int time_out = 100; switch (dsim->state) { case DSIM_STATE_INIT: exynos_mipi_dsi_init_fifo_pointer(dsim, 0x1f); /* dsi configuration */ exynos_mipi_dsi_init_config(dsim); exynos_mipi_dsi_enable_lane(dsim, DSIM_LANE_CLOCK, 1); exynos_mipi_dsi_enable_lane(dsim, dsim->data_lane, 1); /* set clock configuration */ exynos_mipi_dsi_set_clock(dsim, dsim->dsim_config->e_byte_clk, 1); /* check clock and data lane state are stop state */ while (!(exynos_mipi_dsi_is_lane_state(dsim))) { time_out--; if (time_out == 0) { dev_err(dsim->dev, "DSI Master is not stop state.\n"); dev_err(dsim->dev, "Check initialization process\n"); return -EINVAL; } } if (time_out != 0) { dev_info(dsim->dev, "DSI Master driver has been completed.\n"); dev_info(dsim->dev, "DSI Master state is stop state\n"); } dsim->state = DSIM_STATE_STOP; /* BTA sequence counters */ exynos_mipi_dsi_set_stop_state_counter(dsim, dsim->dsim_config->stop_holding_cnt); exynos_mipi_dsi_set_bta_timeout(dsim, dsim->dsim_config->bta_timeout); exynos_mipi_dsi_set_lpdr_timeout(dsim, dsim->dsim_config->rx_timeout); return 0; default: dev_info(dsim->dev, "DSI Master is already init.\n"); return 0; } return 0; } int exynos_mipi_dsi_set_hs_enable(struct mipi_dsim_device *dsim) { if (dsim->state != DSIM_STATE_STOP) { dev_warn(dsim->dev, "DSIM is not in stop state.\n"); return 0; } if (dsim->e_clk_src == DSIM_EXT_CLK_BYPASS) { dev_warn(dsim->dev, "clock source is external bypass.\n"); return 0; } dsim->state = DSIM_STATE_HSCLKEN; /* set LCDC and CPU transfer mode to HS. */ exynos_mipi_dsi_set_lcdc_transfer_mode(dsim, 0); exynos_mipi_dsi_set_cpu_transfer_mode(dsim, 0); exynos_mipi_dsi_enable_hs_clock(dsim, 1); return 0; } int exynos_mipi_dsi_set_data_transfer_mode(struct mipi_dsim_device *dsim, unsigned int mode) { if (mode) { if (dsim->state != DSIM_STATE_HSCLKEN) { dev_err(dsim->dev, "HS Clock lane is not enabled.\n"); return -EINVAL; } exynos_mipi_dsi_set_lcdc_transfer_mode(dsim, 0); } else { if (dsim->state == DSIM_STATE_INIT || dsim->state == DSIM_STATE_ULPS) { dev_err(dsim->dev, "DSI Master is not STOP or HSDT state.\n"); return -EINVAL; } exynos_mipi_dsi_set_cpu_transfer_mode(dsim, 0); } return 0; } int exynos_mipi_dsi_get_frame_done_status(struct mipi_dsim_device *dsim) { return _exynos_mipi_dsi_get_frame_done_status(dsim); } int exynos_mipi_dsi_clear_frame_done(struct mipi_dsim_device *dsim) { _exynos_mipi_dsi_clear_frame_done(dsim); return 0; } int exynos_mipi_dsi_fifo_clear(struct mipi_dsim_device *dsim, unsigned int val) { int try = TRY_FIFO_CLEAR; exynos_mipi_dsi_sw_reset_release(dsim); exynos_mipi_dsi_func_reset(dsim); do { if (exynos_mipi_dsi_get_sw_reset_release(dsim)) { exynos_mipi_dsi_init_interrupt(dsim); dev_dbg(dsim->dev, "reset release done.\n"); return 0; } } while (--try); dev_err(dsim->dev, "failed to clear dsim fifo.\n"); return -EAGAIN; } MODULE_AUTHOR("InKi Dae <inki.dae@samsung.com>"); MODULE_DESCRIPTION("Samusung SoC MIPI-DSI common driver"); MODULE_LICENSE("GPL");